Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifunctional protein HMGB1: 50 years of discovery

Abstract

Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia–reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of breakthrough discoveries since HMGB1 was first identified.
Fig. 2: Signalling pathways of extracellular HMGB1.
Fig. 3: Structure and function of HMGB1.
Fig. 4: Interactions between lipopolysaccharide and HMGB1 in inflammation and coagulation.
Fig. 5: Interplay between HMGB1 and autophagy in cell death and inflammation.
Fig. 6: The role of HMGB1 in cancer biology and tumour immunity.

Similar content being viewed by others

References

  1. Goodwin, G. H. & Johns, E. W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem. 40, 215–219 (1973).

    CAS  PubMed  Google Scholar 

  2. Sharman, A. C., Hay-Schmidt, A. & Holland, P. W. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis: gene duplication in vertebrate evolution. Gene 184, 99–105 (1997).

    CAS  PubMed  Google Scholar 

  3. Calogero, S. et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22, 276–280 (1999).

    CAS  PubMed  Google Scholar 

  4. Aikawa, S. et al. Uterine deficiency of high-mobility group box-1 (HMGB1) protein causes implantation defects and adverse pregnancy outcomes. Cell Death Differ. 27, 1489–1504 (2020).

    CAS  PubMed  Google Scholar 

  5. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009). This study reports that cytosolic HMGB1 is a mediator of nucleic-acid-induced immune responses.

    CAS  PubMed  Google Scholar 

  6. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010). This study reports that cytosolic HMGB1 is a mediator of autophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. J. Exp. Med. 201, 1135–1143 (2005). This study reports that HMGB1 is a mediator of sterile inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ling, Y. et al. Heparin changes the conformation of high-mobility group protein 1 and decreases its affinity toward receptor for advanced glycation endproducts in vitro. Int. Immunopharmacol. 11, 187–193 (2011).

    CAS  PubMed  Google Scholar 

  9. Liu, R. et al. Establishment of in vitro binding assay of high mobility group box-1 and S100A12 to receptor for advanced glycation endproducts: heparin’s effect on binding. Acta Med. Okayama 63, 203–211 (2009).

    CAS  PubMed  Google Scholar 

  10. He, M., Bianchi, M. E., Coleman, T. R., Tracey, K. J. & Al-Abed, Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol. Med. 24, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Yang, H. et al. A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl Acad. Sci. USA 107, 11942–11947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, J. et al. DAMPs, ageing, and cancer: the ‘DAMP hypothesis’. Ageing Res. Rev. 24, 3–16 (2015).

    CAS  PubMed  Google Scholar 

  13. Kleinschmidt, J. A., Seiter, A. & Zentgraf, H. Nucleosome assembly in vitro: separate histone transfer and synergistic interaction of native histone complexes purified from nuclei of Xenopus laevis oocytes. EMBO J. 9, 1309–1318 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bianchi, M. E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243, 1056–1059 (1989).

    CAS  PubMed  Google Scholar 

  15. Pil, P. M. & Lippard, S. J. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992).

    CAS  PubMed  Google Scholar 

  16. Ru, H. et al. Molecular mechanism of V(D)J recombination from synaptic RAG1–RAG2 complex structures. Cell 163, 1138–1152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122, 693–705 (2005).

    CAS  PubMed  Google Scholar 

  18. Wang, X. et al. Dynamic autoinhibition of the HMGB1 protein via electrostatic fuzzy interactions of intrinsically disordered regions. J. Mol. Biol. 433, 167122 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Uguen, K. et al. Heterozygous HMGB1 loss-of-function variants are associated with developmental delay and microcephaly. Clin. Genet. 100, 386–395 (2021).

    CAS  PubMed  Google Scholar 

  21. Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209, 1519–1528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, S. & Lippard, S. J. Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA. Biochemistry 50, 2567–2574 (2011).

    CAS  PubMed  Google Scholar 

  23. El Gazzar, M. et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol. 29, 1959–1971 (2009).

    CAS  PubMed  Google Scholar 

  24. Huang, H. et al. Hepatocyte specific HMGB1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular HMGB1 in cellular protection. Hepatology 59, 1984–1997 (2014).

    CAS  PubMed  Google Scholar 

  25. Kang, R. et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146, 1097–1107 (2014).

    CAS  PubMed  Google Scholar 

  26. Chen, Q. et al. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int. J. Infect. Dis. 16, e558–e564 (2012).

    CAS  PubMed  Google Scholar 

  27. Cavalier, E. et al. Circulating nucleosomes as potential markers to monitor COVID-19 disease progression. Front. Mol. Biosci. 8, 600881 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999). This study reports that HMGB1 can be secreted into the extracellular space to mediate inflammation.

    CAS  PubMed  Google Scholar 

  29. Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002). This study reports the mechanism of HMGB1 secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rendon-Mitchell, B. et al. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J. Immunol. 170, 3890–3897 (2003).

    CAS  PubMed  Google Scholar 

  31. Deng, M. et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49, 740–753.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, H. et al. HMGB1 released from nociceptors mediates inflammation. Proc. Natl Acad. Sci. USA 118, e2102034118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002). This study reports that HMGB1 functions as a DAMP during necrosis.

    CAS  PubMed  Google Scholar 

  34. Kang, R. et al. HMGB1 in health and disease. Mol. Asp. Med. 40, 1–116 (2014). 

    CAS  Google Scholar 

  35. Urbonaviciute, V. et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205, 3007–3018 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ivanov, S. et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110, 1970–1981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    CAS  PubMed  Google Scholar 

  38. Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N. & Rauvala, H. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol. 81, 49–58 (2007).

    CAS  PubMed  Google Scholar 

  39. Iachettini, S. et al. The telomeric protein TERF2/TRF2 impairs HMGB1-driven autophagy. Autophagy https://doi.org/10.1080/15548627.2022.2138687 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Livesey, K. M. et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S. W., Oh, S. A., Seol, S. I., Davaanyam, D. & Lee, J. K. Cytosolic HMGB1 mediates LPS-induced autophagy in microglia by interacting with NOD2 and suppresses its proinflammatory function. Cells 11, 2410 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huebener, P. et al. High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo. Cell Metab. 19, 539–547 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    CAS  PubMed  Google Scholar 

  45. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 30, 4701–4711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Z. et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 17, 529–552 (2021).

    PubMed  Google Scholar 

  47. Kim, Y. H. et al. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy 17, 2345–2362 (2021).

    CAS  PubMed  Google Scholar 

  48. Zhou, B. et al. Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nat. Microbiol. 5, 1576–1587 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, X. et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J. Clin. Invest. 125, 1098–1110 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Zeng, X., Liu, F., Liu, K., Xin, J. & Chen, J. HMGB1 could restrict 1,3-beta-glucan induced mice lung inflammation by affecting beclin1 and Bcl2 interaction and promoting the autophagy of epithelial cells. Ecotoxicol. Environ. Saf. 222, 112460 (2021).

    CAS  PubMed  Google Scholar 

  51. Zhang, Y. G. et al. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 15, 1935–1953 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yanai, H. et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc. Natl Acad. Sci. USA 110, 20699–20704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parker, K. H., Horn, L. A. & Ostrand-Rosenberg, S. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. J. Leukoc. Biol. 100, 463–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue, J. et al. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc. Natl Acad. Sci. USA 117, 25543–25552 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, J. et al. HMGB1 promotes resistance to doxorubicin in human hepatocellular carcinoma cells by inducing autophagy via the AMPK/mTOR signaling pathway. Front. Oncol. 11, 739145 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang, D. et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29, 5299–5310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Andreeva, L. et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature 549, 394–398 (2017).

    CAS  PubMed  Google Scholar 

  59. Razi, M., Chan, E. Y. & Tooze, S. A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185, 305–321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Merenmies, J., Pihlaskari, R., Laitinen, J., Wartiovaara, J. & Rauvala, H. 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J. Biol. Chem. 266, 16722–16729 (1991).

    CAS  PubMed  Google Scholar 

  61. Tadie, J. M. et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. Am. J. Physiol. Lung Cell Mol. Physiol. 304, L342–L349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahrens, I. et al. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi. Thromb. Haemost. 114, 994–1003 (2015).

    PubMed  Google Scholar 

  63. Zhan, Y. et al. HMGB1-mediated neutrophil extracellular trap formation exacerbates intestinal ischemia/reperfusion-induced acute lung injury. J. Immunol. 208, 968–978 (2022).

    CAS  PubMed  Google Scholar 

  64. Zhang, X. L. et al. HMGB1-promoted neutrophil extracellular traps contribute to cardiac diastolic dysfunction in mice. J. Am. Heart Assoc. 11, e023800 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Maugeri, N. et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci. Transl. Med. 10, eaao3089 (2018).

    PubMed  Google Scholar 

  66. Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Jiang, W., Li, J., Gallowitsch-Puerta, M., Tracey, K. J. & Pisetsky, D. S. The effects of CpG DNA on HMGB1 release by murine macrophage cell lines. J. Leukoc. Biol. 78, 930–936 (2005).

    CAS  PubMed  Google Scholar 

  68. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010).

    CAS  PubMed  Google Scholar 

  69. Andersson, U. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570 (2000). This study reports that HMGB1 can induce cytokine production.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209, 551–563 (2012). This study reports that the activity of HMGB1 is regulated by its redox status.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Spagnuolo, L. et al. HMGB1 promotes CXCL12-dependent egress of murine B cells from Peyer’s patches in homeostasis. Eur. J. Immunol. 51, 1980–1991 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, J. et al. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. 21, 1229–1239 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, W. et al. Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Sci. Transl. Med. 12, eaaz3833 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hernandez-Pando, R. et al. The role of high mobility group box 1 protein (HMGB1) in the immunopathology of experimental pulmonary tuberculosis. PLoS ONE 10, e0133200 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Yang, H. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. USA 101, 296–301 (2004).

    CAS  PubMed  Google Scholar 

  77. Yang, M. et al. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem. Pharmacol. 86, 410–418 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Devaraj, A. et al. The extracellular innate-immune effector HMGB1 limits pathogenic bacterial biofilm proliferation. J. Clin. Invest. 131, e140527 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, H. et al. Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv. 2, 638–648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsung, A. et al. HMGB1 release induced by liver ischemia involves toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204, 2913–2923 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, H. et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J. Exp. Med. 212, 5–14 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Taguchi, A. et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354–360 (2000). This study reports the oncogenic role of HMGB1.

    CAS  PubMed  Google Scholar 

  83. Wang, J. et al. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-kappaB signaling pathways. Int. J. Mol. Med. 45, 61–80 (2020).

    CAS  PubMed  Google Scholar 

  84. Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832–842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. de Mingo Pulido, A. et al. The inhibitory receptor TIM-3 limits activation of the cGAS–STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54, 1154–1167.e7 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Kim, T. S., Gorski, S. A., Hahn, S., Murphy, K. M. & Braciale, T. J. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity 40, 400–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, H. et al. TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 27, 556–570.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host. Microbe 24, 97–108.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yen, Y. C. et al. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. Sci. Adv. 8, eabn8063 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang, D. et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 81, 741–747 (2007).

    CAS  PubMed  Google Scholar 

  92. Tirone, M. et al. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J. Exp. Med. 215, 303–318 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bell, C. W., Jiang, W., Reich, C. F. III & Pisetsky, D. S. The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol. 291, C1318–C1325 (2006).

    CAS  PubMed  Google Scholar 

  94. Volchuk, A., Ye, A., Chi, L., Steinberg, B. E. & Goldenberg, N. M. Indirect regulation of HMGB1 release by gasdermin D. Nat. Commun. 11, 4561 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kamiya, M. et al. Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat. Commun. 13, 166 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zou, J. et al. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity 38, 717–728 (2013).

    CAS  PubMed  Google Scholar 

  98. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    CAS  PubMed  Google Scholar 

  99. Borges, J. P. et al. Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death. eLife 11, e78609 (2022).

    PubMed  PubMed Central  Google Scholar 

  100. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Taniguchi, N. et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 48, 971–981 (2003).

    CAS  PubMed  Google Scholar 

  102. Ostberg, T. et al. Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis Rheum. 62, 2963–2972 (2010).

    PubMed  Google Scholar 

  103. Bangert, A. et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc. Natl Acad. Sci. USA 113, E155–E164 (2016).

    CAS  PubMed  Google Scholar 

  104. Fu, L. et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci. Rep. 7, 1179 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Fujita, K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 6, 31895 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Koprivica, I., Vujicic, M., Gajic, D., Saksida, T. & Stojanovic, I. Ethyl pyruvate stimulates regulatory T cells and ameliorates type 1 diabetes development in mice. Front. Immunol. 9, 3130 (2018).

    CAS  PubMed  Google Scholar 

  107. Soloff, A. C. & Lotze, M. T. A peaceful death orchestrates immune balance in a chaotic environment. Proc. Natl Acad. Sci. USA 116, 22901–22903 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    CAS  PubMed  Google Scholar 

  109. Enokido, Y., Yoshitake, A., Ito, H. & Okazawa, H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376, 128–133 (2008).

    CAS  PubMed  Google Scholar 

  110. Gao, H. M. et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci. 31, 1081–1092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Karuppagounder, V. et al. Modulation of macrophage polarization and HMGB1-TLR2/TLR4 cascade plays a crucial role for cardiac remodeling in senescence-accelerated prone mice. PLoS ONE 11, e0152922 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Sofiadis, K. et al. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol. Syst. Biol. 17, e9760 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell. Biol. 201, 613–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, F. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat. Cell Biol. 22, 728–739 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. Gaikwad, S. et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 36, 109419 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, J. J. et al. HMGB1 orchestrates STING-mediated senescence via TRIM30alpha modulation in cancer cells. Cell Death Discov. 7, 28 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hernandez, C. et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J. Clin. Invest. 128, 2436–2451 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Chen, R. et al. High mobility group protein B1 controls liver cancer initiation through yes-associated protein-dependent aerobic glycolysis. Hepatology 67, 1823–1841 (2018).

    CAS  PubMed  Google Scholar 

  119. Kang, R. et al. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res. 27, 916–932 (2017). This study reports the tumour suppressor role of HMGB1.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014).

    CAS  PubMed  Google Scholar 

  121. Parker, K. H. et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 74, 5723–5733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hubert, P. et al. Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J. Immunother. Cancer 9, e001966 (2021).

    PubMed  PubMed Central  Google Scholar 

  123. Conche, C. et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut https://doi.org/10.1136/gutjnl-2022-327909 (2023).

    Article  PubMed  Google Scholar 

  124. Dai, E. et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun. 11, 6339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, C. et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev. Cell 46, 441–455 e448 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Gopal, A. et al. TIRAP drives myelosuppression through an Ifngamma-Hmgb1 axis that disrupts the endothelial niche in mice. J. Exp. Med. 219, e20200731 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ye, L. et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J. Immunother. Cancer 6, 145 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Kam, N. W. et al. Peritumoral B cells drive proangiogenic responses in HMGB1-enriched esophageal squamous cell carcinoma. Angiogenesis 25, 181–203 (2022).

    CAS  PubMed  Google Scholar 

  129. Liu, M. et al. The HMGB1 (C106A) mutation inhibits IL-10-producing CD19(hi)FcgammaRIIb(hi) B cell expansion by suppressing STAT3 activation in mice. Front. Immunol. 13, 975551 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Soloff, A. C. et al. HMGB1 promotes myeloid egress and limits lymphatic clearance of malignant pleural effusions. Front. Immunol. 11, 2027 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rojas, A. et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 37, 3321–3329 (2016).

    CAS  PubMed  Google Scholar 

  132. Shiau, D. J. et al. Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis. Sci. Rep. 10, 13582 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). This study reports that HMGB1 is a mediator of immunogenic cell death.

    CAS  PubMed  Google Scholar 

  134. Solari, J. I. G. et al. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer 20, 474 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Fahmueller, Y. N. et al. Immunogenic cell death biomarkers HMGB1, RAGE, and DNAse indicate response to radioembolization therapy and prognosis in colorectal cancer patients. Int. J. Cancer 132, 2349–2358 (2013).

    CAS  PubMed  Google Scholar 

  136. Gdynia, G. et al. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat. Commun. 7, 10764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, Z. et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. J. Exp. Clin. Cancer Res. 41, 74 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Z. et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Invest. 129, 4850–4862 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mollica, L. et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol. 14, 431–441 (2007).

    CAS  PubMed  Google Scholar 

  140. Ohnishi, M. et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 61, 975–980 (2011).

    CAS  PubMed  Google Scholar 

  141. Li, W. et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem. Pharmacol. 81, 1152–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Horiuchi, T. et al. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J. Biol. Chem. 292, 8436–8446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, Y. et al. Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochem. Pharmacol. 84, 1492–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tang, D. et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am. J. Respir. Cell Mol. Biol. 41, 651–660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, W., Ku, S. K., Bae, J. W. & Bae, J. S. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem. Toxicol. 50, 1826–1833 (2012).

    CAS  PubMed  Google Scholar 

  146. Zainal, N. et al. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci. Rep. 7, 42998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, H. et al. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J. Nutr. 136, 360–365 (2006).

    CAS  PubMed  Google Scholar 

  148. Li, W. et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J. Immunol. 178, 3856–3864 (2007).

    CAS  PubMed  Google Scholar 

  149. Ulloa, L. et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl Acad. Sci. USA 99, 12351–12356 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jin, D. et al. Atorvastatin reduces serum HMGB1 levels in patients with hyperlipidemia. Exp. Ther. Med. 4, 1124–1126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ostberg, T. et al. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis. Arthritis Res. Ther. 10, R1 (2008).

    PubMed  PubMed Central  Google Scholar 

  152. Pan, P. et al. Low-dose cisplatin administration in murine cecal ligation and puncture prevents the systemic release of HMGB1 and attenuates lethality. J. Leukoc. Biol. 86, 625–632 (2009).

    CAS  PubMed  Google Scholar 

  153. Tsung, A. et al. Ethyl pyruvate ameliorates liver ischemia–reperfusion injury by decreasing hepatic necrosis and apoptosis. Transplantation 79, 196–204 (2005).

    CAS  PubMed  Google Scholar 

  154. Turkyilmaz, S. et al. Ethyl pyruvate treatment ameliorates pancreatic damage: evidence from a rat model of acute necrotizing pancreatitis. Arch. Med. Sci. 15, 232–239 (2019).

    CAS  PubMed  Google Scholar 

  155. Schierbeck, H. et al. Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol. Med. 17, 1039–1044 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Aulin, C., Lassacher, T., Palmblad, K. & Erlandsson Harris, H. Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthr. Cartil. 28, 698–707 (2020).

    CAS  Google Scholar 

  157. Nishibori, M., Mori, S. & Takahashi, H. K. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J. Pharmacol. Sci. 140, 94–101 (2019).

    CAS  PubMed  Google Scholar 

  158. Zickert, A. et al. Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis Res. Ther. 14, R36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Schaper, F. et al. Treatment with anti-HMGB1 monoclonal antibody does not affect lupus nephritis in MRL/lpr mice. Mol. Med. 22, 12–21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Muire, P. J., Avila, J. J., Lofgren, A. L. & Wenke, J. C. Neutralization of HMGB1 improves fracture healing and gammadelta T lymphocyte counts at the fracture site in a polytrauma rat model. J. Exp. Orthop. 9, 21 (2022).

    PubMed  PubMed Central  Google Scholar 

  161. Son, M. et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128, 2218–2228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ito, T. et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin–thrombomodulin complexes. Arterioscler. Thromb. Vasc. Biol. 28, 1825–1830 (2008).

    CAS  PubMed  Google Scholar 

  163. Tang, Y. et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity 54, 454–467.e6 (2021).

    CAS  PubMed  Google Scholar 

  164. Yang, H. et al. Identification of CD163 as an antiinflammatory receptor for HMGB1–haptoglobin complexes. JCI Insight 1, e85375 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Avgousti, D. C. et al. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535, 173–177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Qiang, X. et al. Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. J. Leukoc. Biol. 111, 261–267 (2022).

    CAS  PubMed  Google Scholar 

  167. Chen, R. et al. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 6, e05672 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Musumeci, D. et al. DNA-based strategies for blocking HMGB1 cytokine activity: design, synthesis and preliminary in vitro/in vivo assays of DNA and DNA-like duplexes. Mol. Biosyst. 7, 1742–1752 (2011).

    CAS  PubMed  Google Scholar 

  169. Yanai, H. et al. Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc. Natl Acad. Sci. USA 108, 11542–11547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ju, Z. et al. Sequestering HMGB1 via DNA-conjugated beads ameliorates murine colitis. PLoS ONE 9, e103992 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    CAS  PubMed  Google Scholar 

  172. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Huston, J. M. et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 35, 2762–2768 (2007).

    PubMed  Google Scholar 

  174. Sitapara, R. A. et al. The alpha7 nicotinic acetylcholine receptor agonist, GTS-21, attenuates hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation. Mol. Med. 26, 63 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Pavlov, V. A. et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. 35, 1139–1144 (2007).

    CAS  PubMed  Google Scholar 

  176. Kang, R. et al. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy 12, 2374–2385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    CAS  PubMed  Google Scholar 

  178. Liu, S. et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature 598, 641–645 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen, R., Kang, R. & Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 54, 91–102 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Qian, W. et al. Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 axis. Inflamm. Bowel Dis. 29, 602–619 (2023).

    PubMed  Google Scholar 

  182. Zhao, Y. et al. Cardiopulmonary bypass-derived plasma exosomal HMGB1 contributes to alveolar epithelial cell necroptosis via mtDNA/cGAS/STING pathway. Shock 58, 534–541 (2022).

    CAS  PubMed  Google Scholar 

  183. Oh, Y. J. et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 182, 5800–5809 (2009).

    CAS  PubMed  Google Scholar 

  184. Yang, Z. et al. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J. Immunol. 193, 6114–6123 (2014).

    CAS  PubMed  Google Scholar 

  185. Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, H. et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 27, 2568–2585 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Turubanova, V. D. et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J. Immunother. Cancer 7, 350 (2019).

    PubMed  PubMed Central  Google Scholar 

  189. Wei, J. et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184, 76–91.e13 (2021).

    CAS  PubMed  Google Scholar 

  190. Satish, M., Gunasekar, P., Asensio, J. A. & Agrawal, D. K. Vitamin D attenuates HMGB1-mediated neointimal hyperplasia after percutaneous coronary intervention in swine. Mol. Cell. Biochem. 474, 219–228 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Vogel, S. et al. The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv. 2, 2672–2680 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Careccia, G. et al. Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Sci. Transl. Med. 13, eaay8416 (2021).

    CAS  PubMed  Google Scholar 

  193. Chen, L. et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell Mol. Immunol. 17, 992–994 (2020).

    CAS  PubMed  Google Scholar 

  194. Cai, J. & Lin, Z. Correlation of blood high mobility group box-1 protein with mortality of patients with sepsis: a meta-analysis. Heart Lung 50, 885–892 (2021).

    PubMed  Google Scholar 

  195. Angus, D. C. et al. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit. Care Med. 35, 1061–1067 (2007).

    PubMed  Google Scholar 

  196. Gaini, S., Koldkjaer, O. G., Moller, H. J., Pedersen, C. & Pedersen, S. S. A comparison of high-mobility group-box 1 protein, lipopolysaccharide-binding protein and procalcitonin in severe community-acquired infections and bacteraemia: a prospective study. Crit. Care 11, R76 (2007).

    PubMed  PubMed Central  Google Scholar 

  197. Barnay-Verdier, S. et al. Emergence of autoantibodies to HMGB1 is associated with survival in patients with septic shock. Intensive Care Med. 37, 957–962 (2011).

    CAS  PubMed  Google Scholar 

  198. Gamez-Diaz, L. Y. et al. Diagnostic accuracy of HMGB-1, sTREM-1, and CD64 as markers of sepsis in patients recently admitted to the emergency department. Acad. Emerg. Med. 18, 807–815 (2011).

    PubMed  Google Scholar 

  199. Pang, X. et al. Expression and effects of high-mobility group box 1 in cervical cancer. Int. J. Mol. Sci. 15, 8699–8712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Sun, S. et al. High mobility group box-1 and its clinical value in breast cancer. Onco Targets Ther. 8, 413–419 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. Chen, S. et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 394, 22–32 (2017).

    CAS  PubMed  Google Scholar 

  202. Liikanen, I. et al. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology 4, e989771 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Primm for his critical reading of the manuscript. The authors appreciate all of the pioneers in the field and our colleagues who contributed to the discovery of the compartmental functions of HMGB1. The authors apologize if they were unable to cite all of the important references in this field owing to space limitations. Research by D.T. and R.K. was supported by grants from the National Institutes of Health (R01CA160417, R01CA229275 and R01CA211070). Support to M.T.L. was provided by the Alliance for Cancer Cell and Gene Therapy (Gamma Delta T cells).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Daolin Tang or Michael T. Lotze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks H. Yanai, R. Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Autophagy

A lysosome-dependent cellular process by which cells break down and recycle their own cellular components, including aged or dysfunctional proteins and organelles, as well as invading microorganisms.

Cytokine storm

A severe and excessive release of cytokines, which can result in a systemic and potentially life-threatening inflammatory response.

Damage-associated molecular pattern

(DAMP). Part of a group of endogenous molecules that are released in response to cellular injury or damage to alert the immune system.

Disseminated intravascular coagulation

A medical condition in which abnormal blood clotting occurs throughout the small blood vessels of the body.

Endotoxin lethality

The ability of bacterial lipopolysaccharides, also known as endotoxins, to cause death in organisms.

Endotoxin tolerance

The adaptive process by which the immune system becomes less responsive to the effects of bacterial lipopolysaccharides, also known as endotoxins.

Immunogenic cell death

(ICD). A type of cell death that is characterized by the release of intracellular components, such as DAMPs, into the surrounding environment to trigger an immune response.

Neutrophil extracellular traps

(NETs). A type of cellular defence mechanism used by neutrophils to capture and eliminate invading microorganisms such as bacteria and fungi.

Sequential organ failure assessment

A standardized tool used to assess the severity of organ dysfunction (respiratory, cardiovascular, liver, coagulation, kidney and nervous system) in critically ill patients.

Sterile inflammation

A type of immune response that occurs in response to damage or injury to cells or tissues, without the presence of a pathogenic microorganism.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Kang, R., Zeh, H.J. et al. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 23, 824–841 (2023). https://doi.org/10.1038/s41577-023-00894-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00894-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing