Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of human brain development

Abstract

Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key processes of human brain development.
Fig. 2: Applications of human pluripotent stem cell-based systems for studying human brain development.
Fig. 3: Human-specific genetic modulation of brain development.
Fig. 4: Genetic basis of human brain development uncovered using hPS cell models by studying traits led by evolution, diseases and environmental exposure.
Fig. 5: Genetic basis of human brain development revealed by brain disorders.
Fig. 6: Current and future approaches for studying the genetics of human brain development.

Similar content being viewed by others

References

  1. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayaraman, D., Bae, B. I. & Walsh, C. A. The genetics of primary microcephaly. Annu. Rev. Genom. Hum. Genet. 19, 177–200 (2018).

    Article  CAS  Google Scholar 

  3. Lizarraga, S. B. et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137, 1907–1917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pulvers, J. N. et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl Acad. Sci. USA 107, 16595–16600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 13, 1325–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). This study pioneers a 3D cerebral organoid model derived from hPS cells to recapitulate human-specific features of brain development and model human brain disorders (microcephaly).

    Article  CAS  PubMed  Google Scholar 

  10. Pollen, A. A., Kilik, U., Lowe, C. B. & Camp, J. G. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00568-4 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klingler, E., Francis, F., Jabaudon, D. & Cappello, S. Mapping the molecular and cellular complexity of cortical malformations. Science 371, eaba4517 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Kelley, K. W. & Pasca, S. P. Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185, 42–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Eichmuller, O. L. & Knoblich, J. A. Human cerebral organoids — a new tool for clinical neurology research. Nat. Rev. Neurol. 18, 661–680 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andrews, M. G., Subramanian, L., Salma, J. & Kriegstein, A. R. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat. Rev. Neurosci. 23, 711–724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardenas, A. et al. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174, 590–606.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corbin, J. G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4 (Suppl), 1177–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shi, Y. et al. Mouse and human share conserved transcriptional programs for interneuron development. Science 374, eabj6641 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Song, H. & Poo, M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat. Rev. Neurosci. 24, 213–232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102.e19 (2021). This study compares forebrain organoids of great apes and humans and reveals mechanisms of prolonged expansion of neuroepithelial cells in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Iwata, R., Casimir, P. & Vanderhaeghen, P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369, 858–862 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Marchetto, M. C. et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8, e37527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat. Commun. 10, 2748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y. et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature 607, 527–533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhong, S. et al. Decoding the development of the human hippocampus. Nature 577, 531–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L. et al. A cross-species proteomic map of synapse development reveals neoteny during human postsynaptic density maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.10.24.513541 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iwata, R. et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 379, eabn4705 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bilgic, M. et al. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490846 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang, W. et al. Origins and proliferative states of human oligodendrocyte precursor cells. Cell 182, 594–608.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, D. E. et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 376, 1441–1446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delgado, R. N. et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature 601, 397–403 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, S. et al. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377, eabo7257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molnar, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Poo, M. M. Transcriptome, connectome and neuromodulation of the primate brain. Cell 185, 2636–2639 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, Y. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326–331 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Z. et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Romero, I. G. Seeing humans through an evolutionary lens. Science 380, 360–361 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Whalen, S. et al. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron 111, 857–873.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Keough, K. C. et al. Three-dimensional genome rewiring in loci with human accelerated regions. Science 380, eabm1696 (2023). This study reveals that HARs interact with brain developmental genes through structural variants that alter 3D genome folding and cause enhancer adaptations, a mechanism underlying the rapid evolution of HARs.

    Article  CAS  PubMed  Google Scholar 

  58. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Espinos, A., Fernandez-Ortuno, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev. Neurobiol. 82, 428–453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Girskis, K. M. et al. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron 109, 3239–3251.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyd, J. L. et al. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25, 772–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lui, J. H. et al. Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex. Nature 515, 264–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Heurck, R. et al. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors. Neuron 111, 65–80.e6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keeney, J. G. et al. DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct. Funct. 220, 3053–3060 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Johansson, P. A. et al. A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell 29, 52–69.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Namba, T. et al. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105, 867–881.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Kalebic, N. et al. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 7, e41241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Heide, M. et al. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 369, 546–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Fischer, J. et al. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep. 23, e54728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ju, X. C. et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife 5, e18197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hou, Q. Q., Xiao, Q., Sun, X. Y., Ju, X. C. & Luo, Z. G. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. Sci. Adv. 7, eaba8053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J. et al. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21, 635–649.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Pinson, A. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 377, eabl6422 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Luria, V., Ma, S., Shibata, M., Pattabiraman, K. & Sestan, N. Molecular and cellular mechanisms of human cortical connectivity. Curr. Opin. Neurobiol. 80, 102699 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Enard, W. et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature 599, 640–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ataman, B. et al. Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539, 242–247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shibata, M. et al. Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis. Nature 598, 489–494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gu, Z. et al. Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science 357, 400–404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luo, X. et al. 3D genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 184, 723–740.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Xue, J. R. et al. The functional and evolutionary impacts of human-specific deletions in conserved elements. Science 380, eabn2253 (2023). This study identifies over 10,000 human-specific deletions in genomic regions highly conserved in other vertebrates, suggesting evolutionary mechanisms driving traits unique to humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McLean, C. Y. et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Linker, S. B. et al. Human-specific regulation of neural maturation identified by cross-primate transcriptomics. Curr. Biol. 32, 4797–4807 e4795 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Pinson, A., Maricic, T., Zeberg, H., Paabo, S. & Huttner, W. B. Response to comment on “Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals”. Science 379, eadf2212 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Herai, R. H., Semendeferi, K. & Muotri, A. R. Comment on “Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals”. Science 379, eadf0602 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Atkinson, E. G. et al. No evidence for recent selection at FOXP2 among diverse human populations. Cell 174, 1424–1435.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fisher, S. E. Human genetics: the evolving story of FOXP2. Curr. Biol. 29, R65–R67 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Benjamin, K. J. M. et al. Genetic and environmental contributions to ancestry differences in gene expression in the human brain. Preprint at bioRxiv https://doi.org/10.1101/2023.03.28.534458 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01579-9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao, W. W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bolognesi, B. & Lehner, B. Protein overexpression: reaching the limit. eLife 7, e39804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fair, T. & Pollen, A. A. Genetic architecture of human brain evolution. Curr. Opin. Neurobiol. 80, 102710 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Juriloff, D. M. & Harris, M. J. Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies. J. Dev. Biol. 6, 22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Greene, N. D. & Copp, A. J. Neural tube defects. Annu. Rev. Neurosci. 37, 221–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021). This study develops a chip-based system that enables self-organization of 3D hPS cell culture into specific spatial structure and cell fate patterns to model neural tube morphogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abdel Fattah, A. R. et al. Actuation enhances patterning in human neural tube organoids. Nat. Commun. 12, 3192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, R. et al. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 8, 823–833 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gabriel, E. et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35, 803–819 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, W. et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 10, 2612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xu, D., Zhang, F., Wang, Y., Sun, Y. & Xu, Z. Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep. 6, 104–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, Z. W. et al. DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair. 12, 645–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941 (2020). This study combines CRISPR–Cas9-based loss-of-function screening with barcoded cell lineage tracing technologies to simultaneously evaluate 172 microcephaly risk genes in human cerebral brain organoids. It reveals that endoplasmic reticulum secretion affects tissue integrity and brain size and that its dysregulation leads to microcephaly phenotypes.

    Article  CAS  PubMed  Google Scholar 

  112. Montgomery, S. H. & Mundy, N. I. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evol. Biol. 14, 120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396.e3 (2017).

    Article  PubMed  Google Scholar 

  114. Eichmuller, O. L. et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science 375, eabf5546 (2022). This study utilizes a tuberous sclerosis complex patient-derived brain organoid model and gene editing technology to identify mTOR-driven overproliferation of a specific interneuron progenitor subpopulation in the caudal ganglionic eminence as the cellular and molecular mechanisms underlying the disease pathology.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Anastasaki, C. et al. Human iPSC-derived neurons and cerebral organoids establish differential effects of germline NF1 gene mutations. Stem Cell Rep. 14, 541–550 (2020).

    Article  CAS  Google Scholar 

  116. Wegscheid, M. L. et al. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep. 36, 109315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Papes, F. et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 13, 2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Jong, J. O. et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat. Commun. 12, 4087 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baala, L. et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 39, 454–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Bizzotto, S. & Walsh, C. A. Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat. Rev. Neurosci. 23, 275–286 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Fry, A. E., Cushion, T. D. & Pilz, D. T. The genetics of lissencephaly. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 198–210 (2014).

    Article  PubMed  Google Scholar 

  124. Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep. 19, 50–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bamba, Y., Kanemura, Y., Okano, H. & Yamasaki, M. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells. J. Neurosci. Methods 289, 57–63 (2017).

    Article  PubMed  Google Scholar 

  127. Gleeson, J. G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Des Portes, V. et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Niehaus, I. et al. Cerebral organoids expressing mutant actin genes reveal cellular mechanism underlying microcephalic cortical malformation. Preprint at bioRxiv https://doi.org/10.1101/2022.12.07.519435 (2022).

    Article  Google Scholar 

  130. Klaus, J. et al. Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nat. Med. 25, 561–568 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017). This study pioneers an assembloid approach fusing spheroids to model different brain regions and perturbations in human interneuron migration patterns in Timothy syndrome patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Birey, F. et al. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 29, 248–264.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e9 (2020). This study develops a slicing method for large organoids to prevent interior cell death for long-term maintenance to recapitulate late-stage neurodevelopmental features, such as distinct cortical layer segregation and emergence of human-specific astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Avansini, S. H. et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 145, 1962–1977 (2022).

    Article  PubMed  Google Scholar 

  135. Xu, R. et al. OLIG2 Drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell 24, 908–926.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morelli, K. H. et al. MECP2-related pathways are dysregulated in a cortical organoid model of myotonic dystrophy. Sci. Transl Med. 14, eabn2375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022). This study generates cortical organoid models with different ASD-associated mutations to reveal their convergent mechanisms in changing the timing of human neuronal development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Van Battum, E. Y., Brignani, S. & Pasterkamp, R. J. Axon guidance proteins in neurological disorders. Lancet Neurol. 14, 532–546 (2015).

    Article  PubMed  Google Scholar 

  139. Paul, L. K. et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci. 8, 287–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Martins-Costa, C. et al. ARID1B controls transcriptional programs of axon projection in the human corpus callosum. Preprint at bioRxiv https://doi.org/10.1101/2023.05.04.539362 (2023).

    Article  Google Scholar 

  141. Willsey, H. R., Willsey, A. J., Wang, B. & State, M. W. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat. Rev. Neurosci. 23, 323–341 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, Z., Wang, X., Park, S., Song, H. & Ming, G. L. Development and application of brain region-specific organoids for investigating psychiatric disorders. Biol. Psychiatry 93, 594–605 (2023).

    Article  PubMed  Google Scholar 

  143. Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat. Med. 26, 1888–1898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, Z. et al. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Sci. Transl Med. 10, eaar4338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kang, Y. et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yildirim, M. et al. Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome. eLife 10, eaar4338 (2022).

    Google Scholar 

  147. Gomes, A. R. et al. Modeling Rett syndrome with human patient-specific forebrain organoids. Front. Cell Dev. Biol. 8, 610427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Samarasinghe, R. A. et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat. Neurosci. 24, 1488–1500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miura, Y. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38, 1421–1430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, A. X. et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 366, 1486–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ye, F. et al. DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96, 1041–1054.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Srikanth, P. et al. Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl. Psychiatry 8, 77 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Stachowiak, E. K. et al. Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl. Psychiatry 7, 6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Steinberg, D. J. et al. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol. Med. 13, e13610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Luhmann, H. J., Kanold, P. O., Molnar, Z. & Vanhatalo, S. Early brain activity: translations between bedside and laboratory. Prog. Neurobiol. 213, 102268 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fan, W., Christian, K. M., Song, H. & Ming, G. L. Applications of brain organoids for infectious diseases. J. Mol. Biol. 434, 167243 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Hwang, H. M., Ku, R. Y. & Hashimoto-Torii, K. Prenatal environment that affects neuronal migration. Front. Cell Dev. Biol. 7, 138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhang, D. Y., Song, H. & Ming, G. L. Modeling neurological disorders using brain organoids. Semin. Cell Dev. Biol. 111, 4–14 (2021).

