Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Same yet different — how lymph node heterogeneity affects immune responses

Abstract

Lymph nodes are secondary lymphoid organs in which immune responses of the adaptive immune system are initiated and regulated. Distributed throughout the body and embedded in the lymphatic system, local lymph nodes are continuously informed about the state of the organs owing to a constant drainage of lymph. The tissue-derived lymph carries products of cell metabolism, proteins, carbohydrates, lipids, pathogens and circulating immune cells. Notably, there is a growing body of evidence that individual lymph nodes differ from each other in their capacity to generate immune responses. Here, we review the structure and function of the lymphatic system and then focus on the factors that lead to functional heterogeneity among different lymph nodes. We will discuss how lymph node heterogeneity impacts on cellular and humoral immune responses and the implications for vaccination, tumour development and tumour control by immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lymph node structure and cellular and molecular composition.
Fig. 2: Mechanisms underlying lymph node heterogeneity.
Fig. 3: Complexity of lymph drainage.

Similar content being viewed by others

References

  1. Randolph, G. J., Ivanov, S., Zinselmeyer, B. H. & Scallan, J. P. The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35, 31–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Levick, J. R. & Michel, C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87, 198–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Santambrogio, L. The lymphatic fluid. Int. Rev. Cell Mol. Biol. 337, 111–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Da Mesquita, S., Fu, Z. & Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 100, 375–388 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  Google Scholar 

  7. Welner, R. S. & Kincade, P. W. Stem cells on patrol. Cell 131, 842–844 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collado-Diaz, V., Medina-Sanchez, J. D., Gkountidi, A. O. & Halin, C. Imaging leukocyte migration through afferent lymphatics. Immunol. Rev. 306, 43–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. von Andrian, U. H. & Mackay, C. R. T-cell function and migration — two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  Google Scholar 

  10. Girard, J. P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Gray, H. Gray’s Anatomy: the Anatomical Basis of Clinical Practice (Elsevier Health Sciences, 2015).

  12. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Qi, H., Kastenmüller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Acton, S. E., Onder, L., Novkovic, M., Martinez, V. G. & Ludewig, B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol. 42, 782–794 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. et al. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. eLife 5, e18156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muntjewerff, E. M., Meesters, L. D. & van den Bogaart, G. Antigen cross-presentation by macrophages. Front. Immunol. 11, 1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bajénoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jalkanen, S. & Salmi, M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 20, 566–578 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clement, C. C. et al. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS-PAGE coupled with nanoLC-ESI-MS/MS bottom-up proteomics. J. Proteom. 78, 172–187 (2013).

    Article  CAS  Google Scholar 

  24. Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, J. Y., Lyons-Cohen, M. R. & Gerner, M. Y. Information flow in the spatiotemporal organization of immune responses. Immunol. Rev. 306, 93–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Gasteiger, G., Ataide, M. & Kastenmüller, W. Lymph node — an organ for T-cell activation and pathogen defense. Immunol. Rev. 271, 200–220 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Duckworth, B. C. & Groom, J. R. Conversations that count: cellular interactions that drive T cell fate. Immunol. Rev. 300, 203–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faveeuw, C., Di Mauro, M. E., Price, A. A. & Ager, A. Roles of α4 integrins/VCAM-1 and LFA-1/ICAM-1 in the binding and transendothelial migration of T lymphocytes and T lymphoblasts across high endothelial venules. Int. Immunol. 12, 241–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bajénoff, M., Granjeaud, S. & Guerder, S. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J. Exp. Med. 198, 715–724 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12, 879–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Ugur, M. et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity 56, 1778–1793.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fletcher, A. L. et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front. Immunol. 2, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pezoldt, J. et al. Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nat. Commun. 9, 3903 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008). This study shows that lymph node stromal cells instruct tissue-homing signals in T cells in a lymph node-specific manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cording, S. et al. The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol. 7, 359–368 (2014). This study shows that stromal cells from lymph nodes draining distinct sites differ in their capacity to induce regulatory T cells.

    Article  CAS  PubMed  Google Scholar 

  39. Wolvers, D. A. et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J. Immunol. 162, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Podgrabinska, S. et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J. Immunol. 183, 1767–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ulvmar, M. H. & Mäkinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310–321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyasaka, M. A short review on lymphatic endothelial cell heterogeneity. Inflamm. Regen. 41, 21–23 (2021).

    Article  Google Scholar 

  43. Pegu, A. et al. Human lymphatic endothelial cells express multiple functional TLRs. J. Immunol. 180, 3399–3405 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Cabeza-Cabrerizo, M. et al. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Joffre, O., Nolte, M. A., Spörri, R. & Sousa, C. R. E. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Worbs, T., Hammerschmidt, S. I. & Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spalding, D. M. & Griffin, J. A. Different pathways of differentiation of pre-B cell lines are induced by dendritic cells and T cells from different lymphoid tissues. Cell 44, 507–515 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006). This study identifies retinoic acid as part of a molecular mechanism of imprinting of gut-homing IgA-secreting cells.

    Article  CAS  PubMed  Google Scholar 

  53. Everson, M. P. et al. Dendritic cells from different tissues induce production of different T cell cytokine profiles. J. Leukoc. Biol. 59, 494–498 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Esterházy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019). This work demonstrates that the gut-draining lymph nodes are immunologically adapted to the particular intestinal segment they drain and, accordingly, preferentially elicit inflammatory or tolerogenic immune responses.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brown, H., Komnick, M. R., Brigleb, P. H., Dermody, T. S. & Esterházy, D. Lymph node sharing between pancreas, gut, and liver leads to immune crosstalk and regulation of pancreatic autoimmunity. Immunity https://doi.org/10.1016/j.immuni.2023.07.008 (2023). This study demonstrates how lymph node co-drainage of tissues impacts the tolerance towards self-antigens.

    Article  PubMed  Google Scholar 

  56. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002). This landmark study shows a differential imprinting of homing receptors in CD4 T cells in different lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003). This landmark study shows a differential imprinting of homing receptors in CD8 T cells in different lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  59. Mani, V. et al. Migratory DCs activate TGF-b to precondition naïve CD8+ T cells for tissue-resident memory fate. Science 366, https://doi.org/10.1126/science.aav5728 (2019). This study shows that tissue-derived migratory dendritic cells pre-condition naive CD8+ T cells to adopt a tissue-residency program after infection.

  60. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J. Exp. Med. 180, 1077–1106 (1994).

    Article  Google Scholar 

  61. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003); erratum 423, 1018 (2003).

  63. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Gumperz, J. E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Godfrey, D. I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol. 17, 914–924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Herrmann, T. & Karunakaran, M. M. Butyrophilins: γδ T cell receptor ligands, immunomodulators and more. Front. Immunol. 13, 876493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ribot, J. C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Schneider, D. F. et al. A novel role for NKT cells in cutaneous wound repair. J. Surg. Res. 168, 325–333.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Tanno, H. et al. Contribution of invariant natural killer T cells to skin wound healing. Am. J. Pathol. 185, 3248–3257 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Legoux, F., Salou, M. & Lantz, O. MAIT cell development and functions: the microbial connection. Immunity 53, 710–723 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Constantinides, M. G. & Belkaid, Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 374, eabf0095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howson, L. J. et al. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. Sci. Immunol. 5, eabc9492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ataide, M. A. et al. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. Immunity 55, 1813–1828.e9 (2022). This study demonstrates that lymph nodes draining different barrier tissues mount distinct innate and adaptive immune responses owing to their unconventional T cell composition.

    Article  CAS  PubMed  Google Scholar 

  80. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Salou, M. et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 216, 133–151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan, L. et al. Single-cell transcriptomics identifies the adaptation of Scart1+ Vγ6+ T cells to skin residency as activated effector cells. Cell Rep. 27, 3657–3671.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Gray, E. E. et al. Deficiency in IL-17-committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakamizo, S. et al. Dermal Vγ4+ γδ T cells possess a migratory potency to the draining lymph nodes and modulate CD8+ T-cell activity through TNF-α production. J. Invest. Dermatol. 135, 1007–1015 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Gaya, M. et al. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172, 517–533.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Buchholz, V. R., Schumacher, T. N. M. & Busch, D. H. T cell fate at the single-cell level. Annu. Rev. Immunol. 34, 65–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4+ T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Ugur, M., Kaminski, A. & Pabst, O. Lymph node γδ and αβ CD8+ T cells share migratory properties. Sci. Rep. 8, 8986 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mandl, J. N. et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naïve CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA 109, 18036–18041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ugur, M., Schulz, O., Menon, M. B., Krueger, A. & Pabst, O. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 5, 4821 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fazilleau, N. et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat. Immunol. 8, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Cucak, H., Yrlid, U., Reizis, B., Kalinke, U. & Johansson-Lindbom, B. Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31, 491–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Beura, L. K. et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 216, 1214–1229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stolley, J. M. et al. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. J. Exp. Med. 217, e20192197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Campbell, C. & Rudensky, A. Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metab. 31, 18–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, H. M., Bautista, J. L. & Hsieh, C. S. Thymic and peripheral differentiation of regulatory T cells. Adv. Immunol. 112, 25–71 (2011).

    PubMed  Google Scholar 

  101. Vaeth, M. et al. Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nat. Commun. 10, 1183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kaminski, A. et al. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci. Immunol. https://doi.org/10.1126/sciimmunol.adj5789 (2023).This study identifies lymph node-resident Treg cells that possess lymph node-specific TCR repertoires as a consequence of the local immune history.

    Article  PubMed  Google Scholar 

  104. Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zagorulya, M. et al. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer. Immunity 56, 386–405.e10 (2023). This study shows that lung-draining versus skin-draining lymph nodes differ in their ability to elicit an antitumor immune response owing to their Treg cell composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Oyler-Yaniv, A. et al. A tunable diffusion-consumption mechanism of cytokine propagation enables plasticity in cell-to-cell communication in the immune system. Immunity 46, 609–620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Simeonov, D. R. et al. Non-coding sequence variation reveals fragility within interleukin 2 feedback circuitry and shapes autoimmune disease risk. Preprint at bioRxiv https://doi.org/10.1101/2023.06.17.545426 (2023).

  109. Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cyster, J. G. et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176, 181–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Lim, H. W., Hillsamer, P. & Kim, C. H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest. 114, 1640–1649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aloulou, M. et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat. Commun. 7, 10579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Botta, D. et al. Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 18, 1249–1260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clement, R. L. et al. Follicular regulatory T cells control humoral and allergic immunity by restraining early B cell responses. Nat. Immunol. 20, 1360–1371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sheng, J. et al. Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population. eLife 10, e65412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mackley, E. C. et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abramson, J., Dobeš, J., Lyu, M. & Sonnenberg, G. F. The emerging family of RORγt+ antigen-presenting cells. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00906-5 (2023).

    Article  PubMed  Google Scholar 

  124. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, J. et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci. Immunol. 6, eabl5053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Waffarn, E. E. et al. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat. Commun. 6, 8991 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Aukland, K. & Reed, R. K. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 73, 1–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Clement, C. C. et al. An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One 5, e9863 (2010). The study provides a comparative, quantitative analysis of peptide fragments found in human lymph.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fraser, J. R. E., Laurent, T. C. & Laurent, U. B. G. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Tengblad, A. et al. Concentration and relative molecular mass of hyaluronate in lymph and blood. Biochem. J. 236, 521–525 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fraser, J. R. E., Kimpton, W. G., Laurent, T. C., Cahill, R. N. P. & Vakakis, N. Uptake and degradation of hyaluronan in lymphatic tissue. Biochem. J. 256, 153–158 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Srinivasan, S., Vannberg, F. O. & Dixon, J. B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hood, J. L. The association of exosomes with lymph nodes. Semin. Cell Dev. Biol. 67, 29–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, W. et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front. Immunol. 9, 90 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shannon, A. D., Quin, J. W. & Courtice, F. C. Lysosomal enzyme activities in sheep plasma and lymph. Res. Vet. Sci. 22, 209–215 (1977).

    Article  CAS  PubMed  Google Scholar 

  139. Reichl, D., Hathaway, C. B., Sterchi, J. M. & Miller, N. E. Lipoproteins of human peripheral lymph. Apolipoprotein AI-containing lipoprotein with alpha-2 electrophoretic mobility. Eur. J. Clin. Invest. 21, 638–643 (1991).

    Article  CAS  PubMed  Google Scholar 

  140. Jacobs, F. A. & Largis, E. E. Transport of amino acids via the mesenteric lymph duct in rats. Proc. Soc. Exp. Biol. Med. 130, 692–696 (1969).

    Article  CAS  PubMed  Google Scholar 

  141. Nanjee, M. N., Cooke, C. J., Olszewski, W. L. & Miller, N. E. Lipid and apolipoprotein concentrations in prenodal leg lymph of fasted humans: associations with plasma concentrations in normal subjects, lipoprotein lipase deficiency, and LCAT deficiency. J. Lipid Res. 41, 1317–1327 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).

    Article  PubMed  Google Scholar 

  143. Ohhashi, T., Kawai, Y., Maejima, D., Hayashi, M. & Watanabe-Asaka, T. Physiological roles of lymph flow-mediated nitric oxide in lymphatic system. Lymphat. Res. Biol. 21, 253–261 (2023).

    CAS  PubMed  Google Scholar 

  144. Olszewski, W. L. The lymphatic system in body homeostasis: physiological conditions. Lymphat. Res. Biol. 1, 11–21 (2003).

    Article  PubMed  Google Scholar 

  145. Wu, H., Denna, T. H., Storkersen, J. N. & Gerriets, V. A. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol. Res. 140, 100–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Munn, D. H. & Mellor, A. L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Fletcher, M. et al. L-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  PubMed  Google Scholar 

  151. Mondanelli, G. et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 46, 233–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Svoronos, N. et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 7, 72–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat. Immunol. 22, 880–892 (2021). This study shows that helper T cells primed in different lymph nodes are phenotypically distinct and home to distinct areas of tissues during inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Clement, C. C. et al. Quantitative profiling of the lymph node clearance capacity. Sci. Rep. 8, 11253 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zawieja, D. C. et al. Lymphatic cannulation for lymph sampling and molecular delivery. J. Immunol. 203, 2339–2350 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Reichl, D., Simons, L. A., Myant, N. B., Pflug, J. J. & Mills, G. L. The lipids and lipoproteins of human peripheral lymph, with observations on the transport of cholesterol from plasma and tissues into lymph. Clin. Sci. Mol. Med. 45, 313–329 (1973).

    CAS  PubMed  Google Scholar 

  159. Sloop, C. H., Castle, C. K., Lefevre, M. & Wong, L. Comparison of the lipid and apolipoprotein composition of skeletal muscle and peripheral lymph in control dogs and in dogs fed a high fat, high cholesterol, hypothyroid-inducing diet. Biochim. Biophys. Acta 1169, 196–201 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Julien, P., Fong, B. & Angel, A. Cardiac and peripheral lymph lipoproteins in dogs fed cholesterol and saturated fat. Arteriosclerosis 4, 435–442 (1984).

    Article  CAS  PubMed  Google Scholar 

  161. Santambrogio, L. & Rammensee, H. G. Contribution of the plasma and lymph degradome and peptidome to the MHC ligandome. Immunogenetics 71, 203–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Clement, C. C. et al. The dendritic cell major histocompatibility complex II (MHC II) peptidome derives from a variety of processing pathways and includes peptides with a broad spectrum of HLA-DM sensitivity. J. Biol. Chem. 291, 5576–5595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016). This study shows that migratory dendritic cells from the small intestine-draining lymph nodes and colon-draining lymph nodes differ phenotypically and differentially imprint T cells for tissue-specific homing.

    Article  CAS  PubMed  Google Scholar 

  164. Yang, W. & Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 18, 866–877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nguyen, L. P. & Bradfield, C. A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 21, 102–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Li, S. et al. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49, 915–928.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Chng, S. H. et al. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity. Sci. Rep. 6, 23820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542, 242–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cifarelli, V. & Eichmann, A. The intestinal lymphatic system: functions and metabolic implications. Cell. Mol. Gastroenterol. Hepatol. 7, 503–513 (2019).

    Article  PubMed  Google Scholar 

  173. D’Ambrosio, D. N., Clugston, R. D. & Blaner, W. S. Vitamin A metabolism: an update. Nutrients 3, 63–103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Eroglu, A. & Harrison, E. H. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J. Lipid Res. 54, 1719–1730 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell. Mol. Immunol. 18, 1161–1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Kim, M., Qie, Y., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kobayashi, T., Chanmee, T. & Itano, N. Hyaluronan: metabolism and function. Biomolecules 10, 1525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lee-Sayer, S. S. M. et al. The where, when, how and why of hyaluronan binding by immune cells. Front. Immunol. 6, 150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rundqvist, H. et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 9, e59996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Feng, Q. et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Riedel, A. et al. Tumor-derived lactic acid modulates activation and metabolic status of draining lymph node stroma. Cancer Immunol. Res. 10, 482–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  189. Uren, R. F., Howman-Giles, R. & Thompson, J. F. Patterns of lymphatic drainage of the skin in patients with melanoma. J. Nucl. Med. 44, 570–582 (2003).

    PubMed  Google Scholar 

  190. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35, 814–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Koster, B. D. et al. Local adjuvant treatment with low-dose CpG-B offers durable protection against disease recurrence in clinical stage I-II melanoma: data from two randomized phase II trials. Clin. Cancer Res. 23, 5679–5686 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Ji, P. et al. Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol. Ther. Nucleic Acids 26, 987–996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Farnsworth, R. H., Lackmann, M., Achen, M. G. & Stacker, S. A. Vascular remodeling in cancer. Oncogene 33, 3496–3505 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Dubrot, J. et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J. Exp. Med. 211, 1153–1166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Riedel, A., Shorthouse, D., Haas, L., Hall, B. A. & Shields, J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat. Immunol. 17, 1118–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gillot, L., Baudin, L., Rouaud, L., Kridelka, F. & Noël, A. The pre-metastatic niche in lymph nodes: formation and characteristics. Cell. Mol. Life Sci. 78, 5987–6002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cochran, A. J. et al. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6, 659–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Mannino, M. H. et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367, 103–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ito, M. et al. Tumor-derived TGFβ-1 induces dendritic cell apoptosis in the sentinel lymph node. J. Immunol. 176, 5637–5643 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Lee, J. H. et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 11, 107–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Botella-Estrada, R. et al. Cytokine expression and dendritic cell density in melanoma sentinel nodes. Melanoma Res. 15, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Hu, L., Wickline, S. A. & Hood, J. L. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn. Reson. Med. 74, 266–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Taylor, D. D. & Gerçel-Taylor, C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Czystowska-Kuzmicz, M. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 10, 3000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Liu, C. et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 176, 1375–1385 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Cochran, A. J., Pihl, E., Wen, D. R., Hoon, D. S. & Korn, E. L. Zoned immune suppression of lymph nodes draining malignant melanoma: histologic and immunohistologic studies. J. Natl Cancer Inst. 78, 399–405 (1987).

    CAS  PubMed  Google Scholar 

  216. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Backlund, C., Jalili-Firoozinezhad, S., Kim, B. & Irvine, D. J. Biomaterials-mediated engineering of the immune system. Annu. Rev. Immunol. 41, 153–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Regev, A. et al. The Human Cell Atlas white paper. Preprint at arXiv https://doi.org/10.48550/arXiv.1810.05192 (2018).

  220. Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Randolph, G. J. & Miller, N. E. Lymphatic transport of high-density lipoproteins and chylomicrons. J. Clin. Invest. 124, 929–935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Chauveau, A. et al. Visualization of T cell migration in the spleen reveals a network of perivascular pathways that guide entry into T zones. Immunity 52, 794–807.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bronte, V. & Pittet, M. J. The spleen in local and systemic regulation of immunity. Immunity 39, 806–818 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Reboldi, A. & Cyster, J. G. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271, 230–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Heel, K. A., McCauley, R. D., Papadimitriou, J. M. & Hall, J. C. Review: Peyer’s patches. J. Gastroenterol. Hepatol. 12, 122–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  231. Cornes, J. S. Peyer’s patches in the human gut. Proc. R. Soc. Med. 58, 716 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cyster, J. G. & Von Andrian, U. H. Dynamics of B cell migration to and within secondary lymphoid organs. in Molecular Biology of B Cells (eds Honjo, T., Alt, F. W. & Neuberger, M. S.) 203–221 (Elsevier, 2004).

  234. Travis, M. A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Sheikh-Mohamed, S. et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 15, 799–808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Tang, J. et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci. Immunol. 7, eadd4853 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Knisely, J. M. et al. Mucosal vaccines for SARS-CoV-2: scientific gaps and opportunities — workshop report. NPJ Vaccines 8, 53 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Grau-Expósito, J. et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 12, 3010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Onodera, T. et al. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc. Natl Acad. Sci. USA 109, 2485–2490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Son, Y. M. et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Kingstad-Bakke, B. et al. Vaccine-induced systemic and mucosal T cell immunity to SARS-CoV-2 viral variants. Proc. Natl Acad. Sci. USA 119, e2118312119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Nouailles, G. et al. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat. Microbiol. 8, 860–874 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Lapuente, D. et al. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat. Commun. 12, 6871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines 9, 881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hassan, A. O. et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 36, 109452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Afkhami, S. et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 185, 896–915.e19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. eBioMedicine 85, 104298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the WÜSI principal investigators, A. Riedel, M. Bajénoff and the Kastenmüller Lab for the critical reading of the manuscript. Our research is supported by the European Research Council (ERC) (819329- STEP2), the German Research Foundation (DFG) (SFB 1583- DECIDE and GRK2581 ‘SPHINGOINF’) and the Max Planck Society (Max Planck Research Groups).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Wolfgang Kastenmüller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks A. Andrusaite, V. Cerovic, S. Milling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Affinity maturation and antibody class switching

Affinity maturation and antibody class switching are two important mechanisms B cells use to improve the efficacy of the antibody response. Once B cells have recognized their cognate antigen through the B cell receptor (BCR), they start producing IgM antibodies and this is known as the primary response. To increase the binding affinity of the BCR to cognate antigen, B cells introduce mutations into the complementarity-determining region of the BCR via a process known as somatic hypermutation (SHM). SHM produces B cells with varying affinities of BCRs, and only the ones with the strongest affinity are positively selected by follicular helper T cells in germinal centres. During antibody class switching, changes occur in the heavy-chain domain of the antibody, creating antibodies with similar affinity but different effector functions. This process involves recombining the exon clusters on the IgH locus, enabling antibody isotype switching (for example, from IgM to IgG, IgE or IgA).

Aryl hydrocarbon receptor

(AhR). A ligand-activated transcription factor, which upon ligand binding translocates from the cytoplasm to the nucleus, forms a complex with aryl hydrocarbon receptor nuclear translocator and induces transcription of target genes. In its inactive state, it forms a protein dimer complex with HSP90, XAP2, p23 and SRC. AhR has diverse roles in adaptive immune responses, such as promoting Th17 cell induction or Treg cell stabilization.

Central Treg cells

Treg cells can be classified either on their developmental origin — as tTreg and pTreg cells — or based on their migratory pattern — as central Treg and effector Treg cells. Central Treg cells primarily recirculate in the blood and SLOs. They are characterized by a CD4+CD25+FOXP3+CD44lowCD62LhighCCR7+ phenotype and primarily localize to the T cell zone in the spleen and lymph nodes. They require IL-2 for their homoeostasis and survival and serve as a pool of long-lived recirculating Treg cells in SLOs.

Effector Treg cells

Effector Treg cells develop from central Treg cells in a BATF-dependent manner and require ICOS signalling for their survival. Even though inflammatory signals primarily drive the differentiation of effector Treg cells from central Treg cells, constant T cell receptor stimulation is required for the maintenance of effector Treg cells. These Treg cells have a CD4+CD25+FOXP3+CD44highCD62LlowCCR7 phenotype and primarily localize to non-lymphoid tissues.

Exosomes

Exosomes are single-membraned extracellular vesicles that are produced by cells in the endoplasmic reticulum and can carry different types of cargo from nucleic acids to proteins or metabolites. They are critical components in cellular communications both over short and long distances.

Hyaluronic acid

Hyaluronic acid is a large polysaccharide formed of glucuronic acid and glucosamine, with an approximate relative molecular weight of 105–107 (ratio of the molecular weights of hyaluronic acid and carbon). It is produced by distinct cell types and is the main component of the extracellular matrix.

Sphingosine-1-phosphate

(S1P). A sphingolipid that is formed from ceramide by the action of ceramidase and sphingosine kinases (SK1 and SK2). S1P acts as a crucial mediator in lymphocyte trafficking, vascular development and heart development via its receptors S1PR1–S1PR5.

Tumour secretome

The tumour secretome is the entire collection of macromolecules — including both soluble proteins and insoluble vesicles — that take part in cell–cell communication in the tumour (for example, growth factors, lipids and exosomes).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz de Casas, P., Knöpper, K., Dey Sarkar, R. et al. Same yet different — how lymph node heterogeneity affects immune responses. Nat Rev Immunol 24, 358–374 (2024). https://doi.org/10.1038/s41577-023-00965-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00965-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer