Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel insights into the immune response to bacterial T cell superantigens

Abstract

Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR–peptide–MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic relationships and representative structures of bacterial superantigens.
Fig. 2: Structural overview of T cell activation by bacterial superantigens.
Fig. 3: Forced manipulation of T cell signalling can have broad effects on multiple T cell responses.
Fig. 4: Phenotypic responses to streptococcal and staphylococcal superantigens.
Fig. 5: The contributions of staphylococcal superantigens to atopic dermatitis, chronic rhinosinusitis and bacteraemia.

Similar content being viewed by others

References

  1. White, J. et al. The V β-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56, 27–35 (1989). This paper defines proteins that can activate T cells in a TCR Vβ-specific manner as ‘SAgs’.

    Article  CAS  PubMed  Google Scholar 

  2. McCormick, J. K., Yarwood, J. M. & Schlievert, P. M. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55, 77–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hurst, J. R., Brouwer, S., Walker, M. J. & McCormick, J. K. Streptococcal superantigens and the return of scarlet fever. PLoS Pathog. 17, e1010097 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuffs, S. W., Haeryfar, S. M. M. & McCormick, J. K. Manipulation of innate and adaptive immunity by staphylococcal superantigens. Pathogens 7, 53 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Commons, R. J. et al. Streptococcal superantigens: categorization and clinical associations. Trends Mol. Med. 20, 48–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Lina, G. et al. Standard nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 189, 2334–2336 (2004).

    Article  PubMed  Google Scholar 

  7. Fraser, J. D. & Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225, 226–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Y. et al. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen–MHC complex. Structure 12, 277–288 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Donadini, R., Liew, C. W., Kwan, A. H., Mackay, J. P. & Fields, B. A. Crystal and solution structures of a superantigen from Yersinia pseudotuberculosis reveal a jelly-roll fold. Structure 12, 145–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Silverman, G. J. & Goodyear, C. S. A model B-cell superantigen and the immunobiology of B lymphocytes. Clin. Immunol. 102, 117–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Frensch, M. et al. Bacterial lectin BambL acts as a B cell superantigen. Cell. Mol. Life Sci. 78, 8165–8186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gunter, S. M. et al. Identification and characterization of the Trypanosoma cruzi B-cell superantigen Tc24. Am. J. Trop. Med. Hyg. 94, 114–121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hennekinne, J. A., De Buyser, M. L. & Dragacci, S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36, 815–836 (2011).

    Article  PubMed  Google Scholar 

  14. Yang, L. et al. Involvement of streptococcal mitogenic exotoxin Z in streptococcal toxic shock syndrome. J. Clin. Microbiol. 43, 3570–3573 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vrieling, M. et al. Population analysis of Staphylococcus aureus reveals a cryptic, highly prevalent superantigen SElW that contributes to the pathogenesis of bacteremia. mBio 11, e02082-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, S. X. & McCormick, J. K. Staphylococcal superantigens in colonization and disease. Front. Cell. Infect. Microbiol. 2, 52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. La Gruta, N. L., Gras, S., Daley, S. R., Thomas, P. G. & Rossjohn, J. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 18, 467–478 (2018).

    Article  PubMed  Google Scholar 

  18. Kotb, M. et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat. Med. 8, 1398–1404 (2002). This paper shows how host genetics based on HLA class II haplotypes can confer protection or risk from severe streptococcal disease and links this phenotype with T cell responses to streptococcal SAgs.

    Article  CAS  PubMed  Google Scholar 

  19. Parks, T. et al. Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus. Genes Immun. 21, 63–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Llewelyn, M. et al. HLA class II polymorphisms determine responses to bacterial superantigens. J. Immunol. 172, 1719–1726 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nooh, M. M., El-Gengehi, N., Kansal, R., David, C. S. & Kotb, M. HLA transgenic mice provide evidence for a direct and dominant role of HLA class II variation in modulating the severity of streptococcal sepsis. J. Immunol. 178, 3076–3083 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. DeLorenze, G. N. et al. Polymorphisms in HLA class II genes are associated with susceptibility to Staphylococcus aureus infection in a white population. J. Infect. Dis. 213, 816–823 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Fields, B. A. et al. Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384, 188–192 (1996). This paper presents the structural basis by which SAgs can circumvent normal T cell activation by displacing the TCR away from the antigenic peptide presented by MHC-II.

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., Llera, A., Malchiodi, E. L. & Mariuzza, R. A. The structural basis of T cell activation by superantigens. Annu. Rev. Immunol. 17, 435–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Sundberg, E. J., Deng, L. & Mariuzza, R. A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 19, 262–271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, L. et al. Crystal structure of a complete ternary complex of TCR, superantigen and peptide-MHC. Nat. Struct. Mol. Biol. 14, 169–171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodtsev, A. S., Choi, Y., Spanopoulou, E. & Posnett, D. N. Mycoplasma superantigen is a CDR3-dependent ligand for the T cell antigen receptor. J. Exp. Med. 187, 319–327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lefranc, M. P. IMGT, the International ImMunoGeneTics database. Nucleic Acids Res. 29, 207–209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science 248, 1066 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Moza, B. et al. Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. EMBO J. 26, 1187–1197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fleischer, B., Necker, A., Leget, C., Malissen, B. & Romagne, F. Reactivity of mouse T-cell hybridomas expressing human Vβ gene segments with staphylococcal and streptococcal superantigens. Infect. Immun. 64, 987–994 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ono, H. K. et al. Identification and characterization of a novel staphylococcal emetic toxin. Appl. Environ. Microbiol. 81, 7034–7040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petersson, K., Pettersson, H., Skartved, N. J., Walse, B. & Forsberg, G. Staphylococcal enterotoxin H induces V α-specific expansion of T cells. J. Immunol. 170, 4148–4154 (2003). This work rigorously demonstrates that the SEH SAg activates T cells in a TCR Vα-specific manner.

    Article  CAS  PubMed  Google Scholar 

  34. Aziz, F. et al. Staphylococcus aureus isolated from skin from atopic dermatitis patients produces staphylococcal enterotoxin Y, which predominantly induces T-cell receptor Vα-specific expansion of T cells. Infect. Immun. 88, e00360-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kato, H. et al. The percentage of superantigen-reactive T cells in peripheral blood significantly decreases before massively increasing in patients with neonatal TSS-like exanthematous disease in the early acute phase. J. Infect. Chemother. 8, 111–114 (2002).

    Article  PubMed  Google Scholar 

  36. Choi, Y. et al. Selective expansion of T cells expressing V β2 in toxic shock syndrome. J. Exp. Med. 172, 981–984 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, A. L. & Llewelyn, M. J. Superantigen-induced proliferation of human CD4+CD25 T cells is followed by a switch to a functional regulatory phenotype. J. Immunol. 185, 6591–6598 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hayworth, J. L. et al. CD1d-independent activation of mouse and human iNKT cells by bacterial superantigens. Immunol. Cell Biol. 90, 699–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Shaler, C. R. et al. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathogenesis. PLoS Biol. 15, e2001930 (2017). This work shows that select SAgs can activate both human and mouse MAIT cells.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Emgård, J. et al. MAIT cells are major contributors to the cytokine response in group A streptococcal toxic shock syndrome. Proc. Natl Acad. Sci. USA 116, 25923–25931 (2019). This paper shows that streptococcal SAgs can activate MAIT cells and that MAIT cells from patients with streptococcal TSS display several markers of activation.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamasaki, S., Tachibana, M., Shinohara, N. & Iwashima, M. Lck-independent triggering of T-cell antigen receptor signal transduction by staphylococcal enterotoxins. J. Biol. Chem. 272, 14787–14791 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Kumar Singh, P., Kashyap, A. & Silakari, O. Exploration of the therapeutic aspects of Lck: a kinase target in inflammatory mediated pathological conditions. Biomed. Pharmacother. 108, 1565–1571 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Bueno, C. et al. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Gα11-dependent, PLC-β-mediated pathway. Immunity 25, 67–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Z. et al. Staphylococcal superantigens use LAMA2 as a coreceptor to activate T cells. J. Immunol. 200, 1471–1479 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Bueno, C., Criado, G., McCormick, J. K. & Madrenas, J. T cell signalling induced by bacterial superantigens. Chem. Immunol. Allergy 93, 161–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Plaza, R., Rodriguez-Sanchez, J. L. & Juarez, C. Staphylococcal enterotoxin B in vivo modulates both gamma interferon receptor expression and ligand-induced activation of signal transducer and activator of transcription 1 in T cells. Infect. Immun. 75, 306–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Szabo, P. A. et al. Rapid and rigorous IL-17A production by a distinct subpopulation of effector memory T lymphocytes constitutes a novel mechanism of toxic shock syndrome immunopathology. J. Immunol. 198, 2805–2818 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Tuffs, S. W. et al. Superantigens promote Staphylococcus aureus bloodstream infection by eliciting pathogenic interferon-γ production. Proc. Natl Acad. Sci. USA 119, e2115987119 (2022). This study shows that SAgs exacerbate S. aureus bloodstream infections by inducing pathogenic levels of IFNγ that inhibit phagocyte function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tilahun, A. Y., Holz, M., Wu, T.-T., David, C. S. & Rajagopalan, G. Interferon γ-dependent intestinal pathology contributes to the lethality in bacterial superantigen-induced toxic shock syndrome. PLoS ONE 6, e16764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. et al. Induction of immunosuppressive CD8+CD25+FOXP3+ regulatory T cells by suboptimal stimulation with staphylococcal enterotoxin C1. J. Immunol. 200, 669–680 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Tilahun, A. Y., Chowdhary, V. R., David, C. S. & Rajagopalan, G. Systemic inflammatory response elicited by superantigen destabilizes T regulatory cells, rendering them ineffective during toxic shock syndrome. J. Immunol. 193, 2919–2930 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Björkander, S. et al. Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3+CD161+ T-helper cells in a partly monocyte-dependent manner. Sci. Rep. 6, 22083 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zeppa, J. J. et al. Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc. Natl Acad. Sci. USA 114, 10226–10231 (2017). This paper shows that S. pyogenes uses SAgs to manipulate T cells to promote upper respiratory tract infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meilleur, C. E. et al. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathog. 16, e1008393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kissner, T. L. et al. MyD88-dependent pro-inflammatory cytokine response contributes to lethal toxicity of staphylococcal enterotoxin B in mice. Innate Immun. 17, 451–462 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Hopkins, P. A. et al. Superantigen recognition by HLA class II on monocytes up-regulates Toll-like receptor 4 and enhances proinflammatory responses to endotoxin. Blood 105, 3655–3662 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Arad, G. et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 9, e1001149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levy, R. et al. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc. Natl Acad. Sci. USA 113, E6437–E6446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schlievert, P. M. et al. Staphylococcal superantigens stimulate epithelial cells through CD40 to produce chemokines. mBio 10, e00214-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tuffs, S. W. et al. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog. 13, e1006461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. DaSilva, L. et al. Humanlike immune response of human leukocyte antigen-DR3 transgenic mice to staphylococcal enterotoxins: a novel model for superantigen vaccines. J. Infect. Dis. 185, 1754–1760 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Xu, S. X. et al. Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Infect. Immun. 82, 3588–3598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kasper, K. J. et al. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC class II-dependent manner. PLoS Pathog. 10, e1004155 (2014). This paper shows that SAgs produced by S. pyogenes are crucial to establish acute upper respiratory tract infection.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Salgado-Pabón, W. & Schlievert, P. M. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat. Rev. Microbiol. 12, 585–591 (2014).

    Article  PubMed  Google Scholar 

  65. Krogman, A. et al. HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 89, 20–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Bae, J. S. et al. Contribution of staphylococcal enterotoxin B to Staphylococcus aureus systemic infection. J. Infect. Dis. 223, 1766–1775 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Varshney, A. K. et al. Humanized staphylococcal enterotoxin B (SEB)–specific monoclonal antibodies protect from SEB intoxication and Staphylococcus aureus infections alone or as adjunctive therapy with vancomycin. J. Infect. Dis. 210, 973–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Strandberg, K. L. et al. Staphylococcal superantigens cause lethal pulmonary disease in rabbits. J. Infect. Dis. 202, 1690–1697 (2010). This study shows that SAgs are important contributors to experimental staphylococcal pneumonia.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shaikh, N., Leonard, E. & Martin, J. M. Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics 126, e557–e564 (2010).

    Article  PubMed  Google Scholar 

  70. Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin. Microbiol. Rev. 27, 264–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yeung, R. S. M. et al. Human CD4 and human major histocompatibility complex class II (DQ6) transgenic mice: supersensitivity to superantigen-induced septic shock. Eur. J. Immunol. 26, 1074–1082 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Sriskandan, S. et al. Enhanced susceptibility to superantigen-associated streptococcal sepsis in human leukocyte antigen-DQ transgenic mice. J. Infect. Dis. 184, 166–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Faulkner, L., Cooper, A., Fantino, C., Altmann, D. M. & Sriskandan, S. The mechanism of superantigen-mediated toxic shock: not a simple Th1 cytokine storm. J. Immunol. 175, 6870–6877 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Pandey, M. et al. Antibodies to the conserved region of the M protein and a streptococcal superantigen cooperatively resolve toxic shock-like syndrome in HLA-humanized mice. Sci. Adv. 5, eaax3013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brouwer, S. et al. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 11, 5018 (2020). This work provides important experimental evidence that newly acquired prophage-encoded SAgs have probably enhanced the colonization fitness of pandemic scarlet fever-causing S. pyogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lynskey, N. N. et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect. Dis. 19, 1209–1218 (2019). This article reports a new S. pyogenes lineage known as M1UK that overproduces the SpeA SAg, probably contributing to epidemic scarlet fever and invasive disease in the UK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alcolea-Medina, A. et al. The ongoing Streptococcus pyogenes (group A Streptococcus) outbreak in London, United Kingdom, in December 2022: a molecular epidemiology study. Clin. Microbiol. Infect. 29, 887–890 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matuszewska, M., Murray, G. G. R., Harrison, E. M., Holmes, M. A. & Weinert, L. A. The evolutionary genomics of host specificity in Staphylococcus aureus. Trends Microbiol. 28, 465–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    Article  PubMed  Google Scholar 

  80. Wertheim, H. F. et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364, 703–705 (2004).

    Article  PubMed  Google Scholar 

  81. Safdar, N. & Bradley, E. A. The risk of infection after nasal colonization with Staphylococcus aureus. Am. J. Med. 121, 310–315 (2008).

    Article  PubMed  Google Scholar 

  82. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344, 11–16 (2001).

    Article  Google Scholar 

  83. Holtfreter, S. et al. Staphylococcus aureus carriers neutralize superantigens by antibodies specific for their colonizing strain: a potential explanation for their improved prognosis in severe sepsis. J. Infect. Dis. 193, 1275–1278 (2006). This work shows that carriers of S. aureus develop neutralizing antibodies to the SAgs, which probably protects against subsequent invasive disease caused by the colonizing strain.

    Article  CAS  PubMed  Google Scholar 

  84. Xu, S., Kasper, K., Zeppa, J. & McCormick, J. Superantigens modulate bacterial density during Staphylococcus aureus nasal colonization. Toxins 7, 1821–1836 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferry, T. et al. Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. Clin. Infect. Dis. 41, 771–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Surewaard, B. G. J. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brown, A. F. et al. Memory Th1 cells are protective in invasive Staphylococcus aureus infection. PLoS Pathog. 11, e1005226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Salgado-Pabón, W. et al. Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. mBio 4, e00494-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stach, C. S. et al. Novel tissue level effects of the Staphylococcus aureus enterotoxin gene cluster are essential for infective endocarditis. PLoS ONE 11, e0154762 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kinney, K. J. et al. SEC is an antiangiogenic virulence factor that promotes Staphylococcus aureus endocarditis independent of superantigen activity. Sci. Adv. 8, eabo1072 (2022). This work shows that staphylococcal SAgs are important contributors to endocarditis but that this occurs, in part, independently of SAg activity to inhibit angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spaulding, A. R. et al. Vaccination against Staphylococcus aureus pneumonia. J. Infect. Dis. 209, 1955–1962 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Wilson, G. J. et al. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7, e1002271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karau, M. J. et al. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 8, 1148–1159 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Schiffenbauer, J., Johnson, H. M., Butfiloski, E. J., Wegrzyn, L. & Soos, J. M. Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc. Natl Acad. Sci. USA 90, 8543–8546 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brocke, S. et al. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365, 642–644 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Schwab, J. H., Brown, R. R., Anderle, S. K. & Schlievert, P. M. Superantigen can reactivate bacterial cell wall-induced arthritis. J. Immunol. 150, 4151–4159 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Cole, B. C. & Griffiths, M. M. Triggering and exacerbation of autoimmune arthritis by the Mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 36, 994–1002 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Dar, S. A. et al. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol. Res. 64, 1001–1012 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chowdhary, V. R., Tilahun, A. Y., Clark, C. R., Grande, J. P. & Rajagopalan, G. Chronic exposure to staphylococcal superantigen elicits a systemic inflammatory disease mimicking lupus 1. J. Immunol. 189, 2054–2062 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Paliard, X. et al. Evidence for the effects of a superantigen in rheumatoid arthritis. Science 253, 325–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Furukawa, F. et al. Selective expansions of T cells expressing Vβ8 and Vβ13 in skin lesions of patients with chronic cutaneous lupus erythematosus. J. Dermatol. 23, 670–676 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Conrad, B. et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature 371, 351–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Messingham, K. N. et al. TSST-1+ Staphylococcus aureus in bullous pemphigoid. J. Invest. Dermatol. 142, 1032–1039.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Carapetis, J. R. et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Primers 2, 15084 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hurst, J. R., Kasper, K. J., Sule, A. N. & McCormick, J. K. Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. Infect. Genet. Evol. 61, 160–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Carrión, F. et al. Selective depletion of Vβ2+CD8+ T cells in peripheral blood from rheumatic heart disease patients. J. Autoimmun. 20, 183–190 (2003).

    Article  PubMed  Google Scholar 

  108. Abbott, W. G. et al. Repertoire of transcribed peripheral blood T-cell receptor β chain variable-region genes in acute rheumatic fever. Infect. Immun. 64, 2842–2845 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kennedy, E. A. et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 139, 166–172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Byrd, A. L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 9, eaal4651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Meylan, P. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 137, 2497–2504 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Strange, P., Skov, L., Lisby, S., Nielsen, P. L. & Baadsgaard, O. Staphylococcal enterotoxin B applied on intact normal and intact atopic skin induces dermatitis. Arch. Dermatol. 132, 27–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Skov, L. et al. Application of staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigen-mediated mechanism. J. Allergy Clin. Immunol. 105, 820–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Czarnowicki, T. et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)+ TH2/TH1 cell imbalance, whereas adults acquire CLA+ TH22/TC22 cell subsets. J. Allergy Clin. Immunol. 136, 941–951.e3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Geoghegan, J. A., Irvine, A. D. & Foster, T. J. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 26, 484–497 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Abdurrahman, G., Schmiedeke, F., Bachert, C., Bröker, B. M. & Holtfreter, S. Allergy—a new role for T cell superantigens of Staphylococcus aureus? Toxins 12, 176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schlievert, P. M. et al. Staphylococcal TSST-1 association with eczema herpeticum in humans. mSphere 6, e0060821 (2021).

    Article  PubMed  Google Scholar 

  118. Bantz, S. K., Zhu, Z. & Zheng, T. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 5, 202 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Liu, J. N. et al. The prevalence of serum specific IgE to superantigens in asthma and allergic rhinitis patients. Allergy Asthma Immunol. Res. 6, 263–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sintobin, I. et al. Sensitisation to staphylococcal enterotoxins and asthma severity: a longitudinal study in the EGEA cohort. Eur. Respir. J. 54, 1900198 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Chegini, Z. et al. The role of Staphylococcus aureus enterotoxin B in chronic rhinosinusitis with nasal polyposis. Cell Commun. Signal. 20, 29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schleimer, R. P. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol. 12, 331–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Van Zele, T. et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J. Allergy Clin. Immunol. 114, 981–983 (2004).

    Article  PubMed  Google Scholar 

  124. Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Delemarre, T., De Ruyck, N., Holtappels, G., Bachert, C. & Gevaert, E. Unravelling the expression of interleukin-9 in chronic rhinosinusitis: a possible role for Staphylococcus aureus. Clin. Transl. Allergy 10, 41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, D. W. et al. Staphylococcus aureus enterotoxin B contributes to induction of nasal polypoid lesions in an allergic rhinosinusitis murine model. Am. J. Rhinol. Allergy 25, e255–e261 (2011).

    Article  PubMed  Google Scholar 

  127. Rha, M.-S. et al. Superantigen-related TH2 CD4+ T cells in nonasthmatic chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 145, 1378–1388.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Stolz, S. J. et al. Development of serum antibody to toxic shock toxin among individuals with toxic shock syndrome in Wisconsin. J. Infect. Dis. 151, 883–889 (1985).

    Article  CAS  PubMed  Google Scholar 

  129. Roggiani, M. et al. Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect. Immun. 68, 5011–5017 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McCormick, J. K. et al. Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome. J. Immunol. 165, 2306–2312 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Darenberg, J. et al. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 37, 333–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Sriskandan, S., Ferguson, M., Elliot, V., Faulkner, L. & Cohen, J. Human intravenous immunoglobulin for experimental streptococcal toxic shock: bacterial clearance and modulation of inflammation. J. Antimicrob. Chemother. 58, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Schrage, B., Duan, G., Yang, L. P., Fraser, J. D. & Proft, T. Different preparations of intravenous immunoglobulin vary in their efficacy to neutralize streptococcal superantigens: implications for treatment of streptococcal toxic shock syndrome. Clin. Infect. Dis. 43, 743–749 (2006).

    Article  PubMed  Google Scholar 

  134. Davis, J. P., Chesney, P. J., Wand, P. J. & LaVenture, M. Toxic-shock syndrome: epidemiologic features, recurrence, risk factors, and prevention. N. Engl. J. Med. 303, 1429–1435 (1980).

    Article  CAS  PubMed  Google Scholar 

  135. Shands, K. N. et al. Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 cases. N. Engl. J. Med. 303, 1436–1442 (1980).

    Article  CAS  PubMed  Google Scholar 

  136. Poindexter, N. J. & Schlievert, P. M. Suppression of immunoglobulin-secreting cells from human peripheral blood by toxic-shock-syndrome toxin-1. J. Infect. Dis. 153, 772–779 (1986).

    Article  CAS  PubMed  Google Scholar 

  137. Dan, J. M. et al. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant Tfh cells. Sci. Transl. Med. 11, eaau3776 (2019). This work shows that the SpeA SAg can induce T follicular helper cells to become cytolytic by producing granzyme B that can kill B cells and inhibit antibody responses in children with recurrent streptococcal tonsillitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Radcliff, F. J. et al. A potential role for staphylococcal and streptococcal superantigens in driving skewing of TCR Vβ subsets in tonsillar hyperplasia. Med. Microbiol. Immunol. 206, 337–346 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Davies, F. J., Olme, C., Lynskey, N. N., Turner, C. E. & Sriskandan, S. Streptococcal superantigen-induced expansion of human tonsil T cells leads to altered T follicular helper cell phenotype, B cell death and reduced immunoglobulin release. J. Clin. Exp. Immunol. 197, 83–94 (2019).

    Article  CAS  Google Scholar 

  140. Holtfreter, S. et al. egc-Encoded superantigens from Staphylococcus aureus are neutralized by human sera much less efficiently than are classical staphylococcal enterotoxins or toxic shock syndrome toxin. Infect. Immun. 72, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grumann, D. et al. Immune cell activation by enterotoxin gene cluster (egc)-encoded and non-egc superantigens from Staphylococcus aureus. J. Immunol. 181, 5054–5061 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Van Belkum, A. et al. Clonal distribution and differential occurrence of the enterotoxin gene cluster, egc, in carriage-versus bacteremia-associated isolates of Staphylococcus aureus. J. Clin. Microbiol. 44, 1555–1557 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Noval Rivas, M., Porritt, R. A., Cheng, M. H., Bahar, I. & Arditi, M. Multisystem inflammatory syndrome in children and long COVID: the SARS-CoV-2 viral superantigen hypothesis. Front. Immunol. 13, 941009 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Osowicki, J. et al. Controlled human infection for vaccination against Streptococcus pyogenes (CHIVAS): establishing a group A Streptococcus pharyngitis human infection study. Vaccine 37, 3485–3494 (2019).

    Article  PubMed  Google Scholar 

  145. Jardetzky, T. S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Petersson, K. et al. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J. 20, 3306–3312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sundberg, E. J. et al. Structures of two streptococcal superantigens bound to TCR β chains reveal diversity in the architecture of T cell signaling complexes. Structure 10, 687–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Günther, S. et al. A novel loop domain in superantigens extends their T cell receptor recognition site. J. Mol. Biol. 371, 210–221 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hennecke, J., Carfi, A. & Wiley, D. C. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abrahmsen, L. et al. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 14, 2978–2986 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kim, J., Urban, R. G., Strominger, J. L. & Wiley, D. C. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 266, 1870–1874 (1994).

    Article  CAS  PubMed  Google Scholar 

  152. Rödström, K. E. J., Elbing, K. & Lindkvist-Petersson, K. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. J. Immunol. 193, 1998–2004 (2014).

    Article  PubMed  Google Scholar 

  153. Saline, M. et al. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat. Commun. 1, 119 (2010).

    Article  PubMed  Google Scholar 

  154. Petersson, K., Thunnissen, M., Forsberg, G. & Walse, B. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 10, 1619–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Li, Y. et al. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 14, 93–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Fernandez, M. M., Guan, R., Swaminathan, C. P., Malchiodi, E. L. & Mariuzza, R. A. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J. Biol. Chem. 281, 25356–25364 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Hajjeh, R. A. et al. Toxic shock syndrome in the United States: surveillance update, 1979–1996. Emerg. Infect. Dis. 5, 807–810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Todd, J. K., Kapral, F. A., Fishaut, M. & Welch, T. R. Toxic shock syndrome associated with phage group 1 staphylococci. Lancet 2, 1116–1118 (1978).

    Article  CAS  PubMed  Google Scholar 

  159. Spaulding, A. R. et al. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 26, 422–447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dufresne, K. et al. Glucose mediates niche-specific repression of Staphylococcus aureus toxic shock syndrome toxin-1 through the activity of CcpA in the vaginal environment. J. Bacteriol. 204, e0026922 (2022).

    Article  PubMed  Google Scholar 

  161. Chiaruzzi, M. et al. Vaginal tampon colonization by Staphylococcus aureus in healthy women. Appl. Environ. Microbiol. 86, e01249-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mitchell, D. T., Levitt, D. G., Schlievert, P. M. & Ohlendorf, D. H. Structural evidence for the evolution of pyrogenic toxin superantigens. J. Mol. Evol. 51, 520–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Langley, R., Patel, D., Jackson, N., Clow, F. & Fraser, J. D. Staphylococcal superantigen super-domains in immune evasion. Crit. Rev. Immunol. 30, 149–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Shannon, B. A., McCormick, J. K. & Schlievert, P. M. Toxins and superantigens of group A streptococci. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0054-2018 (2019).

  165. Richardson, J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Holtfreter, S. et al. Characterization of a mouse-adapted Staphylococcus aureus strain. PLoS ONE 8, e71142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fitzgerald, J. R. et al. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183, 63–70 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wilson, G. J. et al. Bovine Staphylococcus aureus superantigens stimulate the entire T cell repertoire of cattle. Infect. Immun. 86, e00505-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kuroishi, T. et al. Concentrations and specific antibodies to staphylococcal enterotoxin-C and toxic shock syndrome toxin-1 in bovine mammary gland secretions, and inflammatory response to the intramammary inoculation of these toxins. J. Vet. Med. Sci. 65, 899–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Feldstein, L. R. et al. Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19. JAMA 325, 1074–1087 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Noval Rivas, M., Porritt, R. A., Cheng, M. H., Bahar, I. & Arditi, M. COVID-19-associated multisystem inflammatory syndrome in children (MIS-C): a novel disease that mimics toxic shock syndrome—the superantigen hypothesis. J. Allergy Clin. Immunol. 147, 57–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Porritt, R. A. et al. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J. Clin. Invest. 131, e146614 (2021). This paper is one of the first to report that children with COVID-19-induced multisystem inflammatory syndrome have an expansion of Vβ21.3+ T cells that correlates with inflammatory cytokine production and disease severity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ramaswamy, A. et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 54, 1083–1095.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Moreews, M. et al. Polyclonal expansion of TCR Vβ 21.3+CD4+ and CD8+ T cells is a hallmark of multisystem inflammatory syndrome in children. Sci. Immunol. 6, eabh1516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hoste, L. et al. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J. Exp. Med. 219, e20211381 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Sacco, K. et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 28, 1050–1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cheng, M. H. et al. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc. Natl Acad. Sci. USA 117, 25254–25262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Posnett, D. N. & Yarilina, A. A. Sleeping with the enemy—endogenous superantigens in humans. Immunity 15, 503–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Sutkowski, N., Conrad, B., Thorley-Lawson, D. A. & Huber, B. T. Epstein–Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Balestrieri, E. et al. Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine 66, 103341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (project grant PJT-166050 to S.W.T. and J.K.M., and project grant PJT-461623 to J.K.M.). A.R. acknowledges support from an R.G.E. Murray Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John K. McCormick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Fraser, G. Rajagopalan and G. Silverman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuffs, S.W., Dufresne, K., Rishi, A. et al. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-023-00979-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-023-00979-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing