Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of PI3Kγ in the immune system: new insights and translational implications

Abstract

Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Context-dependent signalling of PI3Kγ complexes.
Fig. 2: PI3Kγ complex regulation and mutations in human patients.
Fig. 3: Involvement of PI3Kγ and PI3Kβ in progression of atherosclerosis.
Fig. 4: Shared features of immunodeficiency and immunopathology from PI3Kγ deficiency in humans and mice.

Similar content being viewed by others

References

  1. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 5, 921–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 334, 353–356 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Hawkins, P. T., Jackson, T. R. & Stephens, L. R. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358, 157–159 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Haslam, R. J., Koide, H. B. & Hemmings, B. A. Pleckstrin domain homology. Nature 363, 309–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon, M. A. & Ferguson, K. M. Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem. Soc. Trans. 29, 377–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Angulo, I. et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conley, M. E. et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J. Exp. Med. 209, 463–470 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deau, M. C. et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Invest. 125, 1764–1765 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Lucas, C. L. et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J. Exp. Med. 211, 2537–2547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeda, A. J. et al. Human PI3Kgamma deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat. Commun. 10, 4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thian, M. et al. Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica https://doi.org/10.3324/haematol.2019.231399 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burke, J. E. & Williams, R. L. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 40, 88–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Wymann, M. P., Zvelebil, M. & Laffargue, M. Phosphoinositide 3-kinase signalling — which way to target? Trends Pharmacol. Sci. 24, 366–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wymann, M. PI3Ks-drug targets in inflammation and cancer. Subcell. Biochem. 58, 111–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Suire, S., Hawkins, P. & Stephens, L. Activation of phosphoinositide 3-kinase gamma by Ras. Curr. Biol. 12, 1068–1075 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Vadas, O. et al. Molecular determinants of PI3Kgamma-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc. Natl Acad. Sci. USA 110, 18862–18867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmid, M. C. et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715–727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Rubio, I. et al. Farnesylation of Ras is important for the interaction with phosphoinositide 3-kinase gamma. Eur. J. Biochem. 266, 70–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Luo, L. et al. Rab8a interacts directly with PI3Kgamma to modulate TLR4-driven PI3K and mTOR signalling. Nat. Commun. 5, 4407 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wall, A. A. et al. Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase gamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J. Biol. Chem. 292, 4411–4422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo, L. et al. TLR crosstalk activates LRP1 to recruit Rab8a and PI3Kgamma for suppression of inflammatory responses. Cell Rep. 24, 3033–3044 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Laffargue, M. et al. Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 16, 441–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Walser, R. et al. PKCbeta phosphorylates PI3Kgamma to activate it and release it from GPCR control. PLoS Biol. 11, e1001587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ivanov, S. S. & Roy, C. R. Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat. Immunol. 14, 1219–1228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. et al. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki, T. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Patrucco, E. et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Del Prete, A. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J. 23, 3505–3515 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Camps, M. et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson, G. J. et al. PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol. 9, 86–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Arcaro, A. & Wymann, M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297–301 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl Acad. Sci. USA 99, 3603–3608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Keymeulen, A. et al. To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J. Cell Biol. 174, 437–445 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Andrews, S., Stephens, L. R. & Hawkins, P. T. PI3K class IB pathway in neutrophils. Sci. STKE https://doi.org/10.1126/stke.4072007cm3 (2007).

    Article  PubMed  Google Scholar 

  44. Condliffe, A. M. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106, 1432–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Deladeriere, A. et al. The regulatory subunits of PI3Kgamma control distinct neutrophil responses. Sci. Signal. 8, ra8 (2015).

    Article  PubMed  Google Scholar 

  46. Hawkins, P. T. & Stephens, L. R. PI3Kgamma is a key regulator of inflammatory responses and cardiovascular homeostasis. Science 318, 64–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Norton, L. et al. Localizing the lipid products of PI3Kgamma in neutrophils. Adv. Biol. Regul. 60, 36–45 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bohnacker, T. et al. PI3Kgamma adaptor subunits define coupling to degranulation and cell motility by distinct PtdIns(3,4,5)P3 pools in mast cells. Sci. Signal. 2, ra27 (2009).

    Article  PubMed  Google Scholar 

  49. Nobs, S. P. et al. PI3-kinase-gamma has a distinct and essential role in lung-specific dendritic cell development. Immunity 43, 674–689 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Foukas, L. C. et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ciraolo, E. et al. Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal. 1, ra3 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Molinaro, A. et al. Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kalpha and PI3Kbeta activities and is promoted by RAS. Cell Metab. 29, 1400–1409.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Becattini, B. et al. PI3Kgamma within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance. Proc. Natl Acad. Sci. USA 108, E854–E863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobayashi, N. et al. Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance. Proc. Natl Acad. Sci. USA 108, 5753–5758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Breasson, L. et al. PI3Kgamma activity in leukocytes promotes adipose tissue inflammation and early-onset insulin resistance during obesity. Sci. Signal. https://doi.org/10.1126/scisignal.aaf2969 (2017).

    Article  PubMed  Google Scholar 

  58. Wymann, M. P. & Solinas, G. Inhibition of phosphoinositide 3-kinase gamma attenuates inflammation, obesity, and cardiovascular risk factors. Ann. N. Y. Acad. Sci. 1280, 44–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Kachele, M. et al. Variation in the phosphoinositide 3-kinase gamma gene affects plasma HDL-cholesterol without modification of metabolic or inflammatory markers. PLoS One 10, E0144494 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vinnikov, I. A. et al. Hypothalamic miR-103 protects from hyperphagic obesity in mice. J. Neurosci. 34, 10659–10674 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu. Rev. Immunol. 34, 165–197 (2009).

    Article  Google Scholar 

  62. Gistera, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  63. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang, J. D. et al. Deletion of the phosphoinositide 3-kinase p110gamma gene attenuates murine atherosclerosis. Proc. Natl Acad. Sci. USA 104, 8077–8082 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fougerat, A. et al. Genetic and pharmacological targeting of phosphoinositide 3-kinase-gamma reduces atherosclerosis and favors plaque stability by modulating inflammatory processes. Circulation 117, 1310–1317 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Zotes, T. M. et al. PI3K p110gamma deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions. PLoS One 8, e72674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viard, P. et al. Gbetagamma dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. FASEB J. 13, 685–694 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Quignard, J. F. et al. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes. J. Biol. Chem. 276, 32545–32551 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Vecchione, C. et al. Protection from angiotensin II-mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. J. Exp. Med. 201, 1217–1228 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carnevale, D. et al. PI3Kgamma inhibition reduces blood pressure by a vasorelaxant Akt/L-type calcium channel mechanism. Cardiovasc. Res. 93, 200–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Perrotta, M., Lembo, G. & Carnevale, D. The multifaceted roles of PI3Kgamma in hypertension, vascular biology, and inflammation. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17111858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Smirnova, N. F. et al. Targeting PI3Kgamma activity decreases vascular trauma-induced intimal hyperplasia through modulation of the Th1 response. J. Exp. Med. 211, 1779–1792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu, Q. et al. PI3Kgamma (phosphoinositide 3-kinase gamma) regulates vascular smooth muscle cell phenotypic modulation and neointimal formation through CREB (cyclic AMP-response element binding protein)/YAP (yes-associated protein) signaling. Arterioscler. Thromb. Vasc. Biol. 39, e91–e105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perino, A. et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol. Cell 42, 84–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ban, K. et al. Phosphatidylinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circ. Res. 103, 643–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Haubner, B. J. et al. PI3Kgamma protects from myocardial ischemia and reperfusion injury through a kinase-independent pathway. PLoS One 5, e9350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nienaber, J. J. et al. Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J. Clin. Invest. 112, 1067–1079 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Doukas, J. et al. Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury. Proc. Natl Acad. Sci. USA 103, 19866–19871 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rommel, C., Camps, M. & Ji, H. PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 7, 191–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Barber, D. F. et al. PI3Kgamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat. Med. 11, 933–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Webb, L. M., Vigorito, E., Wymann, M. P., Hirsch, E. & Turner, M. Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J. Immunol. 175, 2783–2787 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Ali, K. et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Swan, D. J. et al. Immunodeficiency, autoimmune thrombocytopenia and enterocolitis caused by autosomal recessive deficiency of PIK3CD-encoded phosphoinositide 3-kinase delta. Haematologica 104, e483–e486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reese, T. A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19, 713–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gangadhara, G. et al. A class of highly selective inhibitors bind to an active state of PI3Kgamma. Nat. Chem. Biol. 15, 348–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Bergamini, G. et al. A selective inhibitor reveals PI3Kgamma dependence of T(H)17 cell differentiation. Nat. Chem. Biol. 8, 576–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Pemberton, N. et al. Discovery of highly isoform selective orally bioavailable phosphoinositide 3-Kinase (PI3K)-gamma inhibitors. J. Med. Chem. 61, 5435–5441 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Collier, P. N. et al. Discovery of highly isoform selective thiazolopiperidine inhibitors of phosphoinositide 3-Kinase gamma. J. Med. Chem. 58, 5684–5688 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Evans, C. A. et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-gamma inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett. 7, 862–867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rathinaswamy, M. K. et al. Disease-related mutations in PI3Kgamma disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. eLife https://doi.org/10.7554/eLife.64691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Kurig, B. et al. Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110gamma. Proc. Natl Acad. Sci. USA 106, 20312–20317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sullivan, R. J. et al. Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. J. Clin. Oncol. 36, 3013–3013 (2018).

    Article  Google Scholar 

  98. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Schmid, M. C. et al. PI3-kinase gamma promotes Rap1a-mediated activation of myeloid cell integrin alpha4beta1, leading to tumor inflammation and growth. PLoS One 8, e60226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaneda, M. M. et al. Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6, 870–885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Foubert, P., Kaneda, M. M. & Varner, J. A. PI3Kgamma activates integrin alpha4 and promotes immune suppressive myeloid cell polarization during tumor progression. Cancer Immunol. Res. 5, 957–968 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03719326 (2018).

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03980041 (2019).

  104. Postow, M. et al. 434 Updated clinical data from the melanoma expansion cohort of an ongoing Ph1/1b Study of eganelisib (formerly IPI-549) in combination with nivolumab. J. Immunother. Cancer 8, A264–A265 (2020).

    Google Scholar 

  105. Tomczak, P. et al. Preliminary analysis of a phase II, multicenter, randomized, active-control study to evaluate the efficacy and safety of eganelisib (IPI 549) in combination with nivolumab compared to nivolumab monotherapy in patients with advanced urothelial carcinoma. J. Clin. Oncol. 39, 436–436 (2021).

    Article  Google Scholar 

  106. Ladygina, N. et al. PI3Kgamma kinase activity is required for optimal T-cell activation and differentiation. Eur. J. Immunol. 43, 3183–3196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirsch, E. et al. Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J. 15, 2019–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Lian, L. et al. The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood 106, 110–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moore, S. F., Smith, N. R., Blair, T. A., Durrant, T. N. & Hers, I. Critical roles for the phosphatidylinositide 3-kinase isoforms p110beta and p110gamma in thrombopoietin-mediated priming of platelet function. Sci. Rep. 9, 1468 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Siragusa, M. et al. Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice. Circ. Res. 106, 757–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seropian, I. M. et al. Pharmacologic inhibition of phosphoinositide 3-kinase gamma (PI3Kgamma) promotes infarct resorption and prevents adverse cardiac remodeling after myocardial infarction in mice. J. Cardiovasc. Pharmacol. 56, 651–658 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Lupia, E. et al. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis. Am. J. Pathol. 165, 2003–2011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Endo, D. et al. PI3Kgamma differentially regulates FcepsilonRI-mediated degranulation and migration of mast cells by and toward antigen. Int. Arch. Allergy Immunol. 149, 66–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Collmann, E. et al. Transient targeting of phosphoinositide 3-kinase acts as a roadblock in mast cells’ route to allergy. J. Allergy Clin. Immunol. 132, 959–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Takeda, M. et al. Allergic airway hyperresponsiveness, inflammation, and remodeling do not develop in phosphoinositide 3-kinase gamma-deficient mice. J. Allergy Clin. Immunol. 123, 805–812 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Doukas, J. et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J. Pharmacol. 328, 758–765 (2009).

    CAS  Google Scholar 

  118. Winkler, D. G. et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364–1374 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Sadiq, M. W. et al. Safety, tolerability and pharmacokinetics (PK) of AZD8154 (a selective PI3K?d inhibitor) after single ascending inhaled doses in healthy volunteers. Eur. Respir. J. 54, PA4220 (2019).

    Google Scholar 

  120. Perry, M. W. D. et al. Discovery of AZD8154, a dual PI3Kgammadelta inhibitor for the treatment of asthma. J. Med. Chem. 64, 8053–8075 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Harris, S. J. et al. Genetic ablation of PI3Kgamma results in defective IL-17RA signalling in T lymphocytes and increased IL-17 levels. Eur. J. Immunol. 42, 3394–3404 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Hayer, S. et al. PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis. FASEB J. 23, 4288–4298 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Li, H. et al. PI3Kgamma inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience 253, 89–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Rodrigues, D. H. et al. Absence of PI3Kgamma leads to increased leukocyte apoptosis and diminished severity of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 222, 90–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Comerford, I., Litchfield, W., Kara, E. & McColl, S. R. PI3Kgamma drives priming and survival of autoreactive CD4+ T cells during experimental autoimmune encephalomyelitis. PLoS One 7, e45095 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Collier, P. N. et al. Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase gamma. J. Med. Chem. 58, 517–521 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Come, J. H. et al. Design and synthesis of a novel series of orally bioavailable, CNS-penetrant, isoform selective phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors with potential for the treatment of multiple sclerosis (MS). J. Med. Chem. 61, 5245–5256 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Davids, M. S. et al. Efficacy and safety of duvelisib following disease progression on ofatumumab in patients with relapsed/refractory CLL or SLL in the DUO Crossover Extension Study. Clin. Cancer Res. 26, 2096–2103 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Pomel, V. et al. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J. Med. Chem. 49, 3857–3871 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Bell, K. et al. SAR studies around a series of triazolopyridines as potent and selective PI3Kgamma inhibitors. Bioorg. Med. Chem. Lett. 22, 5257–5263 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Blair, H. A. Duvelisib: first global approval. Drugs 78, 1847–1853 (2018).

    Article  PubMed  Google Scholar 

  132. Bruce, I. et al. Development of isoform selective PI3-kinase inhibitors as pharmacological tools for elucidating the PI3K pathway. Bioorg. Med. Chem. Lett. 22, 5445–5450 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Rathinaswamy, M. K. & Burke, J. E. Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease. Adv. Biol. Regul. https://doi.org/10.1016/j.jbior.2019.100657 (2019).

    Article  PubMed  Google Scholar 

  134. Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M. P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta 1784, 159–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Venable, J. D., Ameriks, M. K., Blevitt, J. M., Thurmond, R. L. & Fung-Leung, W. P. Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease. Recent Pat. Inflamm. Allergy Drug Discov. 4, 1–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Stephens, L. R. et al. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Suire, S. et al. p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr. Biol. 15, 566–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Wymann, M. P. & Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol. 17, 141–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, P. et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov. 5, 1194–1209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuan, H. X. & Guan, K. L. The SIN1-PH domain connects mTORC2 to PI3K. Cancer Discov. 5, 1127–1129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Andreotti, A. H., Joseph, R. E., Conley, J. M., Iwasa, J. & Berg, L. J. Multidomain control over TEC kinase activation state tunes the T cell response. Annu. Rev. Immunol. 36, 549–578 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Walker, E. H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Anzinger, J. J. et al. Murine bone marrow-derived macrophages differentiated with GM-CSF become foam cells by PI3Kgamma-dependent fluid-phase pinocytosis of native LDL. J. Lipid Res. 53, 34–42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lova, P. et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J. Biol. Chem. 278, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Cosemans, J. M. et al. Continuous signaling via PI3K isoforms beta and gamma is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood 108, 3045–3052 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Canobbio, I. et al. Genetic evidence for a predominant role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood 114, 2193–2196 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Suire, S. et al. Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat. Cell Biol. 8, 1303–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Tang, W. et al. A PLCbeta/PI3Kgamma-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev. Cell 21, 1038–1050 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Weiss-Haljiti, C. et al. Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J. Biol. Chem. 279, 43273–43284 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Nobs, S. P. et al. PI3Kgamma is critical for dendritic cell-mediated CD8+ T cell priming and viral clearance during influenza virus infection. PLoS Pathog. 12, e1005508 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wymann, M. P. et al. Phosphoinositide 3-kinase gamma: a key modulator in inflammation and allergy. Biochem. Soc. Trans. 31, 275–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Kurig, B. et al. Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110γ. Proc. Natl Acad. Sci. USA 106, 20312–20317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tassi, I. et al. p110gamma and p110delta phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity 27, 214–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Saudemont, A. et al. p110gamma and p110delta isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc. Natl Acad. Sci. USA 106, 5795–5800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Martin, A. L., Schwartz, M. D., Jameson, S. C. & Shimizu, Y. Selective regulation of CD8 effector T cell migration by the p110gamma isoform of phosphatidylinositol 3-kinase. J. Immunol. 180, 2081–2088 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Thomas, M. S., Mitchell, J. S., DeNucci, C. C., Martin, A. L. & Shimizu, Y. The p110gamma isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J. Leukoc. Biol. 84, 814–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Garcia, C. C. et al. Phosphatidyl Inositol 3 kinase-gamma balances antiviral and inflammatory responses during influenza A H1N1 infection: from murine model to genetic association in patients. Front. Immunol. 9, 975 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Huang, X. et al. Endothelial p110gammaPI3K mediates endothelial regeneration and vascular repair after inflammatory vascular injury. Circulation 133, 1093–1103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Beer-Hammer, S. et al. The catalytic PI3K isoforms p110gamma and p110delta contribute to B cell development and maintenance, transformation, and proliferation. J. Leukoc. Biol. 87, 1083–1095 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Silva, M. C. et al. Canonical PI3Kgamma signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat. Commun. 9, 1513 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.L.L. acknowledges funding from the National Institutes of Health (NIAID R21AI144315) and Mathers Foundation. The authors thank K. Jones for her helpful comments on their manuscript. M.P.W. was funded by the Swiss National Science Foundation (grants SNF 316030_198526 and 310030_189065), Innosuisse (grant 37213.1 IP-LS) and the Horizon 2020 project ITN 675392.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, and wrote the article.

Corresponding author

Correspondence to Carrie L. Lucas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks David Fruman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Primary immunodeficiency disorder

One of a collection of distinct rare disorders resulting from a gene defect that causes dysfunctional immune responses and recurrent infection.

Fatty streaks

Disintegrated foam cells (fat-loaded macrophages) that form a layer of fat beneath endothelial cells and disengage them from the extracellular matrix.

Thermogenesis

Production of (body) heat by short-circuiting mitochondria, for example, with uncoupling proteins.

Foam cells

Macrophages that has consumed degraded LDL particles and has a microscopic appearance of foam.

IPI-549

An oral and selective next-generation PI3Kγ inhibitor developed by Infinity Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanahan, S.M., Wymann, M.P. & Lucas, C.L. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 22, 687–700 (2022). https://doi.org/10.1038/s41577-022-00701-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00701-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing