Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inborn errors of immunity: an expanding universe of disease and genetic architecture

Abstract

Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ten key historical events that advanced the study of inborn errors of immunity.
Fig. 2: The relationship between allele frequency and disease severity for causal genetic lesions of inborn errors of immunity.
Fig. 3: A hierarchy of genetic alterations influences the penetrance and expressivity of inborn errors of immunity.
Fig. 4: Epigenetic and genetic modifiers determine the penetrance and expressivity of inborn errors of immunity.
Fig. 5: Effects of mosaicism on the penetrance and expressivity of inborn errors of immunity.
Fig. 6: The promise of reverse genetics approaches for the identification of undiagnosed inborn errors of immunity.

Similar content being viewed by others

References

  1. Tangye, S. G. et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 40, 24–64 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).

    PubMed  Google Scholar 

  4. Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022). This work presents the most up-to-date report of the classification of IEIs and their associated features.

    PubMed  PubMed Central  Google Scholar 

  5. Fischer, A. Gene therapy for inborn errors of immunity: past, present and future. Nat. Rev. Immunol. 23, 397–408 (2023). This article reviews the development of gene therapies for IEIs and discusses the next steps for the field.

    CAS  PubMed  Google Scholar 

  6. von Verschuer, O. Twin research from the time of Francis Galton to the present-day. Proc. R. Soc. Lond. B 128, 62–81 (1939).

    ADS  Google Scholar 

  7. Boisson-Dupuis, S. The monogenic basis of human tuberculosis. Hum. Genet. 139, 1001–1009 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    CAS  PubMed  Google Scholar 

  9. Ochs, H. D. & Hitzig, W. H. History of primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 12, 577–587 (2012). This article presents a comprehensive history of the field of IEIs.

    CAS  PubMed  Google Scholar 

  10. Bruton, O. C., Apt, L., Gitlin, D. & Janeway, C. A. Absence of serum gamma globulins. AMA Am. J. Dis. Child. 84, 632–636 (1952).

    CAS  PubMed  Google Scholar 

  11. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    CAS  PubMed  ADS  Google Scholar 

  12. Hood, L. E., Hunkapiller, M. W. & Smith, L. M. Automated DNA sequencing and analysis of the human genome. Genomics 1, 201–212 (1987).

    CAS  PubMed  Google Scholar 

  13. Benichou, B. & Strominger, J. L. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis. Proc. Natl Acad. Sci. USA 88, 4285–4288 (1991).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Lisowska-Grospierre, B., Fondaneche, M. C., Rols, M. P., Griscelli, C. & Fischer, A. Two complementation groups account for most cases of inherited MHC class II deficiency. Hum. Mol. Genet. 3, 953–958 (1994).

    CAS  PubMed  Google Scholar 

  15. Seidl, C., Saraiya, C., Osterweil, Z., Fu, Y. P. & Lee, J. S. Genetic complexity of regulatory mutants defective for HLA class II gene expression. J. Immunol. 148, 1576–1584 (1992).

    CAS  PubMed  Google Scholar 

  16. Gong, W. et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum. Mol. Genet. 5, 789–800 (1996).

    CAS  PubMed  Google Scholar 

  17. de Saint Basile, G. et al. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc. Natl Acad. Sci. USA 84, 7576–7579 (1987).

    ADS  Google Scholar 

  18. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    CAS  PubMed  Google Scholar 

  19. Puck, J. M. et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2, 1099–1104 (1993).

    CAS  PubMed  Google Scholar 

  20. Baehner, R. L. et al. DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc. Natl Acad. Sci. USA 83, 3398–3401 (1986).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Royer-Pokora, B. et al. Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322, 32–38 (1986).

    CAS  PubMed  ADS  Google Scholar 

  22. Kwan, S. P. et al. Localization of the gene for the Wiskott–Aldrich syndrome between two flanking markers, TIMP and DXS255, on Xp11.22–Xp11.3. Genomics 10, 29–33 (1991).

    CAS  PubMed  Google Scholar 

  23. Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).

    CAS  PubMed  ADS  Google Scholar 

  24. Hsu, A. P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653–2655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Arai, T. et al. Copy number variations due to large genomic deletion in X-linked chronic granulomatous disease. PLoS ONE 7, e27782 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Yamada, M. et al. Determination of the deletion breakpoints in two patients with contiguous gene syndrome encompassing CYBB gene. Eur. J. Med. Genet. 53, 383–388 (2010).

    PubMed  Google Scholar 

  28. Lander, E. S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    CAS  PubMed  ADS  Google Scholar 

  29. Mueller, R. F. & Bishop, D. T. Autozygosity mapping, complex consanguinity, and autosomal recessive disorders. J. Med. Genet. 30, 798–799 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Byun, M. et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207, 2307–2312 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    CAS  PubMed  ADS  Google Scholar 

  33. Ombrello, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Morup, S. B. et al. Added value of reanalysis of whole exome- and whole genome sequencing data from patients suspected of primary immune deficiency using an extended gene panel and structural variation calling. Front. Immunol. 13, 906328 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Similuk, M. N. et al. Clinical exome sequencing of 1000 families with complex immune phenotypes: toward comprehensive genomic evaluations. J. Allergy Clin. Immunol. 150, 947–954 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boisson-Dupuis, S. et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 3, eaau8714 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Constantinescu, A. E. et al. A framework for research into continental ancestry groups of the UK Biobank. Hum. Genomics 16, 3 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    CAS  PubMed  Google Scholar 

  42. Manolio, T. A. Using the data we have: improving diversity in genomic research. Am. J. Hum. Genet. 105, 233–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyts, I. et al. Exome and genome sequencing for inborn errors of immunity. J. Allergy Clin. Immunol. 138, 957–969 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Austin-Tse, C. A. et al. Best practices for the interpretation and reporting of clinical whole genome sequencing. npj Genom. Med. 7, 27 (2022).

    PubMed  PubMed Central  Google Scholar 

  45. Bucciol, G., Van Nieuwenhove, E., Moens, L., Itan, Y. & Meyts, I. Whole exome sequencing in inborn errors of immunity: use the power but mind the limits. Curr. Opin. Allergy Clin. Immunol. 17, 421–430 (2017).

    PubMed  Google Scholar 

  46. Gruber, C. & Bogunovic, D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum. Genet. 139, 745–757 (2020). This article reviews decades of reports to present four principles of incomplete penetrance in primary immunodeficiencies to help categorize and explain these occurrences.

    PubMed  PubMed Central  Google Scholar 

  47. Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Felgentreff, K. et al. Ligase-4 deficiency causes distinctive immune abnormalities in asymptomatic individuals. J. Clin. Immunol. 36, 341–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Riballo, E. et al. Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J. Biol. Chem. 276, 31124–31132 (2001).

    CAS  PubMed  Google Scholar 

  50. Mizoguchi, Y. & Okada, S. Inborn errors of STAT1 immunity. Curr. Opin. Immunol. 72, 59–64 (2021).

    CAS  PubMed  Google Scholar 

  51. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    CAS  PubMed  Google Scholar 

  52. Sakata, S. et al. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int. Immunol. 32, 663–671 (2020).

    CAS  PubMed  Google Scholar 

  53. Vairo, D. et al. Severe impairment of IFN-γ and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood 118, 1806–1817 (2011).

    CAS  PubMed  Google Scholar 

  54. Chapgier, A. et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest. 119, 1502–1514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kong, X. F. et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood 116, 5895–5906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kristensen, I. A., Veirum, J. E., Moller, B. K. & Christiansen, M. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J. Clin. Immunol. 31, 265–271 (2011).

    PubMed  Google Scholar 

  57. Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).

    CAS  PubMed  Google Scholar 

  58. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    CAS  PubMed  Google Scholar 

  59. Sampaio, E. P. et al. A novel STAT1 mutation associated with disseminated mycobacterial disease. J. Clin. Immunol. 32, 681–689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsumura, M. et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum. Mutat. 33, 1377–1387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dorman, S. E. et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364, 2113–2121 (2004).

    CAS  PubMed  Google Scholar 

  62. Rosain, J. et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol. Cell Biol. 97, 360–367 (2019).

    PubMed  Google Scholar 

  63. Fuchs, S. et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur. J. Immunol. 46, 2639–2649 (2016).

    CAS  PubMed  Google Scholar 

  64. Kreins, A. Y. et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212, 1641–1662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    CAS  PubMed  Google Scholar 

  66. Sarrafzadeh, S. A. et al. A new patient with inherited TYK2 deficiency. J. Clin. Immunol. 40, 232–235 (2020).

    PubMed  Google Scholar 

  67. Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Martin-Fernandez, M. et al. Systemic type I IFN inflammation in human ISG15 deficiency leads to necrotizing skin lesions. Cell Rep. 31, 107633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021). This work presents a historical account of the genetic theory of infectious disease, highlighting how the study of rare IEIs has shaped our current understanding.

    CAS  PubMed  Google Scholar 

  70. Bolze, A. et al. Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc. Natl Acad. Sci. USA 115, E8007–E8016 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuehn, H. S. et al. FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J. Immunol. 186, 6035–6043 (2011).

    CAS  PubMed  Google Scholar 

  72. Rodriguez-Cortez, V. C. et al. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nat. Commun. 6, 7335 (2015).

    CAS  PubMed  ADS  Google Scholar 

  73. Del Pino-Molina, L. et al. Impaired CpG demethylation in common variable immunodeficiency associates with B cell phenotype and proliferation rate. Front. Immunol. 10, 878 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Salzer, U. & Grimbacher, B. TACI deficiency — a complex system out of balance. Curr. Opin. Immunol. 71, 81–88 (2021).

    CAS  PubMed  Google Scholar 

  75. Ameratunga, R. et al. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clin. Transl. Immunol. 6, e159 (2017).

    Google Scholar 

  76. O’Marcaigh, A. S., Puck, J. M., Pepper, A. E., De Santes, K. & Cowan, M. J. Maternal mosaicism for a novel interleukin-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency in a Navajo kindred. J. Clin. Immunol. 17, 29–33 (1997).

    PubMed  Google Scholar 

  77. Puck, J. M., Pepper, A. E., Bedard, P. M. & Laframboise, R. Female germ line mosaicism as the origin of a unique IL-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency. J. Clin. Invest. 95, 895–899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).

    CAS  PubMed  Google Scholar 

  79. Aluri, J. & Cooper, M. A. Genetic mosaicism as a cause of inborn errors of immunity. J. Clin. Immunol. 41, 718–728 (2021). This paper highlights the role of genetic mosaicism in IEI disease pathogenesis.

    PubMed  PubMed Central  Google Scholar 

  80. Davis, B. R. et al. Somatic mosaicism in the Wiskott–Aldrich syndrome: molecular and functional characterization of genotypic revertants. Clin. Immunol. 135, 72–83 (2010).

    CAS  PubMed  Google Scholar 

  81. Stewart, D. M., Candotti, F. & Nelson, D. L. The phenomenon of spontaneous genetic reversions in the Wiskott–Aldrich syndrome: a report of the workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006. J. Clin. Immunol. 27, 634–639 (2007).

    PubMed  Google Scholar 

  82. Arredondo-Vega, F. X. et al. Adenosine deaminase deficiency with mosaicism for a “second-site suppressor” of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99, 1005–1013 (2002).

    CAS  PubMed  Google Scholar 

  83. Okuno, Y. et al. Late-onset combined immunodeficiency with a novel IL2RG mutation and probable revertant somatic mosaicism. J. Clin. Immunol. 35, 610–614 (2015).

    CAS  PubMed  Google Scholar 

  84. Uzel, G. et al. Reversion mutations in patients with leukocyte adhesion deficiency type-1 (LAD-1). Blood 111, 209–218 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Arostegui, J. I. et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum. 62, 1158–1166 (2010).

    CAS  PubMed  Google Scholar 

  86. Lasiglie, D. et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J. Rheumatol. 44, 1667–1673 (2017).

    CAS  PubMed  Google Scholar 

  87. Mensa-Vilaro, A. et al. Late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 68, 3035–3041 (2016).

    CAS  PubMed  Google Scholar 

  88. Omoyinmi, E. et al. Whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 66, 197–202 (2014).

    CAS  PubMed  Google Scholar 

  89. Rowczenio, D. M. et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front. Immunol. 8, 1410 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Aluri, J. et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl Med. 10, eaan1217 (2018).

    PubMed  Google Scholar 

  95. Fiedorova, K. et al. Bacterial but not fungal gut microbiota alterations are associated with common variable immunodeficiency (CVID) phenotype. Front. Immunol. 10, 1914 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jorgensen, S. F. et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 9, 1455–1465 (2016).

    CAS  PubMed  Google Scholar 

  97. Berbers, R. M. et al. Low IgA associated with oropharyngeal microbiota changes and lung disease in primary antibody deficiency. Front. Immunol. 11, 1245 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Roser, M., Ritchie, H. & Dadonaite, B. Child and infant mortality. Our World In Data https://ourworldindata.org/child-mortality (2019).

  99. El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Ma, Z. et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259–263 (2019).

    CAS  PubMed  ADS  Google Scholar 

  101. Telenti, A. & di Iulio, J. Regulatory genome variants in human susceptibility to infection. Hum. Genet. 139, 759–768 (2020).

    CAS  PubMed  Google Scholar 

  102. Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Borel, C. et al. Biased allelic expression in human primary fibroblast single cells. Am. J. Hum. Genet. 96, 70–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).

    CAS  PubMed  ADS  Google Scholar 

  105. Jeffries, A. R. et al. Stochastic choice of allelic expression in human neural stem cells. Stem Cell 30, 1938–1947 (2012).

    Google Scholar 

  106. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020). This study provides the first demonstration of allelic bias in gene expression, resulting in a discrepancy between genotype and ‘transcriptotype’, in a patient with an IEI.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Reinius, B. & Sandberg, R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat. Rev. Genet. 16, 653–664 (2015).

    CAS  PubMed  Google Scholar 

  108. Jeffries, A. R. et al. Random or stochastic monoallelic expressed genes are enriched for neurodevelopmental disorder candidate genes. PLoS ONE 8, e85093 (2013).

    PubMed  PubMed Central  ADS  Google Scholar 

  109. Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    PubMed  Google Scholar 

  110. Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi–Goutières syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Buckley, R. H. Conversations with founders of the field of human inborn errors of immunity. J. Clin. Immunol. 40, 1–8 (2020).

    PubMed  Google Scholar 

  112. Lutz, W. [About verruciform epidermodysplasia] [French]. Dermatologica 92, 30–43 (1946).

    CAS  PubMed  Google Scholar 

  113. Ramoz, N. et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32, 579–581 (2002).

    CAS  PubMed  Google Scholar 

  114. de Jong, S. J. et al. The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J. Exp. Med. 215, 2289–2310 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Kambhampati, A., Payne, D. C., Costantini, V. & Lopman, B. A. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. Clin. Infect. Dis. 62, 11–18 (2016).

    CAS  PubMed  Google Scholar 

  116. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    CAS  PubMed  Google Scholar 

  117. Nordgren, J. et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin. Infect. Dis. 59, 1567–1573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Payne, D. C. et al. Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr. 169, 1040–1045 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Thorven, M. et al. A homozygous nonsense mutation (428G– > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ciancanelli, M. J. et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. d’Angelo, D. M., Di Filippo, P., Breda, L. & Chiarelli, F. Type I interferonopathies in children: an overview. Front. Pediatr. 9, 631329 (2021).

    PubMed  PubMed Central  Google Scholar 

  123. Wu, D., Shen, M. & Yao, Q. Cutaneous manifestations of autoinflammatory diseases. Rheumatol. Immunol. Res. 2, 217–225 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. David, C. & Fremond, M. L. Lung inflammation in STING-associated vasculopathy with onset n infancy (SAVI). Cells 11, 318 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).

    PubMed  Google Scholar 

  127. Staels, F. et al. Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front. Immunol. 11, 575219 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014).

    CAS  PubMed  Google Scholar 

  130. Salzer, E. et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J. Allergy Clin. Immunol. 133, 1651–1659.e12 (2014).

    CAS  PubMed  Google Scholar 

  131. Li, Q. et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology 150, 1196–1207 (2016).

    CAS  PubMed  Google Scholar 

  132. Parlato, M. et al. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol. Med. 10, e8483 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA 329, 318–324 (2023). This study uses a reverse genetics approach to define the general population prevalence and phenotypic spectrum of an IEI.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dowdell, K. C. et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115, 5164–5169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Walker, S. et al. Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood 127, 948–951 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Campbell, T. M. et al. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J. Exp. Med. 219, e20220202 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Martin-Fernandez, M. et al. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J. Exp. Med. 219, e20211273 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Allergy and Infectious Disease grants R01 AI148963, R01 AI127372, R01 AI150300, R01 HD108467 and R01 AI151029 awarded to D.B. Y.T.A. was supported by T32 training grant T32 AI078892. The authors apologize to colleagues whose work they could not cite or could only superficially discuss owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dusan Bogunovic.

Ethics declarations

Competing interests

D.B. is a founder and part owner of Lab11 Therapeutics. Y.T.A. declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Esteban Ballestar, David Beck and Cecilia Poli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

African Genome Variation Project: https://www.sanger.ac.uk/collaboration/african-genome-variation-project

All of Us Research Program: https://allofus.nih.gov

International Union of Immunological Societies (IUIS) Inborn Errors of Immunity Committee: https://iuis.org/committees/iei

Mount Sinai Million Health Discoveries Program: https://icahn.mssm.edu/research/ipm/programs/mount-sinai-million

UK Biobank: https://www.ukbiobank.ac.uk

Glossary

Agammaglobulinemia

A rare disorder characterized by complete or near-complete lack of serum antibodies and circulating B cells owing to early termination of B cell development.

Aicardi–Goutières syndrome

(AGS). A rare type I interferonopathy that affects the brain, immune system and skin.

Common variable immunodeficiency

(CVID). The most common form of primary immunodeficiency characterized by antibody deficiency, increased susceptibility to infection, autoimmune manifestations and impaired vaccine responses.

Chronic granulomatous disease

A rare condition, mainly affecting phagocytic cells of the immune system, that is characterized by an increased susceptibility to bacterial and fungal infections, as well as the development of granulomas.

Di George syndrome

A primary immune deficiency associated with susceptibility to infections, owing to an absent or poorly developed thymus.

Genetic theory of infectious disease

A theory proposing that the genetic background of the host is a determinant of resistance or susceptibility to a given microorganism.

Incomplete penetrance

The occurrence of individuals having a disease-causing mutation who develop partial or no disease.

Monoallelic expression

The maintenance of expression of an autosomal gene from a single allele in a somatic cell over time.

Nonsense-mediated decay

A mechanism to reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons.

Primary immune deficiencies

A varied group of disorders that result from genetic defects that impair the development and/or function of the immune system, mostly presenting as severe recurrent infections and occasionally with an increased incidence of autoimmunity and malignancies.

Type I interferonopathy

An inherited disorder involving a central role for dysregulation of the type I interferon pathway in disease pathogenesis.

Severe combined immunodeficiency

(SCID). A very rare life-threatening genetic disorder in which there is combined absence of T cell and B cell function.

Wiskott–Aldrich syndrome

A rare X-linked recessive immunodeficiency that is characterized by abnormal bleeding resulting from a reduced number of platelets in the blood.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akalu, Y.T., Bogunovic, D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 25, 184–195 (2024). https://doi.org/10.1038/s41576-023-00656-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00656-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing