Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA damage and repair in age-related inflammation

Abstract

Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS–STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA damage as an inducer of inflammation.
Fig. 2: Retroelement mobilization triggers inflammation via cytoplasmic DNA.
Fig. 3: Mechanisms of senescence-induced inflammation.
Fig. 4: R-loops accumulate with age and drive inflammation.
Fig. 5: Epigenetic changes triggered by lifelong DNA damage lead to induction of RTEs and inflammageing.

Similar content being viewed by others

References

  1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This article presents a comprehensive summary of the molecular characteristics of the ageing process.

    Article  CAS  Google Scholar 

  2. Brzostek-Racine, S., Gordon, C., Van Scoy, S. & Reich, N. C. The DNA damage response induces IFN. J. Immunol. 187, 5336–5345 (2011).

    Article  CAS  Google Scholar 

  3. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. Usa. 110, 2969–2974 (2013).

    Article  CAS  Google Scholar 

  4. Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    Article  Google Scholar 

  5. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    Article  CAS  Google Scholar 

  6. Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  Google Scholar 

  7. van Vugt, M. & Parkes, E. E. When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 8, 174–189 (2022).

    Article  Google Scholar 

  8. Reislander, T., Groelly, F. J. & Tarsounas, M. DNA damage and cancer immunotherapy: a STING in the tale. Mol. Cell 80, 21–28 (2020).

    Article  CAS  Google Scholar 

  9. Fenech, M. et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26, 125–132 (2011).

    Article  CAS  Google Scholar 

  10. Erdal, E., Haider, S., Rehwinkel, J., Harris, A. L. & McHugh, P. J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 31, 353–369 (2017).

    Article  CAS  Google Scholar 

  11. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  Google Scholar 

  12. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  Google Scholar 

  13. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article  CAS  Google Scholar 

  14. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  Google Scholar 

  15. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  Google Scholar 

  16. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). This paper for the first time identifies cGAS as a cytosolic DNA sensor.

    Article  CAS  Google Scholar 

  17. Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    Article  Google Scholar 

  18. Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

    Article  Google Scholar 

  19. Iwanaszko, M. & Kimmel, M. NF-κB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics 16, 307 (2015).

    Article  Google Scholar 

  20. Ho, S. S. et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44, 1177–1189 (2016).

    Article  CAS  Google Scholar 

  21. Herzner, A. M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16, 1025–1033 (2015).

    Article  CAS  Google Scholar 

  22. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  Google Scholar 

  23. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015). This paper describes the activation of NF-κB by DNA damage independently of cGAS.

    Article  Google Scholar 

  24. Hinz, M. et al. A cytoplasmic ATM–TRAF6–cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol. Cell 40, 63–74 (2010).

    Article  CAS  Google Scholar 

  25. Fang, L. et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res. 42, 8416–8432 (2014).

    Article  CAS  Google Scholar 

  26. d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  Google Scholar 

  27. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e5 (2018).

    Article  CAS  Google Scholar 

  28. Niedernhofer, L. J., Bohr, V. A., Sander, M. & Kraemer, K. H. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech. Ageing Dev. 132, 340–347 (2011).

    Article  CAS  Google Scholar 

  29. Moraes, M. C., Neto, J. B. & Menck, C. F. DNA repair mechanisms protect our genome from carcinogenesis. Front. Biosci. 17, 1362–1388 (2012).

    Article  CAS  Google Scholar 

  30. Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    Article  CAS  Google Scholar 

  31. Cleaver, J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl Acad. Sci. Usa. 63, 428–435 (1969).

    Article  CAS  Google Scholar 

  32. Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822 (1996).

    Article  CAS  Google Scholar 

  33. Niedernhofer, L. J. et al. The structure-specific endonuclease Ercc1–Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004).

    Article  CAS  Google Scholar 

  34. Klein Douwel, D. et al. XPF–ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014).

    Article  CAS  Google Scholar 

  35. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  Google Scholar 

  36. Karakasilioti, I. et al. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab. 18, 403–415 (2013).

    Article  CAS  Google Scholar 

  37. Kim, D. E. et al. Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072 (2020).

    Article  CAS  Google Scholar 

  38. Zhao, J. et al. ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. Aging 12, 4688–4710 (2020).

    Article  CAS  Google Scholar 

  39. Cockayne, E. A. Dwarfism with retinal atrophy and deafness. Arch. Dis. Child. 11, 1–8 (1936).

    Article  CAS  Google Scholar 

  40. Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L. & Bohr, V. A. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res. Rev. 33, 3–17 (2017).

    Article  CAS  Google Scholar 

  41. Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161–170 (2013).

    Article  CAS  Google Scholar 

  42. Majora, M. et al. HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aam7510 (2018).

    Article  Google Scholar 

  43. Kajitani, G. S. et al. Neurovascular dysfunction and neuroinflammation in a Cockayne syndrome mouse model. Aging 13, 22710–22731 (2021).

    Article  CAS  Google Scholar 

  44. Berquist, B. R., Canugovi, C., Sykora, P., Wilson, D. M. III & Bohr, V. A. Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res. 40, 8392–8405 (2012).

    Article  CAS  Google Scholar 

  45. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  Google Scholar 

  46. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  CAS  Google Scholar 

  47. Oshima, J., Sidorova, J. M. & Monnat, R. J. Jr Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 33, 105–114 (2017).

    Article  CAS  Google Scholar 

  48. Turaga, R. V. et al. The Werner syndrome protein affects the expression of genes involved in adipogenesis and inflammation in addition to cell cycle and DNA damage responses. Cell Cycle 8, 2080–2092 (2009).

    Article  CAS  Google Scholar 

  49. Davis, T. & Kipling, D. Werner syndrome as an example of inflamm-aging: possible therapeutic opportunities for a progeroid syndrome? Rejuvenation Res. 9, 402–407 (2006).

    Article  CAS  Google Scholar 

  50. Goto, M. et al. Multiplex cytokine analysis of Werner syndrome. Intractable Rare Dis. Res. 4, 190–197 (2015).

    Article  Google Scholar 

  51. Goto, M., Chiba, J., Matsuura, M., Iwaki-Egawa, S. & Watanabe, Y. Inflammageing assessed by MMP9 in normal Japanese individuals and the patients with Werner syndrome. Intractable Rare Dis. Res. 5, 103–108 (2016).

    Article  Google Scholar 

  52. Goto, M. et al. Aging-associated inflammation in healthy Japanese individuals and patients with Werner syndrome. Exp. Gerontol. 47, 936–939 (2012).

    Article  CAS  Google Scholar 

  53. Yu, Q. et al. DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. Cell Rep. 11, 785–797 (2015).

    Article  CAS  Google Scholar 

  54. Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    Article  CAS  Google Scholar 

  55. Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 236, 1–12 (2006).

    Article  CAS  Google Scholar 

  56. Rao, V. A. et al. Endogenous γ-H2AX–ATM–Chk2 checkpoint activation in Bloom’s syndrome helicase deficient cells is related to DNA replication arrested forks. Mol. Cancer Res. 5, 713–724 (2007).

    Article  CAS  Google Scholar 

  57. Gratia, M. et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216, 1199–1213 (2019).

    Article  CAS  Google Scholar 

  58. Rehman, R. et al. Noncanonical role for Ku70/80 in the prevention of allergic airway inflammation via maintenance of airway epithelial cell organelle homeostasis. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L728–L741 (2020).

    Article  CAS  Google Scholar 

  59. Sun, X. et al. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat. Commun. 11, 6182 (2020).

    Article  CAS  Google Scholar 

  60. Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H. & Smith, G. L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1, e00047 (2012).

    Article  Google Scholar 

  61. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the Trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    Article  CAS  Google Scholar 

  62. Sirbu, B. M. & Cortez, D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb. Perspect. Biol. 5, a012724 (2013).

    Article  Google Scholar 

  63. Boder, E. & Sedgwick, R. P. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21, 526–554 (1958).

    Article  CAS  Google Scholar 

  64. Shiloh, Y. & Lederman, H. M. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res. Rev. 33, 76–88 (2017).

    Article  CAS  Google Scholar 

  65. Zaki-Dizaji, M., Akrami, S. M., Azizi, G., Abolhassani, H. & Aghamohammadi, A. Inflammation, a significant player of ataxia-telangiectasia pathogenesis? Inflamm. Res. 67, 559–570 (2018).

    Article  CAS  Google Scholar 

  66. McGrath-Morrow, S. A. et al. Elevated serum IL-8 levels in ataxia telangiectasia. J. Pediatr. 156, 682–684 e681 (2010).

    Article  CAS  Google Scholar 

  67. McGrath-Morrow, S. A., Collaco, J. M., Detrick, B. & Lederman, H. M. Serum interleukin-6 levels and pulmonary function in ataxia-telangiectasia. J. Pediatr. 171, 256–261.e1 (2016).

    Article  CAS  Google Scholar 

  68. Saunders, R. A. et al. Elevated inflammatory responses and targeted therapeutic intervention in a preclinical mouse model of ataxia-telangiectasia lung disease. Sci. Rep. 11, 4268 (2021).

    Article  CAS  Google Scholar 

  69. Gul, E. et al. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142, 246–257 (2018).

    Article  CAS  Google Scholar 

  70. Song, X., Ma, F. & Herrup, K. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. J. Neurosci. 39, 6378–6394 (2019).

    Article  CAS  Google Scholar 

  71. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  Google Scholar 

  72. Goldman, R. D., Gruenbaum, Y., Moir, R. D., Shumaker, D. K. & Spann, T. P. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002).

    Article  CAS  Google Scholar 

  73. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. Usa. 101, 8963–8968 (2004).

    Article  CAS  Google Scholar 

  74. Gonzalo, S. & Kreienkamp, R. DNA repair defects and genome instability in Hutchinson–Gilford progeria syndrome. Curr. Opin. Cell Biol. 34, 75–83 (2015).

    Article  CAS  Google Scholar 

  75. Gonzalez-Dominguez, A. et al. Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson–Gilford progeria. EMBO Mol. Med. 13, e14012 (2021).

    Article  CAS  Google Scholar 

  76. Mu, X. et al. Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson–Gilford progeria syndrome. Aging Cell 19, e13152 (2020).

    Article  CAS  Google Scholar 

  77. Osorio, F. G. et al. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26, 2311–2324 (2012).

    Article  CAS  Google Scholar 

  78. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  79. Mouse Genome Sequencing, C. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  Google Scholar 

  80. Dewannieux, M. & Heidmann, T. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3, 646–656 (2013).

    Article  CAS  Google Scholar 

  81. Hancks, D. C. & Kazazian, H. H. Jr Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012).

    Article  CAS  Google Scholar 

  82. Richardson, S. R. et al. The Influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0061-2014 (2015).

    Article  Google Scholar 

  83. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    Article  CAS  Google Scholar 

  84. Deininger, P. L. & Batzer, M. A. Alu repeats and human disease. Mol. Genet. Metab. 67, 183–193 (1999).

    Article  CAS  Google Scholar 

  85. Kury, P. et al. Human endogenous retroviruses in neurological diseases. Trends Mol. Med. 24, 379–394 (2018).

    Article  Google Scholar 

  86. Boissinot, S. & Sookdeo, A. The evolution of LINE-1 in vertebrates. Genome Biol. Evol. 8, 3485–3507 (2016).

    CAS  Google Scholar 

  87. Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

    Article  CAS  Google Scholar 

  88. Di Giacomo, M. et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell 50, 601–608 (2013).

    Article  Google Scholar 

  89. Yang, F. & Wang, P. J. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin. Cell Dev. Biol. 59, 118–125 (2016).

    Article  CAS  Google Scholar 

  90. Kazazian, H. H. Jr & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).

    Article  CAS  Google Scholar 

  91. Rodic, N. LINE-1 activity and regulation in cancer. Front. Biosci. 23, 1680–1686 (2018).

    Article  CAS  Google Scholar 

  92. Burns, K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017).

    Article  CAS  Google Scholar 

  93. Belancio, V. P., Roy-Engel, A. M. & Deininger, P. L. All y’all need to know ‘bout retroelements in cancer. Semin. Cancer Biol. 20, 200–210 (2010).

    Article  CAS  Google Scholar 

  94. Rodic, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    Article  CAS  Google Scholar 

  95. Sciamanna, I., De Luca, C. & Spadafora, C. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression, and therapy of cancer. Front. Chem. 4, 6 (2016).

    Article  Google Scholar 

  96. Burns, K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol. 15, 51–70 (2020).

    Article  CAS  Google Scholar 

  97. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331.e8 (2017).

    Article  CAS  Google Scholar 

  98. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019). This paper demonstrates that LINE1 elements induce inflammation in senescent cells via activation of cGAS–STING.

    Article  Google Scholar 

  99. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008). This paper links LINE1 elements to activation of autoimmunity.

    Article  CAS  Google Scholar 

  100. Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885.e5 (2019). This paper demonstrates that activation of LINE1 elements in aged and SIRT6 knockout mice triggers inflammation via formation of cytoplasmic DNA and activation of cGAS–STING.

    Article  CAS  Google Scholar 

  101. Tiwari, B. et al. p53 directly represses human LINE1 transposons. Genes Dev. 34, 1439–1451 (2020).

    Article  CAS  Google Scholar 

  102. Bregnard, C. et al. Upregulated LINE-1 activity in the fanconi anemia cancer susceptibility syndrome leads to spontaneous pro-inflammatory cytokine production. EBioMedicine 8, 184–194 (2016).

    Article  Google Scholar 

  103. Tunbak, H. et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 11, 5387 (2020).

    Article  CAS  Google Scholar 

  104. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    Article  CAS  Google Scholar 

  105. Tao, S. S. et al. TREX1 as a potential therapeutic target for autoimmune and inflammatory diseases. Curr. Pharm. Des. 25, 3239–3247 (2019).

    Article  CAS  Google Scholar 

  106. Fukuda, S. et al. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. Sci. Adv. 7, eabj3658 (2021).

    Article  CAS  Google Scholar 

  107. Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3′→5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell Biol. 24, 6719–6727 (2004).

    Article  CAS  Google Scholar 

  108. Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810.e13 (2018).

    Article  CAS  Google Scholar 

  109. Fukuda, S. et al. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022751118 (2021).

    Article  Google Scholar 

  110. Miller, K. N. et al. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184, 5506–5526 (2021).

    Article  CAS  Google Scholar 

  111. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  Google Scholar 

  112. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    Article  Google Scholar 

  113. Teo, Y. V. et al. Cell-free DNA as a biomarker of aging. Aging Cell 18, e12890 (2019).

    Article  Google Scholar 

  114. Mahmood, W. et al. Aging-associated distinctive DNA methylation changes of LINE-1 retrotransposons in pure cell-free DNA from human blood. Sci. Rep. 10, 22127 (2020).

    Article  CAS  Google Scholar 

  115. Ponomaryova, A. A. et al. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells https://doi.org/10.3390/cells9092017 (2020).

    Article  Google Scholar 

  116. Schmid, C. W. Human Alu subfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res. 19, 5613–5617 (1991).

    Article  CAS  Google Scholar 

  117. Gentilini, D. et al. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age 35, 1961–1973 (2013).

    Article  CAS  Google Scholar 

  118. Jintaridth, P. & Mutirangura, A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol. Genomics 41, 194–200 (2010).

    Article  CAS  Google Scholar 

  119. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  Google Scholar 

  120. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  Google Scholar 

  121. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015). Together with reference 120, this work demonstrates the tumour-suppressive roles by inhibiting DNA methylation.

    Article  CAS  Google Scholar 

  122. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563.e19 (2018).

    Article  CAS  Google Scholar 

  123. Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    Article  CAS  Google Scholar 

  124. Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020).

    Article  CAS  Google Scholar 

  125. Gu, Z. et al. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat. Genet. 53, 672–682 (2021). This study demonstrates that LINE1 has a tumour-suppressive function in myeloid leukaemia.

    Article  CAS  Google Scholar 

  126. Zhao, Y. et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22, 1219–1230 (2021). This study reports that RTEs can naturally serve as tumour suppressors through activation of innate immune response.

    Article  CAS  Google Scholar 

  127. Gorbunova, V. et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl Acad. Sci. USA 109, 19392–19396 (2012).

    Article  CAS  Google Scholar 

  128. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  Google Scholar 

  129. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  130. Campisi, J. From cells to organisms: can we learn about aging from cells in culture? Exp. Gerontol. 36, 607–618 (2001).

    Article  CAS  Google Scholar 

  131. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  Google Scholar 

  132. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  Google Scholar 

  133. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  Google Scholar 

  134. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017). This study explains the source of SASP, linking the inflammation to cytoplasmic nucleic acid sensing in senescent cells.

    Article  CAS  Google Scholar 

  135. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  Google Scholar 

  136. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  Google Scholar 

  137. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  CAS  Google Scholar 

  138. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  Google Scholar 

  139. Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    Article  CAS  Google Scholar 

  140. Miller, K. N., Dasgupta, N., Liu, T., Adams, P. D. & Vizioli, M. G. Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential. eLife https://doi.org/10.7554/eLife.63728 (2021).

    Article  Google Scholar 

  141. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. Usa. 114, E4612–E4620 (2017). This study demonstrates the essential role of cGAS in cellular senescence.

    Article  CAS  Google Scholar 

  142. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  Google Scholar 

  143. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360 (2006).

    Article  CAS  Google Scholar 

  144. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017). This paper establishes the role of cGAS as a driver of senescence and inflammation via the detection of cytoplasmic DNA fragments.

    Article  CAS  Google Scholar 

  145. Chen, Y. et al. p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J. Exp. Med. 214, 991–1010 (2017).

    Article  CAS  Google Scholar 

  146. Aarreberg, L. D. et al. Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS–STING. Mol. Cell 74, 801–815.e6 (2019).

    Article  CAS  Google Scholar 

  147. Zhao, B. et al. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat. Commun. 11, 908 (2020).

    Article  CAS  Google Scholar 

  148. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019).

    Article  CAS  Google Scholar 

  149. Kranzusch, P. J. et al. Ancient origin of cGAS–STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    Article  CAS  Google Scholar 

  150. Evans, C. J. & Aguilera, R. J. DNase II: genes, enzymes and function. Gene 322, 1–15 (2003).

    Article  CAS  Google Scholar 

  151. Rodero, M. P. et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8, 2176 (2017).

    Article  Google Scholar 

  152. Lan, Y. Y. et al. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell 18, e12901 (2019).

    Article  Google Scholar 

  153. Jutte, B. B. et al. Intercellular cGAMP transmission induces innate immune activation and tissue inflammation in Trex1 deficiency. iScience 24, 102833 (2021).

    Article  Google Scholar 

  154. Berndt, N. et al. Photosensitivity and cGAS-dependent type I IFN activation in lupus patients with TREX1 deficiency. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2021.04.037 (2021).

    Article  Google Scholar 

  155. Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    Article  Google Scholar 

  156. Han, X. et al. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J. Biol. Chem. 295, 4451–4463 (2020).

    Article  CAS  Google Scholar 

  157. Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    Article  CAS  Google Scholar 

  158. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  159. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  Google Scholar 

  160. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    Article  CAS  Google Scholar 

  161. Cheng, L., Wang, W., Yao, Y. & Sun, Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol. 19, e3001357 (2021).

    Article  CAS  Google Scholar 

  162. Cerritelli, S. M. & Crouch, R. J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494–1505 (2009).

    Article  CAS  Google Scholar 

  163. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  Google Scholar 

  164. Chang, E. Y. et al. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J. Cell Biol. 216, 3991–4005 (2017).

    Article  CAS  Google Scholar 

  165. Marabitti, V. et al. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res. 47, 3485–3502 (2019).

    Article  CAS  Google Scholar 

  166. D’Alessandro, G. et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 9, 5376 (2018).

    Article  Google Scholar 

  167. Kennedy, R. D. & D’Andrea, A. D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).

    Article  CAS  Google Scholar 

  168. Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362–365 (2014).

    Article  CAS  Google Scholar 

  169. Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636–647 (2015).

    Article  CAS  Google Scholar 

  170. Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    Article  CAS  Google Scholar 

  171. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    Article  CAS  Google Scholar 

  172. Costantino, L. & Koshland, D. Genome-wide map of R-loop-induced damage reveals how a subset of R-loops contributes to genomic instability. Mol. Cell 71, 487–497 e483 (2018).

    Article  CAS  Google Scholar 

  173. Goulielmaki, E. et al. The splicing factor XAB2 interacts with ERCC1–XPF and XPG for R-loop processing. Nat. Commun. 12, 3153 (2021).

    Article  CAS  Google Scholar 

  174. Cristini, A. et al. Dual processing of R-loops and topoisomerase i induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181.e6 (2019).

    Article  CAS  Google Scholar 

  175. Promonet, A. et al. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat. Commun. 11, 3940 (2020).

    Article  CAS  Google Scholar 

  176. Tian, X. et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177, 622–638 e622 (2019). This paper establishes a link between more efficient DSB repair and longer lifespan via the activity of SIRT6 protein.

    Article  CAS  Google Scholar 

  177. Niedernhofer, L. J. et al. Nuclear genomic instability and aging. Annu. Rev. Biochem. 87, 295–322 (2018).

    Article  CAS  Google Scholar 

  178. Grunseich, C. et al. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol. Cell 69, 426–437.e7 (2018).

    Article  CAS  Google Scholar 

  179. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  Google Scholar 

  180. Suraweera, A. et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J. Cell Biol. 177, 969–979 (2007).

    Article  CAS  Google Scholar 

  181. Becherel, O. J. et al. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2. Hum. Mol. Genet. 24, 5759–5774 (2015).

    Article  CAS  Google Scholar 

  182. Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  Google Scholar 

  183. Barnhoorn, S. et al. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet. 10, e1004686 (2014).

    Article  Google Scholar 

  184. Trego, K. S. et al. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10, 1998–2007 (2011).

    Article  CAS  Google Scholar 

  185. Zeller, P. et al. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat. Genet. 48, 1385–1395 (2016).

    Article  CAS  Google Scholar 

  186. Padeken, J. et al. Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes Dev. 33, 436–451 (2019).

    Article  CAS  Google Scholar 

  187. Li, C. L. et al. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet. 17, e1009432 (2021).

    Article  CAS  Google Scholar 

  188. Weinreb, J. T. et al. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev. Cell 56, 627–640.e5 (2021).

    Article  CAS  Google Scholar 

  189. Chatzidoukaki, O. et al. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. Sci. Adv. 7, eabj5769 (2021).

    Article  CAS  Google Scholar 

  190. Chen, H. et al. cGAS suppresses genomic instability as a decelerator of replication forks. Sci. Adv. https://doi.org/10.1126/sciadv.abb8941 (2020).

    Article  Google Scholar 

  191. Yang, J.-H. et al. Erosion of the epigenetic landscape and loss of cellular identity as a cause of aging in mammals. Preprint at bioRxiv https://doi.org/10.1101/808642 (2019).

    Article  Google Scholar 

  192. Hayano, M. et al. DNA break-induced epigenetic drift as a cause of mammalian aging. Preprint at bioRxiv https://doi.org/10.1101/808659 (2019).

    Article  Google Scholar 

  193. Kim, J., Sturgill, D., Tran, A. D., Sinclair, D. A. & Oberdoerffer, P. Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability. Nucleic Acids Res. 44, e64 (2016).

    Article  Google Scholar 

  194. Sedivy, J. M., Banumathy, G. & Adams, P. D. Aging by epigenetics — a consequence of chromatin damage? Exp. Cell Res. 314, 1909–1917 (2008).

    Article  CAS  Google Scholar 

  195. Tsurumi, A. & Li, W. X. Global heterochromatin loss: a unifying theory of aging? Epigenetics 7, 680–688 (2012).

    Article  CAS  Google Scholar 

  196. Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93–105 (2004).

    Article  CAS  Google Scholar 

  197. Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440–444 (2007).

    Article  CAS  Google Scholar 

  198. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    Article  CAS  Google Scholar 

  199. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).

    Article  CAS  Google Scholar 

  200. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).

    Article  CAS  Google Scholar 

  201. Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).

    Article  Google Scholar 

  202. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460.e14 (2019).

    Article  CAS  Google Scholar 

  203. Piscianz, E. et al. Reappraisal of antimalarials in interferonopathies: new perspectives for old drugs. Curr. Med. Chem. 25, 2797–2810 (2018).

    Article  CAS  Google Scholar 

  204. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  Google Scholar 

  205. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  Google Scholar 

  206. Fowler, B. J. et al. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346, 1000–1003 (2014).

    Article  CAS  Google Scholar 

  207. Yuan, S., Shi, Y., Guo, K. & Tang, S. J. Nucleoside reverse transcriptase inhibitors (NRTIs) induce pathological pain through Wnt5a-mediated neuroinflammation in aging mice. J. Neuroimmune Pharmacol. 13, 230–236 (2018).

    Article  Google Scholar 

  208. Dai, L., Huang, Q. & Boeke, J. D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 12, 18 (2011).

    Article  CAS  Google Scholar 

  209. Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    Article  CAS  Google Scholar 

  210. Ott, B. et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci. Rep. 7, 11955 (2017).

    Article  Google Scholar 

  211. Meydani, S. N. et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging 8, 1416–1431 (2016).

    Article  CAS  Google Scholar 

  212. Gabande-Rodriguez, E., Gomez de Las Heras, M. M. & Mittelbrunn, M. Control of inflammation by calorie restriction mimetics: on the crossroad of autophagy and mitochondria. Cells https://doi.org/10.3390/cells9010082 (2019).

    Article  Google Scholar 

  213. Wongrakpanich, S., Wongrakpanich, A., Melhado, K. & Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 9, 143–150 (2018).

    Article  Google Scholar 

  214. Mao, Z. et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc. Natl Acad. Sci. USA 109, 11800–11805 (2012).

    Article  CAS  Google Scholar 

  215. Huang, J. et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS ONE 3, e1710 (2008).

    Article  Google Scholar 

  216. Chen, Y. et al. A PARP1–BRG1–SIRT1 axis promotes HR repair by reducing nucleosome density at DNA damage sites. Nucleic Acids Res. 47, 8563–8580 (2019).

    CAS  Google Scholar 

  217. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    Article  CAS  Google Scholar 

  218. Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article  CAS  Google Scholar 

  219. Klein, M. A. et al. Mechanism of activation for the sirtuin 6 protein deacylase. J. Biol. Chem. 295, 1385–1399 (2020).

    Article  Google Scholar 

  220. Huang, Z. et al. Identification of a cellularly active SIRT6 allosteric activator. Nat. Chem. Biol. 14, 1118–1126 (2018).

    Article  CAS  Google Scholar 

  221. Shang, J. L., Ning, S. B., Chen, Y. Y., Chen, T. X. & Zhang, J. MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Acta Pharmacol. Sin. 42, 120–131 (2021).

    Article  CAS  Google Scholar 

  222. Chen, Y. et al. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells. Aging Cell 19, e13185 (2020).

    Article  CAS  Google Scholar 

  223. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article  CAS  Google Scholar 

  224. Rahnasto-Rilla, M. K. et al. The identification of a SIRT6 activator from brown algae Fucus distichus. Mar. Drugs https://doi.org/10.3390/md15060190 (2017).

    Article  Google Scholar 

  225. Price, B. D. & D’Andrea, A. D. Chromatin remodeling at DNA double-strand breaks. Cell 152, 1344–1354 (2013).

    Article  CAS  Google Scholar 

  226. Hauer, M. H. & Gasser, S. M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 31, 2204–2221 (2017).

    Article  CAS  Google Scholar 

  227. Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).

    Article  CAS  Google Scholar 

  228. Saul, D. & Kosinsky, R. L. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22010401 (2021).

    Article  Google Scholar 

  229. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  CAS  Google Scholar 

  230. Benayoun, B. A. et al. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 29, 697–709 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrei Seluanov or Vera Gorbunova.

Ethics declarations

Competing interests

V.G. is a consultant for Elysium, Centaura, Genflow Bio and Do Not Age. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks P. McHugh, M. Ratnaweera and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nucleotide excision repair

(NER). A DNA repair pathway that recognizes and removes bulky DNA lesions such as those formed by UV light. NER involves damage recognition, nicks flanking the lesion and removal of the damaged DNA strand, filling in the gap by DNA polymerase and ligation of the nicks to restore the intact DNA molecule. Deficiency in NER is associated with cancer predisposition and premature ageing syndromes.

Senescence-associated secretory phenotype

(SASP). A phenotype associated with cellular senescence, which expresses and secretes a wide variety of inflammatory factors including cytokines, chemokines and growth factors.

DNA double-strand break (DSB) repair

A DNA repair pathway that repairs lesions where both DNA strands are broken. There are two major pathways of DSB repair; homologous recombination uses sister chromatid as a template for repair and non-homologous DNA end joining ligates the broken ends without regard for homology. Defects in DNA repair are associated with several premature ageing and cancer predisposition syndromes.

Inflammageing

Chronic, low-grade sterile inflammation frequently observed during ageing.

Retrotransposons

(RTEs). Genetic elements abundant in mammalian genomes that move throughout the genome by a copy–paste mechanism involving reverse transcription and may accumulate in the cytoplasm, triggering inflammation.

Sterile inflammation

Inflammation arising in the absence of a pathogen or external inflammatory stimuli.

Blind mole rat

A subterranean rodent of the Muroidea superfamily, characterized by long maximum lifespan (>21 years) and resistance to cancer.

HRASV12

An oncoprotein of small GTPase HRAS carrying a constitutively activated mutation on codon Val-12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Simon, M., Seluanov, A. et al. DNA damage and repair in age-related inflammation. Nat Rev Immunol 23, 75–89 (2023). https://doi.org/10.1038/s41577-022-00751-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00751-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing