Review Article

Material platforms for spin-based photonic quantum technologies

  • Nature Reviews Materialsvolume 3pages3851 (2018)
  • doi:10.1038/s41578-018-0008-9
  • Download Citation
Published:

Abstract

A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light–matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light–matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light–matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

  • Subscribe to Nature Reviews Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

  2. 2.

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

  3. 3.

    Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

  4. 4.

    Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

  5. 5.

    Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 10503 (2017).

  6. 6.

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

  7. 7.

    He, Y. et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys. Rev. Lett. 119, 60501 (2017).

  8. 8.

    Varnava, C. et al. An entangled-LED-driven quantum relay over 1 km. Quantum Inform. 2, 16006 (2016).

  9. 9.

    Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

  10. 10.

    Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

  11. 11.

    Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys. 11, 1005–1008 (2015).

  12. 12.

    Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

  13. 13.

    Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

  14. 14.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

  15. 15.

    Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

  16. 16.

    Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

  17. 17.

    Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

  18. 18.

    Acosta, V. & Hemmer, P. Nitrogen-vacancy centers: physics and applications. MRS Bull. 38, 127–130 (2013).

  19. 19.

    Doherty, M. W. et al. Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).

  20. 20.

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  21. 21.

    Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

  22. 22.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

  23. 23.

    Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Preprint at arXiv, 1801.01196 (2018).

  24. 24.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  25. 25.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  26. 26.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  27. 27.

    Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum. Inf. Comput. 14, 1338–1372 (2013).

  28. 28.

    Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 41041 (2014).

  29. 29.

    Cabrillo, C., Cirac, J. I., Garc’\ia-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

  30. 30.

    Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 52330 (2005).

  31. 31.

    Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 60310 (2005).

  32. 32.

    Pant, M., Choi, H., Guha, S. & Englund, D. Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories. Preprint at arXiv, 1704.07292 (2017).

  33. 33.

    Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 31022 (2014).

  34. 34.

    Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

  35. 35.

    Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

  36. 36.

    Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

  37. 37.

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 13904 (2005).

  38. 38.

    Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

  39. 39.

    van der Sar, T. et al. Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011).

  40. 40.

    Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010).

  41. 41.

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Phot. 5, 301–305 (2011).

  42. 42.

    Thomas, N., Barbour, R. J., Song, Y., Lee, M. L. & Fu, K.-M. C. Waveguide-integrated single-crystalline GaP resonators on diamond. Opt. Express 22, 13555–13564 (2014).

  43. 43.

    Riedrich-Moller, J. et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7, 69–74 (2012).

  44. 44.

    Hausmann, B. J. M. et al. Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Lett. 13, 5791–5796 (2013).

  45. 45.

    Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

  46. 46.

    Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 33604 (2012).

  47. 47.

    Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

  48. 48.

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

  49. 49.

    Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

  50. 50.

    Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261903–261909 (2005).

  51. 51.

    Naydenov, B. et al. Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009).

  52. 52.

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

  53. 53.

    Riedrich-Möller, J. et al. Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond. Appl. Phys. Lett. 106, 221103 (2015).

  54. 54.

    Schröder, T. et al. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. Opt. Mater. Express 7, 1514–1524 (2017).

  55. 55.

    Schukraft, M. et al. Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photon. 1, 020801 (2016).

  56. 56.

    Lesik, M. et al. Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology. Phys. Status Solidi 210, 2055–2059 (2013).

  57. 57.

    Tamura, S. et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Appl. Phys. Express 7, 115201 (2014).

  58. 58.

    Schröder, T. et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun. 8, 15376 (2017).

  59. 59.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).

  60. 60.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 73003 (2016).

  61. 61.

    Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y. & Englund, D. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys. Rev. A 92, 32322 (2015).

  62. 62.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

  63. 63.

    Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 31009 (2015).

  64. 64.

    Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

  65. 65.

    Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

  66. 66.

    Digeronimo, G. E. et al. Integration of single-photon sources and detectors on GaAs. Photonics 3, 55 (2016).

  67. 67.

    Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

  68. 68.

    Wang, C., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B At. Mol. Opt. Phys. 39, 37 (2006).

  69. 69.

    Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

  70. 70.

    Becker, J. N., Görlitz, J., Arend, C., Markham, M. & Becher, C. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond. Nat. Commun. 7, 13512 (2016).

  71. 71.

    Zhang, J. ~L. et al. Complete coherent control of silicon-vacancies in diamond nanopillars containing single defect centers. Optica 4, 1317–1321 (2017).

  72. 72.

    Müller, T. et al. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 5, 3328 (2014).

  73. 73.

    Pingault, B. et al. Coherent control of the silicon-vacancy spin in diamond. Nat. Commun. 8, 15579 (2017).

  74. 74.

    Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

  75. 75.

    Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

  76. 76.

    Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

  77. 77.

    Sohn, Y.-I. et al. Controlling the coherence of a diamond spin qubit through strain engineering. Preprint at arXiv, 1706.03881 (2017).

  78. 78.

    Rose, B. C. et al. Observation of an environmentally insensitive solid state spin defect in diamond. Preprint at arXiv, 1706.01555 (2017).

  79. 79.

    Green, B. L. et al. The neutral silicon-vacancy center in diamond: spin polarization and lifetimes. Phys. Rev. Lett. 119, 096402 (2017).

  80. 80.

    Iwasaki, T. et al. Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015).

  81. 81.

    Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

  82. 82.

    Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513 (2010).

  83. 83.

    Melinon, P., Masenelli, B., Tournus, F. & Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 6, 479–490 (2007).

  84. 84.

    Uzan-Saguy, C. et al. Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194 (1995).

  85. 85.

    Kimoto, T. & Cooper, J. A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. (John Wiley & Sons, 2014).

  86. 86.

    Baliga, B. J. Silicon Carbide Power Devices. (World Scientific, 2005).

  87. 87.

    Sarro, P. M. Silicon carbide as a new MEMS technology. Sens. Actuators A-Phys. 82, 210–218 (2000).

  88. 88.

    Wright, N. G. & Horsfall, A. B. SiC sensors: a review. J. Phys. D. Appl. Phys. 40, 6345 (2007).

  89. 89.

    Saddow, S. E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. (Elsevier, 2012).

  90. 90.

    Janzén, E. et al. in Defects in Microelectronic Materials and Devices (eds Fleetwood, D., Schrimpf, R. & Pantelides, S.) 615–669 (CRC Press, 2008).

  91. 91.

    Carlos, W. E., Garces, N. Y., Glaser, E. R. & Fanton, M. A. Annealing of multivacancy defects in 4H-SiC. Phys. Rev. B 74, 235201 (2006).

  92. 92.

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

  93. 93.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

  94. 94.

    Fuchs, F. et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).

  95. 95.

    Wang, J. et al. High-efficiency generation of nanoscale single silicon vacancy defect array in silicon carbide. Phys. Rev. Appl. 7, 64021 (2017).

  96. 96.

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

  97. 97.

    Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 55501 (2006).

  98. 98.

    Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014).

  99. 99.

    Szász, K. et al. Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: a potential quantum bit. Phys. Rev. B 91, 121201 (2015).

  100. 100.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  101. 101.

    Sörman, E. et al. Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B 61, 2613 (2000).

  102. 102.

    Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

  103. 103.

    Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

  104. 104.

    Wimbauer, T., Meyer, B. K., Hofstaetter, A., Scharmann, A. & Overhof, H. Negatively charged Si vacancy in 4H SiC: a comparison between theory and experiment. Phys. Rev. B 56, 7384–7388 (1997).

  105. 105.

    Mizuochi, N. et al. Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3v symmetry in n-type 4H-SiC. Phys. Rev. B 66, 235202 (2002).

  106. 106.

    Isoya, J. et al. EPR identification of intrinsic defects in SiC. Phys. Status Solidi 245, 1298–1314 (2008).

  107. 107.

    Baranov, P. G. et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

  108. 108.

    Kraus, H. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nat. Phys. 10, 157–162 (2014).

  109. 109.

    Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 87601 (2014).

  110. 110.

    Soltamov, V. A. et al. Optically addressable silicon vacancy-related spin centers in rhombic silicon carbide with high breakdown characteristics and ENDOR evidence of their structure. Phys. Rev. Lett. 115, 247602 (2015).

  111. 111.

    Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

  112. 112.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 21046 (2017).

  113. 113.

    Jenny, J. R. et al. Development of large diameter high-purity semi-insulating 4H-SiC wafers for microwave devices. Mater. Sci. Forum 457, 35–40 (2004).

  114. 114.

    Son, N. T., Carlsson, P., ul Hassan, J., Magnusson, B. & Janzén, E. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys. Rev. B 75, 155204 (2007).

  115. 115.

    Stanwix, P. L. et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010).

  116. 116.

    Kimoto, T., Nakazawa, S., Hashimoto, K. & Matsunami, H. Reduction of doping and trap concentrations in 4H–SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 79, 2761 (2001).

  117. 117.

    Danno, K., Nakamura, D. & Kimoto, T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. Appl. Phys. Lett. 90, 202109 (2007).

  118. 118.

    Yang, L.-P. et al. Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014).

  119. 119.

    Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

  120. 120.

    Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

  121. 121.

    Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 12279 (2016).

  122. 122.

    Carter, S. G., Soykal, Ö. O., Dev, P., Economou, S. E. & Glaser, E. R. Spin coherence and echo modulation of the silicon vacancy in 4H-SiC at room temperature. Phys. Rev. B 92, 161202(R) (2015).

  123. 123.

    Mizuochi, N. et al. EPR studies of the isolated negatively charged silicon vacancies in n-type 4H- and 6H-SiC: Identification of C_3v symmetry and silicon sites. Phys. Rev. B 68, 165206 (2003).

  124. 124.

    Ivády, V. et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys. Rev. B 92, 115206 (2015).

  125. 125.

    Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

  126. 126.

    Ivády, V. et al. High-fidelity bidirectional nuclear qubit initialization in SiC. Phys. Rev. Lett. 117, 220503 (2016).

  127. 127.

    Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 31014 (2016).

  128. 128.

    Soykal, Ö. O., Dev, P. & Economou, S. E. Silicon vacancy center in 4H-SiC: electronic structure and spin-photon interfaces. Phys. Rev. B 93, 81207 (2016).

  129. 129.

    Simin, D. et al. High-precision angle-resolved magnetometry with uniaxial quantum centers in silicon carbide. Phys. Rev. Appl. 4, 14009 (2015).

  130. 130.

    Lee, S.-Y., Niethammer, M. & Wrachtrup, J. Vector magnetometry based on S = 3/2 electronic spins. Phys. Rev. B 92, 115201 (2015).

  131. 131.

    Niethammer, M. et al. Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 34001 (2016).

  132. 132.

    Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

  133. 133.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 35002 (2017).

  134. 134.

    Steinert, S. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81, 43705 (2010).

  135. 135.

    Alegre, T. P. M., Santori, C., Medeiros-Ribeiro, G. & Beausoleil, R. G. Polarization-selective excitation of nitrogen vacancy centers in diamond. Phys. Rev. B 76, 165205 (2007).

  136. 136.

    Lai, N. D., Zheng, D., Jelezko, F., Treussart, F. & Roch, J.-F. Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal. Appl. Phys. Lett. 95, 133101 (2009).

  137. 137.

    Dmitriev, A. K. & Vershovskii, A. K. Concept of a microscale vector magnetic field sensor based on nitrogen-vacancy centers in diamond. J. Opt. Soc. Am. B 33, B1–B4 (2016).

  138. 138.

    Pham, L. M. et al. Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond. Phys. Rev. B 86, 121202 (2012).

  139. 139.

    Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Applied 9, 034022 (2018).

  140. 140.

    Kraus, H. et al. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci. Rep. 4, 5303 (2014).

  141. 141.

    Choi, J. H. et al. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching. J. Phys. D. Appl. Phys. 45, 235204 (2012).

  142. 142.

    Radulaski, M. et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17, 1782–1786 (2017).

  143. 143.

    Song, B.-S., Yamada, S., Asano, T. & Noda, S. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express 19, 11084–11089 (2011).

  144. 144.

    Radulaski, M. et al. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon. 2, 14 (2014).

  145. 145.

    Calusine, G., Politi, A. & Awschalom, D. D. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 11123 (2014).

  146. 146.

    Radulaski, M. et al. Photonic crystal cavities in cubic polytype silicon carbide films. Opt. Express 21, 32623–32629 (2013).

  147. 147.

    Cardenas, J. et al. High Q SiC microresonators. Opt. Express 21, 16882–16887 (2013).

  148. 148.

    Lu, X., Lee, J. Y., Feng, P. X.-L. & Lin, Q. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 104, 181103 (2014).

  149. 149.

    Di Cioccio, L., Le Tiec, Y., Letertre, F., Jaussaud, C. & Bruel, M. Silicon carbide on insulator formation using the Smart Cut process. Electron. Lett. 32, 1144–1145 (1996).

  150. 150.

    Magyar, A. P., Bracher, D., Lee, J. C., Aharonovich, I. & Hu, E. L. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers. Appl. Phys. Lett. 104, 51109 (2014).

  151. 151.

    Bracher, D. O. & Hu, E. L. in Proceedings of SPIE Vol. 9762 https://doi.org/10.1117/12.2211230 (San Francisco, CA, USA, 2016).

  152. 152.

    Calusine, G., Politi, A. & Awschalom, D. D. Cavity-enhanced measurements of defect spins in silicon carbide. Phys. Rev. Appl. 6, 14019 (2016).

  153. 153.

    Bracher, D. O., Zhang, X. & Hu, E. L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl Acad. Sci. USA 114, 4060–4065 (2017).

  154. 154.

    Yamaguchi, Y. et al. Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities. J. Opt. Soc. Am. B 32, 1792–1796 (2015).

  155. 155.

    von Bardeleben, H. J., Cantin, J. L., Rauls, E. & Gerstmann, U. Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 64104 (2015).

  156. 156.

    von Bardeleben, H. J. et al. NV centers in 3C, 4H, and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B 94, 121202 (2016).

  157. 157.

    Baur, J., Kunzer, M. & Schneider, J. Transition metals in SiC polytypes, as studied by magnetic resonance techniques. Phys. Status Solidi 162, 153–172 (1997).

  158. 158.

    Lee, K. M., Dang, L. S., Watkins, G. D. & Choyke, W. J. Optically detected magnetic resonance study of SiC:Ti. Phys. Rev. B 32, (2273–2284 (1985).

  159. 159.

    Gällström, A. et al. Optical properties and Zeeman spectroscopy of niobium in silicon carbide. Phys. Rev. B 92, 75207 (2015).

  160. 160.

    Koehl, W. F. et al. Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN. Phys. Rev. B 95, 35207 (2017).

  161. 161.

    Seo, H., Ma, H., Govoni, M. & Galli, G. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies. Phys. Rev. Mater. 1, 75002 (2017).

  162. 162.

    Lohrmann, A. et al. Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett. 108, 021107 (2016).

  163. 163.

    Lienhard, B. et al. Bright and photostable single-photon emitter in silicon carbide. Optica 3, 768–774 (2016).

  164. 164.

    Lohrmann, A. et al. Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).

  165. 165.

    Cochrane, C. J., Blacksberg, J., Anders, M. A. & Lenahan, P. M. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077 (2016).

  166. 166.

    Castelletto, S. et al. Quantum-confined single photon emission at room temperature from SiC tetrapods. Nanoscale 6, 10027–10032 (2014).

  167. 167.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  168. 168.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  169. 169.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  170. 170.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  171. 171.

    Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

  172. 172.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

  173. 173.

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014).

  174. 174.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

  175. 175.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

  176. 176.

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

  177. 177.

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

  178. 178.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  179. 179.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  180. 180.

    Lundeberg, M. B. & Folk, J. A. Harnessing chirality for valleytronics. Science 346, 422–423 (2014).

  181. 181.

    Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90, 75413 (2014).

  182. 182.

    Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

  183. 183.

    O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Phot. 3, 687–695 (2009).

  184. 184.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

  185. 185.

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

  186. 186.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

  187. 187.

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

  188. 188.

    Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

  189. 189.

    Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

  190. 190.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

  191. 191.

    Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

  192. 192.

    Wang, X., Sun, G., Li, N. & Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45, 2239–2262 (2016).

  193. 193.

    Wei, G. et al. Size-tunable lateral confinement in monolayer semiconductors. Sci. Rep. 7, 3324 (2017).

  194. 194.

    Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 11034 (2014).

  195. 195.

    Wu, Y., Tong, Q., Liu, G.-B., Yu, H. & Yao, W. Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction. Phys. Rev. B 93, 45313 (2016).

  196. 196.

    Chakraborty, C., Goodfellow, K. M. & Nick Vamivakas, A. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).

  197. 197.

    Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

  198. 198.

    Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

  199. 199.

    Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

  200. 200.

    Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

  201. 201.

    Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

  202. 202.

    Sajid, A., Reimers, J. R. & Ford, M. J. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation. Phys. Rev. B 97, 64101 (2018).

  203. 203.

    Schwarz, S. et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 25038 (2016).

  204. 204.

    Clark, G. et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016).

  205. 205.

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

  206. 206.

    Palmer, J. Quantum technology is beginning to come into its own. The Economist https://www.economist.com/news/essays/21717782-quantum-technology-beginning-come-its-own (2017).

  207. 207.

    Lee, J. C. et al. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity. Appl. Phys. Lett. 105, 261101 (2014).

  208. 208.

    Riedrich-Möller, J. et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014).

  209. 209.

    Albrecht, R. et al. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105, 073113 (2014).

  210. 210.

    Janitz, E. et al. Fabry-Perot microcavity for diamond-based photonics. Phys. Rev. A 92, 43844 (2015).

  211. 211.

    Radko, I. P. et al. Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond. Opt. Express 24, 27715–27725 (2016).

  212. 212.

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

  213. 213.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

  214. 214.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).

  215. 215.

    Anisimov, A. N. et al. Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).

  216. 216.

    Son, N. T. et al. Photoluminescence and Zeeman effect in chromium-doped 4H and 6H SiC. J. Appl. Phys. 86, 4348–4353 (1999).

Download references

Acknowledgements

The authors acknowledge financial support from the European Research Council (ERC) Consolidator grant PHOENICS agreement no. 617985, the Engineering and Physical Sciences Research Council (EPSRC) National Quantum Technologies Programme NQIT EP/M013243/1, Korea Institute of Science and Technology (KIST) institutional programs (Grants No. 2E27231, 2E27110), the Army Research Laboratory Center for Distributed Quantum Information (CDQI) and the National Science Foundation program ACQUIRE: “Scalable Quantum Communications with Error-Corrected Semiconductor Qubits”, NSF EFRI EFMA-1542707, NSF CAREER DMR 1553788 and AFOSR FA9550-16-1-0020. S.Y.L. and J.W. thank S. Nguyen and B-S. Song for comments.

Author information

Affiliations

  1. Cavendish Laboratory, University of Cambridge, Cambridge, UK

    • Mete Atatüre
  2. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Dirk Englund
  3. Institute of Optics, University of Rochester, Rochester, NY, USA

    • Nick Vamivakas
  4. Center for Quantum Information, Korea Institute of Science and Technology, Seoul, Republic of Korea

    • Sang-Yun Lee
  5. Institute of Physics, SCoPE and IQST, University of Stuttgart, Stuttgart, Germany

    • Joerg Wrachtrup

Authors

  1. Search for Mete Atatüre in:

  2. Search for Dirk Englund in:

  3. Search for Nick Vamivakas in:

  4. Search for Sang-Yun Lee in:

  5. Search for Joerg Wrachtrup in:

Contributions

All the authors researched data for the article and wrote and edited versions of the text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mete Atatüre.