Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis

Abstract

Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive–response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic ‘stemness’ regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic and coordinated regulation of HSC activity.
Fig. 2: Dysregulation of HSC properties during LSC emergence and leukaemia development.
Fig. 3: Mechanisms of LSC resistance.

Similar content being viewed by others

References

  1. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Uckelmann, H. J. et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khwaja, A. et al. Acute myeloid leukaemia. Nat. Rev. Dis. Prim. 2, 16010 (2016).

    Article  PubMed  Google Scholar 

  4. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coombs, C. C., Tallman, M. S. & Levine, R. L. Molecular therapy for acute myeloid leukaemia. Nat. Rev. Clin. Oncol. 13, 305–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Dohner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute myeloid leukemia. N. Engl. J. Med. 373, 1136–1152 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Watts, J. & Nimer, S. Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Res. 7, e1196 (2018).

    Article  CAS  Google Scholar 

  8. Schuurhuis, G. J. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD working party. Blood 131, 1275–1291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah, A., Andersson, T. M., Rachet, B., Bjorkholm, M. & Lambert, P. C. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br. J. Haematol. 162, 509–516 (2013).

    Article  PubMed  Google Scholar 

  10. Andersson, T. M. et al. Temporal trends in the proportion cured among adults diagnosed with acute myeloid leukaemia in Sweden 1973–2001, a population-based study. Br. J. Haematol. 148, 918–924 (2010).

    Article  PubMed  Google Scholar 

  11. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Pollyea, D. A. & Jordan, C. T. Therapeutic targeting of acute myeloid leukemia stem cells. Blood 129, 1627–1635 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl Med. 4, 149ra118 (2012). Together with Corces-Zimmerman et al. (2014) and Shlush et al. (2014), this study establishes that mutated but not transformed HSCs exist in patients with AML at diagnosis or during clinical remission. These studies also reveal that such pre-leukaemic HSCs survive after chemotherapy, acquire additional mutations and contribute to disease recurrence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pietras, E. M. et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med. 211, 245–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohli, L. & Passegue, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010). This study shows that mutation of the metabolic enzyme IDH1 or IDH2 phenocopies mutation of the epigenetic regulator TET2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Moran-Crusio, K. et al. TET2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manz, M. G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802–811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015). This study demonstrates that early lineage specification occurs at the MPP and not the HSC level, as well as highlights the dynamic regulation of HSC differentiation to each lineage-biased MPP subset during regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herault, A. et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544, 53–58 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014). Together with Jaiswal et al. (2014), this study utilizes whole-exome sequencing to identify ARCH in a large cohort of patients without haematological disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). This study demonstrates that microenvironmental dysfunction is sufficient to drive the development of haematological malignancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zambetti, N. A. et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verovskaya, E. V., Dellorusso, P. V. & Passegué, E. Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol. Med. 25, 494–515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018). Together with Abelson et al. (2018), this study analyses peripheral samples obtained from healthy individuals who eventually develop AML and demonstrates that somatic mutations of specific genes accumulate before the onset of AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, J. et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 25, 103–110 (2019). This study demonstrates nonlinear evolution in the progression of MDS to AML.

    Article  CAS  PubMed  Google Scholar 

  45. Beerman, I. & Rossi, D. J. Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16, 613–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jongen-Lavrencic, M. et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 378, 1189–1199 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Laval, B. et al. Thrombopoietin-increased DNA-PK-dependent DNA repair limits hematopoietic stem and progenitor cell mutagenesis in response to DNA damage. Cell Stem Cell 12, 37–48 (2013).

    Article  PubMed  CAS  Google Scholar 

  49. Barbieri, D. et al. Thrombopoietin protects hematopoietic stem cells from retrotransposon-mediated damage by promoting an antiviral response. J. Exp. Med. 215, 1463–1480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018). This study reveals mutagenesis in HSCs that is driven by intracellular aldehyde generated endogenously or as a result of alcohol exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guryanova, O. A. et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat. Med. 22, 1488–1495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abdel-Wahab, O. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan, F. et al. Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nat. Commun. 8, 15102 (2017). This study shows that TET2 has an anti-mutagenic function and that its loss increases mutational burden in normal HSPCs and TET2-mutated myeloid malignancy.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schepers, K., Campbell, T. B. & Passegue, E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16, 254–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanoun, M. et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Ho, Y. H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018). This study indicates that TET2 loss in haematopoietic cells disrupts barrier function in the gut and causes bacterial translocation to the blood stream and systemic inflammation, which induces a pre-leukaemic myeloproliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093 (2011). This study demonstrates that high HSC ‘stemness’ transcriptional signatures worsen the clinical prognosis in AML.

    Article  CAS  PubMed  Google Scholar 

  66. Ng, S. W. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540, 433–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. van Galen, P. et al. Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van der Wath, R. C., Wilson, A., Laurenti, E., Trumpp, A. & Lio, P. Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One 4, e6972 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iwasaki, M., Liedtke, M., Gentles, A. J. & Cleary, M. L. CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia. Cell Stem Cell 17, 412–421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Terpstra, W. et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood 88, 1944–1950 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Guzman, M. L. et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Lechman, E. R. et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29, 214–228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin, K. H. et al. Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity. Cell Metab. 29, 1217–1231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jones, C. L. et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell 34, 724–740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pollyea, D. A. et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 24, 1859–1866 (2018). This study shows that treatment of older patients with AML with a combination of the BCL-2 inhibitor venetoclax and the DNA demethylating agent 5-azacitidine efficiently kills LSCs by suppressing mitochondrial OXPHOS and results in deep and durable remissions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Hattori, A. et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 545, 500–504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gu, Z. et al. Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation. Cancer Discov. 9, 1228–1247 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ye, H. et al. Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells. Cancer Cell 34, 659–673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, C. W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Basheer, F. et al. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J. Exp. Med. 216, 966–981 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Pfister, S. X. & Ashworth, A. Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug. Discov. 16, 241–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Soteriou, D. & Fuchs, Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat. Rev. Cancer 18, 187–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013). This study demonstrates the protective role of autophagy in maintaining HSC function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Opferman, J. T. et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307, 1101–1104 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Campbell, C. J. et al. The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity. Blood 116, 1433–1442 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Yamashita, M. & Passegué, E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25, 357–372 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pei, S. et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23, 86–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Konopleva, M. & Letai, A. BCL-2 inhibition in AML: an unexpected bonus? Blood 132, 1007–1012 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yoshimoto, G. et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 114, 5034–5043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hockendorf, U. et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30, 75–91 (2016).

    Article  PubMed  CAS  Google Scholar 

  106. Wu, X. et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 172, 423–438 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Petrillo, C. et al. Cyclosporine H overcomes innate immune restrictions to improve lentiviral transduction and gene editing in human hematopoietic stem cells. Cell Stem Cell 23, 820–832 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011). This study first describes the role of T regs in creating an immune-privileged niche for HSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hirata, Y. et al. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Toffalori, C. et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 25, 603–611 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Paczulla, A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 572, 254–259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ho, T. C. et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood 128, 1671–1678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wong, T. N. et al. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood 127, 893–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Welch, J. S. et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N. Engl. J. Med. 375, 2023–2036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Perl, A. E. et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 381, 1728–1740 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Melgar, K. et al. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci. Transl Med. 11, eaaw8828 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Scheicher, R. et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 125, 90–101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Placke, T. et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 124, 13–23 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Martinez-Soria, N. et al. The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation. Cancer Cell 34, 626–642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Uras, I. Z. et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 127, 2890–2902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fujita, S. et al. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia 32, 855–864 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Baquero, P. et al. Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia 33, 981–994 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Raffel, S. et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551, 384–388 (2017). This study reveals the reliance of AML LSCs on the BCAA catabolism pathway to constrain αKG levels and TET2 function.

    Article  CAS  PubMed  Google Scholar 

  131. Skrtic, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ricciardi, M. R. et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood 126, 1925–1929 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Shafat, M. S. et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 (2016). This study screens compounds that overcome differentiation blockade in HOXA9-overexpressing leukaemic cells and reveals DHODH inhibitor as a potent inducer of differentiation in AML blasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dombret, H. et al. International phase III study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 126, 291–299 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cusan, M. et al. LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood 131, 1730–1742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vinyard, M. E. et al. CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML. Nat. Chem. Biol. 15, 529–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rau, R. E. et al. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood 128, 971–981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Czechowicz, A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10, 617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Walter, R. B., Appelbaum, F. R., Estey, E. H. & Bernstein, I. D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119, 6198–6208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Appelbaum, F. R. & Bernstein, I. D. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood 130, 2373–2376 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Feldman, E. J. et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J. Clin. Oncol. 23, 4110–4116 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jordan, C. T. et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Veillette, A. & Chen, J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Mitchell, K. et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J. Exp. Med. 215, 1709–1727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Daver, N. et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 9, 370–383 (2019).

    Article  PubMed  CAS  Google Scholar 

  151. Davids, M. S. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med. 375, 143–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rosenblatt, J. et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci. Transl Med. 8, 368ra171 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nachmani, D. et al. Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nat. Genet. 51, 1518–1529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Abdel-Wahab, O. et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210, 2641–2659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, Q. et al. Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature 504, 143–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ellisen, L. W., Carlesso, N., Cheng, T., Scadden, D. T. & Haber, D. A. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 20, 1897–1909 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rampal, R. et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 9, 1841–1855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. McMahon, K. A. et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Wolfler, A. et al. Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors. Blood 116, 4116–4125 (2010).

    Article  PubMed  CAS  Google Scholar 

  163. Wendorff, A. A. et al. Phf6 loss enhances HSC self-renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov. 9, 436–451 (2019).

    Article  PubMed  CAS  Google Scholar 

  164. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl Med. 10, eaao3003 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Thoren, L. A. et al. Kit regulates maintenance of quiescent hematopoietic stem cells. J. Immunol. 180, 2045–2053 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Sasine, J. P. et al. Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight 3, e98197 (2018).

    Article  PubMed Central  Google Scholar 

  168. Kamminga, L. M. et al. The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Goldenson, B. & Crispino, J. D. The aurora kinases in cell cycle and leukemia. Oncogene 34, 537–545 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Fathi, A. T. et al. Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica 102, 719–727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kulimova, E. et al. Growth inhibition and induction of apoptosis in acute myeloid leukemia cells by new indolinone derivatives targeting fibroblast growth factor, platelet-derived growth factor, and vascular endothelial growth factor receptors. Mol. Cancer Ther. 5, 3105–3112 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Hassan, H. T. & Zander, A. Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta Haematol. 95, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Daver, N., Schlenk, R. F., Russell, N. H. & Levis, M. J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33, 299–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Burnett, A. K. et al. Addition of the mammalian target of rapamycin inhibitor, everolimus, to consolidation therapy in acute myeloid leukemia: experience from the UK NCRI AML17 trial. Haematologica 103, 1654–1661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Green, A. S. et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci. Adv. 1, e1500221 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Matre, P. et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget 7, 79722–79735 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gardin, C. & Dombret, H. Hypomethylating agents as a therapy for AML. Curr. Hematol. Malig. Rep. 12, 1–10 (2017).

    Article  PubMed  Google Scholar 

  179. Craddock, C. F. et al. Outcome of azacitidine therapy in acute myeloid leukemia is not improved by concurrent vorinostat therapy but is predicted by a diagnostic molecular signature. Clin. Cancer Res. 23, 6430–6440 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Stein, E. M. & Tallman, M. S. Emerging therapeutic drugs for AML. Blood 127, 71–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Campbell, C. T. et al. Mechanisms of pinometostat (EPZ-5676) treatment-emergent resistance in MLL-rearranged leukemia. Mol. Cancer Ther. 16, 1669–1679 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pericole, F. V. et al. BRD4 inhibition enhances azacitidine efficacy in acute myeloid leukemia and myelodysplastic syndromes. Front. Oncol. 9, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Berthon, C. et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase I study. Lancet Haematol. 3, e186–e195 (2016).

    Article  PubMed  Google Scholar 

  185. Gerhart, S. V. et al. Activation of the p53–MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci. Rep. 8, 9711 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. van Rhenen, A. et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110, 2659–2666 (2007).

    Article  PubMed  CAS  Google Scholar 

  187. Andrechak, J. C., Dooling, L. J. & Discher, D. E. The macrophage checkpoint CD47: SIRPα for recognition of ‘self’ cells: from clinical trials of blocking antibodies to mechanobiological fundamentals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180217 (2019).

    Article  CAS  Google Scholar 

  188. Liao, D., Wang, M., Liao, Y., Li, J. & Niu, T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front. Pharmacol. 10, 609 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sykes, D. B. The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert. Opin. Ther. Targets 22, 893–898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Loberg, M. A. et al. Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia 33, 1635–1649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Adelman, E. R. et al. Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9, 1080–1101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Matatall, K. A. et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 17, 2584–2595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Hsu, J. I. et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23, 700–713 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the fellowships NIH F31HL151140 to P.V.D., and T32HL120826 to O.C.O., and by grant NIH R35HL135763 and a SWCRF award to E.P.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., P.V.D. and O.C.O. contributed equally to all aspects of the manuscript. E.P. made a substantial contribution to discussion of the content, and also wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Emmanuelle Passegué.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks B. Ebert, S. Nimer and M. Minden for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Haematopoietic stem cells

(HSCs). Blood-forming stem cells that possess self-renewal and multilineage differentiation capacity, giving rise to all types of blood cells, including granulocytes, monocytes, dendritic cells, erythrocytes, platelets and lymphocytes.

Acute myeloid leukaemia

(AML). Malignant disease with rapid onset in which haematopoietic progenitors are arrested in an early stage of myeloid differentiation.

Bone marrow

The soft, spongy tissue that fills the inner cavities of most bones; in adult mammals, it is the place where haematopoiesis occurs and where most of the blood cells are produced.

Peripheral blood

Fluid (plasma) and blood cells circulating throughout the body; it contains white blood cells (leukocytes), red blood cells (erythrocytes) and platelets.

HSC transplantation

(HSCT). Transplantation of HSCs from donors matched in human leukocyte antigen to the recipient; HSCs are usually derived from bone marrow, peripheral blood or umbilical cord blood. The therapeutic effect derives from myeloablative conditioning and the graft-versus-tumour effect of the donor immune system.

Measurable residual disease

A small number of leukaemic cells that remain in the body during or after treatment; this is a major cause of leukaemia relapse and is typically detected by PCR or flow cytometry.

Leukaemic stem cells

(LSCs). Subset of leukaemic cells that share many features with HSCs, including self-renewal capacity and resistance to anti-cancer drugs, thereby considered as a major contributor to leukaemia development and relapse.

Multipotent progenitors

(MPPs). Early haematopoietic progenitors generated by HSCs that can differentiate into all types of blood cells, but that do not have self-renewal capacity.

G0 phase

An inactive, non-proliferative state of the cell cycle from which HSCs can reversibly exit to enter the cell cycle in response to physiological stimuli (also referred to as quiescence).

Reactive oxygen species

(ROS). Oxygen-containing compounds that easily react with other molecules. They are generated by many biological processes, including mitochondrial oxidative phosphorylation, and can damage cellular components such as DNA, RNA, proteins and lipids. ROS can also act as signalling molecules.

Oxidative phosphorylation

(OXPHOS). Process by which ATP, a usable form of energy in a cell, is produced through the phosphorylation of ADP as a result of the oxygen-driven electron transfer chain in mitochondria.

Granulocyte–macrophage progenitor

(GMP). A committed myeloid progenitor, generated by HSCs, that can only differentiate to the granulocytic and monocytic lineages.

Pre-leukaemic HSCs

Subset of HSCs that are mutated but still capable of differentiating to all lineages of blood cells. They can be found in patients with leukaemia at diagnosis and in clinical remission.

Age-related clonal haematopoiesis

(ARCH). Asymptomatic, age-associated clonal expansion of blood cells derived from mutated HSCs, associated with increases in the risk of haematological malignancy, cardiovascular disease and all-cause mortality.

Myeloproliferative neoplasms

(MPNs). Clonal haematopoietic disorders characterized by the overproduction of mature cells. They include chronic myeloid leukaemia, polycythemia vera, essential thrombocythemia and primary myelofibrosis. Sometimes these disorders transform to AML.

Myelodysplastic syndromes

(MDSs). Haematological disorders characterized by cytopenia in one or more blood lineages, production of abnormal blood cells and destruction of the bone marrow niche microenvironment. Sometimes these also transform to AML.

TET2

Gene encoding the enzyme that converts 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine in an α-ketoglutarate (αKG) and Fe2+-dependent manner. Essential for DNA demethylation.

DNMT3A

Gene encoding the enzyme that promotes DNA methylation by catalysing the transfer of methyl groups from S-adenosylmethionine to specific CpG sites of DNA, resulting in the conversion of cytosine into 5-mC.

DNA double-strand breaks

(DSBs). Severe form of DNA damage in which both strands of DNA are broken, typically caused by ionizing radiation and replication fork collapse. Its misrepair results in chromosomal aberration.

Non-homologous end joining

(NHEJ). Mutation-prone repair process in which the two DSB ends are directly ligated. Does not require sister-chromatid-like homology repair and can occur throughout the cell cycle, including in G0 phase.

PI3K–AKT–mTORC1 pathway

Intracellular signalling pathway that is critical for metabolic activation and cell cycle entry. Regulates various cellular functions, including nutrient uptake, anabolic reactions, autophagy inhibition, cell growth and survival.

BCL-2

Protein that controls cell survival by blocking the mitochondrial apoptosis pathway. Also involved in non-apoptotic processes such as improving OXPHOS and inhibiting autophagy.

Venetoclax–5-azacitidine

Treatment approach combining a BCL-2 inhibitor and a DNA demethylating agent that effectively targets LSCs in AML. Such treatment might have profound implications for changing the ‘standard of care’ currently used in the clinic to treat patients with AML.

Fatty acid oxidation

(FAO). Process by which fatty acids are broken down in mitochondria by sequential oxidation in order to produce acetyl-CoA and generate ATP via electron transport chain.

Branched-chain amino acid

(BCAA). One of three essential amino acids with branched-chain structures (e.g., valine, leucine and isoleucine) that cannot be synthesized de novo in the body and therefore must be obtained from food.

FOXO transcription factors

Transcription factors involved in cellular metabolism and resistance to oxidative stress. Their activation can promote quiescence, autophagy induction and ROS detoxification. They are directly phosphorylated and inhibited by the PI3K–AKT pathway.

TNF

Inflammatory cytokine that can induce various intracellular signalling pathways upon recognition by its receptors. TNF is also known as a death ligand that causes apoptosis and necroptosis.

NF-κB–p65–cIAP2 axis

Intracellular signalling pathway that promotes cell survival by ubiquitylating RIPK1 and stabilizing pro-survival TNF receptor complex I upon TNF ligation, activation of an NF-κB subunit p65 and transactivation of cIAP2.

FLT3-ITD

A poor prognostic mutation common in AML that leads to constitutive activation of the FLT3 receptor tyrosine kinase.

Regulatory T cells

(Tregs). Subpopulation of T cells that act by suppressing the proliferation and cytokine production of other immune cells; they are essential for preventing autoimmunity.

Human leukocyte antigen

(HLA). A major histocompatibility complex in humans, expressed on the cell surface to present antigenic peptides to the T cell receptor on T cells. It is involved in acquired immunity activation and self-versus-nonself discrimination.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, M., Dellorusso, P.V., Olson, O.C. et al. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 20, 365–382 (2020). https://doi.org/10.1038/s41568-020-0260-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0260-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer