Review Article | Published:

The role of the third component in ternary organic solar cells

Nature Reviews Materialsvolume 4pages229242 (2019) | Download Citation

Abstract

Ternary organic solar cells (TSCs) contain a single three-component photoactive layer with a wide absorption window, which is obtained without the need for multiple stacks. Subsequently, TSCs have attracted great interest in the photovoltaics field. Through careful selection of the three (or more) active components that form the photoactive layer, all photovoltaic parameters can be simultaneously enhanced within a TSC — a strategy that has resulted in record efficiencies for single-junction solar cells. In this Review, we outline key developments in TSCs, with a focus on the central role of the third component in achieving record efficiencies. We analyse the effects of the third component on the nanomorphology of the bulk heterojunction and the photovoltaic parameters of TSCs. Moreover, we discuss the charge-transfer and/or energy-transfer mechanisms and nanomorphology models that govern the operation of TSCs. We consider both polymer and small-molecule donors as well as fullerenes and recently developed non-fullerene acceptors. In addition, we summarize the recent success of TSCs in mitigating the stability issues of binary solar cells. Finally, we provide a perspective on the advantages of ternary blends and suggest design strategies for highly efficient and stable devices for commercial photovoltaics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Becquerel, A. E. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques [French]. C. R. Acad. Sci. 9, 145–149 (1839).

  2. 2.

    Kepler, R. G. Charge carrier production and mobility in anthracene crystals. Phys. Rev. 119, 1226–1229 (1960).

  3. 3.

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2016).

  4. 4.

    Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2016).

  5. 5.

    McCulloch, I., Salleo, A. & Chabinyc, M. Avoid the kinks when measuring mobility. Science 352, 1521–1522 (2016).

  6. 6.

    Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

  7. 7.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

  8. 8.

    Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

  9. 9.

    Ren, X. et al. Organic field-effect transistor for energy-related applications: low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices. Adv. Energy Mater. 8, 1801003 (2018).

  10. 10.

    Leo, K. Organic photovoltaics. Nat. Rev. Mater. 1, 16056 (2016).

  11. 11.

    Brabec, C. J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

  12. 12.

    Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

  13. 13.

    Deibel, C. & Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010).

  14. 14.

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

  15. 15.

    Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

  16. 16.

    Kang, H. et al. Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv. Mater. 28, 7821–7861 (2016).

  17. 17.

    Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

  18. 18.

    Lucera, L. et al. Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ. Sci. 9, 89–94 (2015).

  19. 19.

    Søndergaard, R. R., Hösel, M. & Krebs, F. C. Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci. B Polym. Phys. 51, 16–34 (2013).

  20. 20.

    Po, R. et al. From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy Environ. Sci. 7, 925–943 (2014).

  21. 21.

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

  22. 22.

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

  23. 23.

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

  24. 24.

    Liang, Y. et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135–138 (2010).

  25. 25.

    He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 174–179 (2015).

  26. 26.

    Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

  27. 27.

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

  28. 28.

    Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

  29. 29.

    Sharenko, A. et al. A high-performing solution-processed small molecule: perylene diimide bulk heterojunction solar cell. Adv. Mater. 25, 4403–4406 (2013).

  30. 30.

    Kumari, T., Lee, S. M., Kang, S., Chen, S. & Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 10, 258–265 (2017).

  31. 31.

    Thompson, B. C. & Fréchet, J. M. J. Polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008).

  32. 32.

    Gasparini, N. et al. The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv. Energy Mater. 8, 1703298 (2018).

  33. 33.

    Wadsworth, A. et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. https://doi.org/10.1039/C7CS00892A (2019).

  34. 34.

    Baran, D. et al. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nat. Commun. 9, 2059 (2018).

  35. 35.

    Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017). This paper introduces a universal strategy for achieving highly efficient TSCs with small-molecule acceptors.

  36. 36.

    Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

  37. 37.

    Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

  38. 38.

    Zhang, J., Tan, H. S., Guo, X., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

  39. 39.

    Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

  40. 40.

    Holliday, S., Li, Y. & Luscombe, C. K. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 70, 34–51 (2017).

  41. 41.

    Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

  42. 42.

    Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

  43. 43.

    Hwang, Y.-J., Earmme, T., Courtright, B. A. E., Eberle, F. N. & Jenekhe, S. A. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J. Am. Chem. Soc. 137, 4424–4434 (2015).

  44. 44.

    Mu, C. et al. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 26, 7224–7230 (2014).

  45. 45.

    Zhou, Y. et al. High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 26, 3767–3772 (2014).

  46. 46.

    Fan, B. et al. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 29, 1703906 (2017).

  47. 47.

    Zheng, Z. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 30, 1801801 (2018).

  48. 48.

    Ramirez, I., Causa’, M., Zhong, Y., Banerji, N. & Riede, M. Key tradeoffs limiting the performance of organic photovoltaics. Adv. Energy Mater. 8, 1703551 (2018).

  49. 49.

    Wright, M., Lin, R., Tayebjee, M. J. Y. & Conibeer, G. Effect of blend composition on bulk heterojunction organic solar cells: a review. Sol. RRL 1, 1700035 (2017).

  50. 50.

    Peters, C. H. et al. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

  51. 51.

    Ryno, S. M., Ravva, M. K., Chen, X., Li, H. & Brédas, J.-L. Molecular understanding of fullerene - electron donor interactions in organic solar cells. Adv. Energy Mater. 7, 1601370 (2017).

  52. 52.

    Gasparini, N. et al. Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).

  53. 53.

    Gasparini, N. et al. Polymer:nonfullerene bulk heterojunction solar cells with exceptionally low recombination rates. Adv. Energy Mater. 7, 1701561 (2017).

  54. 54.

    Liu, Y., Zuo, L., Shi, X., Jen, A. K.-Y. & Ginger, D. S. Unexpectedly slow yet efficient picosecond to nanosecond photoinduced hole-transfer occurs in a polymer/nonfullerene acceptor organic photovoltaic blend. ACS Energy Lett. 3, 2396–2403 (2018).

  55. 55.

    Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

  56. 56.

    Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

  57. 57.

    Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

  58. 58.

    Zhang, K. et al. 11.2% All-polymer tandem solar cells with simultaneously improved efficiency and stability. Adv. Mater. 30, 1803166 (2018).

  59. 59.

    Yuan, J. et al. Improved tandem all-polymer solar cells performance by using spectrally matched subcells. Adv. Energy Mater. 8, 1703291 (2018).

  60. 60.

    Qin, Y. et al. Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017).

  61. 61.

    Li, N. & Brabec, C. J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 8, 2902–2909 (2015).

  62. 62.

    Ameri, T., Li, N. & Brabec, C. J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013).

  63. 63.

    Guo, F. et al. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6, 7730 (2015).

  64. 64.

    Spyropoulos, G. D. et al. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284–3290 (2014).

  65. 65.

    Gasparini, N. et al. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1, 16118 (2016). This paper demonstrates how trap-assisted recombination in binary blends can be reduced by adding a crystalline third component, leading to high FF values in ternary blends.

  66. 66.

    Huang, W., Cheng, P., Yang, Y. M., Li, G. & Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 30, 1705706 (2018).

  67. 67.

    Lu, L., Kelly, M. A., You, W. & Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photon. 9, 491–500 (2015).

  68. 68.

    An, Q. et al. Versatile ternary organic solar cells: a critical review. Energy Environ. Sci. 9, 281–322 (2016).

  69. 69.

    Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

  70. 70.

    Gasparini, N. et al. High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10, 885–892 (2017).

  71. 71.

    Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2, 1198–1202 (2012).

  72. 72.

    Ma, X. et al. Efficient ternary polymer solar cells with two well-compatible donors and one ultranarrow bandgap nonfullerene acceptor. Adv. Energy Mater. 8, 1702854 (2018).

  73. 73.

    Cheng, P., Li, Y. & Zhan, X. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7, 2005–2011 (2014).

  74. 74.

    Street, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013). This paper introduces the alloy model in TSCs.

  75. 75.

    Mollinger, S. A., Vandewal, K. & Salleo, A. Microstructural and electronic origins of open-circuit voltage tuning in organic solar cells based on ternary blends. Adv. Energy Mater. 5, 1501335 (2015).

  76. 76.

    Liu, S. et al. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 8, 1463–1470 (2015).

  77. 77.

    Zhang, M. et al. Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy Environ. Sci. 11, 841–849 (2018).

  78. 78.

    Ke, L. et al. A series of pyrene-substituted silicon phthalocyanines as near-IR sensitizers in organic ternary solar cells. Adv. Energy Mater. 6, 1502355 (2016).

  79. 79.

    Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190–198 (2015). This paper provides design rules for fabricating high-performance multiple-donor BHJ solar cells.

  80. 80.

    Yu, R., Yao, H. & Hou, J. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater. 8, 1702814 (2018).

  81. 81.

    Li, H., Lu, K. & Wei, Z. Polymer/small molecule/fullerene based ternary solar cells. Adv. Energy Mater. 7, 1602540 (2017).

  82. 82.

    Zhao, W., Li, S., Zhang, S., Liu, X. & Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 29, 1604059 (2017).

  83. 83.

    Xu, X. et al. Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv. Mater. 29, 1704271 (2017).

  84. 84.

    Lu, H. et al. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv. Mater. 28, 9559–9566 (2016).

  85. 85.

    Gupta, V., Bharti, V., Kumar, M., Chand, S. & Heeger, A. J. Polymer–polymer Förster resonance energy transfer significantly boosts the power conversion efficiency of bulk-heterojunction solar cells. Adv. Mater. 27, 4398–4404 (2015).

  86. 86.

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8, 716–722 (2014).

  87. 87.

    Lu, L., Chen, W., Xu, T. & Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 6, 7327 (2015). This paper reports highly efficient ternary blends that exhibit both charge-transfer and energy-transfer mechanisms.

  88. 88.

    Nam, M. et al. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017).

  89. 89.

    Wang, Z. et al. From alloy-like to cascade blended structure: designing high-performance all-small-molecule ternary solar cells. J. Am. Chem. Soc. 140, 1549–1556 (2018).

  90. 90.

    Zhang, J. et al. Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 137, 8176–8183 (2015).

  91. 91.

    de Zerio, A. D. & Müller, C. Glass forming acceptor alloys for highly efficient and thermally stable ternary organic solar cells. Adv. Energy Mater. 8, 1702741 (2018).

  92. 92.

    Naveed, H. B. & Ma, W. Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule 2, 621–641 (2018).

  93. 93.

    Ameri, T. et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461–19472 (2014).

  94. 94.

    Yu, R. et al. Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017).

  95. 95.

    Lee, J. et al. Overcoming fill factor reduction in ternary polymer solar cells by matching the highest occupied molecular orbital energy levels of donor polymers. Adv. Energy Mater. 8, 1702251 (2018).

  96. 96.

    Xu, W.-L. et al. Förster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction. J. Phys. Chem. C 119, 21913–21920 (2015).

  97. 97.

    Koppe, M. et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv. Energy Mater. 3, 949–958 (2013).

  98. 98.

    Cheng, P. et al. Alloy acceptor: superior alternative to PCBM toward efficient and stable organic solar cells. Adv. Mater. 28, 8021–8028 (2016).

  99. 99.

    Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2011).

  100. 100.

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

  101. 101.

    Zhang, S., Qin, Y., Zhu, J. & Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018).

  102. 102.

    Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral esponse of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010). This paper provides the first example of TSCs with enhanced absorption in the NIR region of the solar spectrum.

  103. 103.

    Liu, T. et al. Ternary organic solar cells based on two highly efficient polymer donors with enhanced power conversion efficiency. Adv. Energy Mater. 6, 1502109 (2016).

  104. 104.

    Zhao, F. et al. Combining energy transfer and optimized morphology for highly efficient ternary polymer solar cells. Adv. Energy Mater. 7, 1602552 (2017).

  105. 105.

    Li, W. et al. Contrasting effects of energy transfer in determining efficiency improvements in ternary polymer solar cells. Adv. Funct. Mater. 28, 1704212 (2018).

  106. 106.

    Zhou, H. et al. High-efficiency polymer solar cells enhanced by solvent treatment. Adv. Mater. 25, 1646–1652 (2013).

  107. 107.

    Song, X. et al. Controlling blend morphology for ultrahigh current density in nonfullerene acceptor-based organic solar cells. ACS Energy Lett. 3, 669–676 (2018).

  108. 108.

    Liu, T. et al. Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10%. Adv. Mater. 28, 10008–10015 (2016).

  109. 109.

    He, Y., Chen, H. Y., Hou, J. & Li, Y. Indene–C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

  110. 110.

    Su, W. et al. Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. J. Mater. Chem. A 4, 14752–14760 (2016).

  111. 111.

    Sweetnam, S. et al. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078–14088 (2014).

  112. 112.

    Bartelt, J. A. et al. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364–374 (2013).

  113. 113.

    Shang, Z. et al. Trade-off between trap filling, trap creation, and charge recombination results in performance increase at ultralow doping levels in bulk heterojunction solar cells. Adv. Energy Mater. 6, 1601149 (2016).

  114. 114.

    Ghasemi, M. et al. Panchromatic sequentially cast ternary polymer solar cells. Adv. Mater. 29, 1604603 (2017).

  115. 115.

    Jiang, K. et al. Multiple cases of efficient nonfullerene ternary organic solar cells enabled by an effective morphology control method. Adv. Energy Mater. 8, 1701370 (2018).

  116. 116.

    Poelking, C. et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14, 434–439 (2015).

  117. 117.

    Liu, T. et al. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy Environ. Sci. 11, 3275–3282 (2018).

  118. 118.

    Zhou, Z. et al. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018). Together with Gasparini et al. ( Energy Environ. Sci. , 2017), this paper shows how the ternary strategy enables the fabrication of thick active layers for high-efficiency and scalable ternary blends.

  119. 119.

    Jørgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

  120. 120.

    Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017).

  121. 121.

    Heumueller, T. et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2015).

  122. 122.

    Hintz, H. et al. Photodegradation of P3HT−a systematic study of environmental factors. Chem. Mater. 23, 145–154 (2011).

  123. 123.

    de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

  124. 124.

    Salvador, M. et al. Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017).

  125. 125.

    Seemann, A. et al. Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85, 1238–1249 (2011).

  126. 126.

    Peters, C. H. et al. The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663–668 (2012).

  127. 127.

    Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018).

  128. 128.

    Diaz de Zerio Mendaza, A. et al. A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 °C. J. Mater. Chem. A 5, 4156–4162 (2017).

  129. 129.

    Su, W. et al. Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy 38, 510–517 (2017).

  130. 130.

    Berny, S. et al. Solar trees: first large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 3, 1500342 (2016).

  131. 131.

    Strohm, S. et al. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy Environ. Sci. 11, 2225–2234 (2018).

  132. 132.

    Zhang, T., Zhao, X., Yang, D., Tian, Y. & Yang, X. Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8, 1701691 (2018).

  133. 133.

    Fan, B. et al. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 8, 1703085 (2018).

  134. 134.

    Hwang, Y. J., Li, H., Courtright, B. A. E., Subramaniyan, S. & Jenekhe, S. A. Nonfullerene polymer solar cells with 8.5% efficiency enabled by a new highly twisted electron acceptor dimer. Adv. Mater. 28, 124–131 (2016).

  135. 135.

    Zhong, L. et al. High efficiency ternary nonfullerene polymer solar cells with two polymer donors and an organic semiconductor acceptor. Adv. Energy Mater. 7, 1602215 (2017).

  136. 136.

    Li, Z. et al. 9.0% Power conversion efficiency from ternary all-polymer solar cells. Energy Environ. Sci. 10, 2212–2221 (2017).

  137. 137.

    Nian, L. et al. Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy Environ. Sci. 11, 3392–3399 (2018).

  138. 138.

    Chen, Y. et al. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Adv. Energy Mater. 7, 1700328 (2017).

  139. 139.

    Chen, Y. et al. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Adv. Mater. 29, 1603154 (2017).

  140. 140.

    Zhang, H. et al. Improved domain size and purity enables efficient all-small-molecule ternary solar cells. Adv. Mater. 29, 1703777 (2017).

  141. 141.

    Cheng, P. et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 29, 1605216 (2017).

  142. 142.

    Jiang, W. et al. Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Adv. Mater. 30, 1703005 (2018).

  143. 143.

    Xiao, Z., Jia, X. & Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 62, 1562–1564 (2017).

Download references

Acknowledgements

The authors acknowledge funding from the King Abdullah University of Science and Technology (KAUST) and thank the UK Engineering and Physical Sciences Research Council (EPSRC) for financial support (project EP/G037515/1, EP/M005143/1, ECFP7 and project SC2 (610115)). A.S. acknowledges support from the US National Science Foundation (CBET award no. 1510481).

Author information

Affiliations

  1. King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering (PSE), KAUST Solar Center (KSC), Thuwal, Saudi Arabia

    • Nicola Gasparini
    • , Iain McCulloch
    •  & Derya Baran
  2. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA

    • Alberto Salleo
  3. Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK

    • Iain McCulloch

Authors

  1. Search for Nicola Gasparini in:

  2. Search for Alberto Salleo in:

  3. Search for Iain McCulloch in:

  4. Search for Derya Baran in:

Contributions

D.B. and N.G. researched data for the article. A.S. wrote the morphology-related sections. I.M. wrote the sections on chemical design and stability. N.G. wrote the charge transport and recombination section. D.B. wrote the sections on operating modes of TSCs, energetics and the introduction. All authors discussed, edited and reviewed the article before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Derya Baran.

Supplementary information

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41578-019-0093-4