    Article  PubMed  Google Scholar 

  161. Ming, G. L., Tang, H. & Song, H. Advances in Zika virus research: stem cell models, challenges, and opportunities. Cell Stem Cell 19, 690–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016). This study reports generation of different region-specific organoids from human iPS cells and modelling of Zika virus infection using forebrain organoids, showing that Zika virus specifically targets RGCs to cause microcephaly phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, C. et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19, 120–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Xu, D., Li, C., Qin, C. F. & Xu, Z. Update on the animal models and underlying mechanisms for ZIKV-induced microcephaly. Annu. Rev. Virol. 6, 459–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Link, N. et al. Mutations in ANKLE2, a ZIKA virus target, disrupt an asymmetric cell division pathway in Drosophila neuroblasts to cause microcephaly. Dev. Cell 51, 713–729.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thomas, A. X. et al. ANKLE2-related microcephaly: a variable microcephaly syndrome resembling Zika infection. Ann. Clin. Transl. Neurol. 9, 1276–1288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yoon, K. J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading Adherens junction proteins. Cell Stem Cell 21, 349–358.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gabriel, E. et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397–406.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Onorati, M. et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16, 2576–2592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Smeland, O. B., Frei, O., Dale, A. M. & Andreassen, O. A. The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology. Nat. Rev. Neurol. 16, 366–379 (2020).

    Article  PubMed  Google Scholar 

  173. Shibata, M. et al. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 598, 483–488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Barbeito-Andres, J., Schuler-Faccini, L. & Garcez, P. P. Why is congenital Zika syndrome asymmetrically distributed among human populations? PLoS Biol. 16, e2006592 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Esposito, G., Azhari, A. & Borelli, J. L. Gene x environment interaction in developmental disorders: where do we stand and what’s next? Front. Psychol. 9, 2036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Seah, C., Huckins, L. M. & Brennand, K. J. Stem cell models for context-specific modeling in psychiatric disorders. Biol. Psychiatry 93, 642–650 (2022).

    Article  PubMed  Google Scholar 

  177. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 51, 1475–1485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. O’Neill, A. C. et al. Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science 376, eabf9088 (2022).

    Article  PubMed  Google Scholar 

  180. Panagiotakos, G. & Pasca, S. P. A matter of space and time: emerging roles of disease-associated proteins in neural development. Neuron 110, 195–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Wang, Y. et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat. Commun. 13, 5688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mirzaa, G. M. & Paciorkowski, A. R. Introduction: brain malformations. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 117–123 (2014).

    Article  PubMed  Google Scholar 

  184. Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Duy, P. Q. et al. Brain ventricles as windows into brain development and disease. Neuron 110, 12–15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vinsland, E. & Linnarsson, S. Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development 149, dev200180 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  190. Rao, A., Barkley, D., Franca, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. Sachs, N. A. et al. A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol. Psychiatry 10, 758–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Duan, X. et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Faulkner, R. L. et al. Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc. Natl Acad. Sci. USA 105, 14157–14162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lee, H. et al. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats. Front. Syst. Neurosci. 9, 93 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhou, M. et al. mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron 77, 647–654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chiang, C. H. et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol. Psychiatry 16, 358–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014). This study pioneers the application of genome editing to establish the causality between genotype (a DISC1 mutation from patients) and phenotype (dysregulated synapse formation and gene expression) in patient-derived iPS cell modelling of psychiatric disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kang, E. et al. Interplay between a mental disorder risk gene and developmental polarity switch of GABA action leads to excitation-inhibition imbalance. Cell Rep. 28, 1419–1428 e1413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, X. et al. Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Mol. Psychiatry 26, 1346–1360 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Murai, K. et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat. Commun. 7, 10965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kang, E. et al. Rheb1 mediates DISC1-dependent regulation of new neuron development in the adult hippocampus. Neurogenesis 2, e1081715 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kim, J. Y. et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kang, E. et al. Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron 72, 559–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kim, J. Y. et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63, 761–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Callicott, J. H. et al. DISC1 and SLC12A2 interaction affects human hippocampal function and connectivity. J. Clin. Investig. 123, 2961–2964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kim, N. S. et al. Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat. Commun. 12, 1398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hong, Y., Yang, Q., Song, H. & Ming, G. L. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol. Psychiatry 28, 1430–1439 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Bennett, M. L., Song, H. & Ming, G. L. Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell 28, 2035–2036 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

  216. Ye, B. Approaches to vascularizing human brain organoids. PLoS Biol. 21, e3002141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Jgamadze, D. et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell 30, 137–152.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  219. Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020). This study develops a microfluidic-based system for morphogen patterning of human iPS cells, generating neural tissue that exhibits progressive caudalization from the forebrain to the midbrain and hindbrain.

    Article  CAS  PubMed  Google Scholar 

  220. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

    Article  Google Scholar 

  221. The PsychEncode Consortium. Revealing the brain’s molecular architecture. Science 362, 1262–1263 (2018).

    Article  Google Scholar 

  222. Rajewsky, N. et al. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature 587, 377–386 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ngai, J. BRAIN 2.0: transforming neuroscience. Cell 185, 4–8 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Taylor, D. M. et al. The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution. Dev. Cell 49, 10–29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sadybekov, A. V. & Katritch, V. Computational approaches streamlining drug discovery. Nature 616, 673–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schuster, J. et al. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front. Mol. Neurosci. 15, 988993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mellios, N. et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol. Psychiatry 23, 1051–1065 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Song and Ming laboratories for discussion and thank K. M. Christian and Z. Zhang for comments. The authors apologize to colleagues whose relevant studies were not cited due to limited space. The research in the authors’ laboratories was supported by grants from the National Institutes of Health (R35NS097370 and RF1MH123979 to G-l.M., and R35NS116843 to H.S.), and from Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to G-l.M.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Guo-li Ming.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Marisa Karow, Juergen Knoblich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gene editing

A type of genetic engineering technology in molecular biology by which a DNA sequence is inserted, deleted, modified or replaced in the genome of a living organism.

Genome-wide association studies

(GWAS). A research approach to identify genetic variants at the genome-wide level that are statistically associated with a risk for a disease or a particular trait.

Gyrified

Characterized by convolutions made of alternating gyri and sulci on the surface of cerebral cortex in certain species. Some disease conditions can alter gyrification, such as lissencephaly, where the cortical surface is smooth.

Human-accelerated regions

(HARs). Sets of segments of the human genome that are conserved throughout vertebrate evolution, but contain many substitutions in the human lineage.

Humanized animal models

Experimental animal models that have been xenografted with human cells and/or engineered to express human gene products, to obtain relevant insights in the in vivo context for understanding of human-specific physiology and pathologies.

Monogenic diseases

Genetic disorders that are caused by variation in a single gene.

Neural stem and progenitor cells

A collective term for neuroepithelial cells, radial glial cells, progenitor cells and other multipotent cells in the brain that give rise to various differentiated, postmitotic neuronal and glial cell types, often through intermediate progenitor cell stages.

Neurotypical

Description of individuals with intellectual and cognitive development typical of the larger population, as opposed to, for example, those impacted by neurodevelopmental or neuropsychiatric disorders (known as neuroatypical).

Organoids

Multicellular 3D structures — derived from primary tissue, embryonic stem cells or induced pluripotent stem cells — that self-organize in vitro and recapitulate developmental, anatomical and/or functional aspects of the primary tissue or organ counterpart.

Outer radial glia cells

(oRGCs). Radial glial neural stem cells that contain basal processes but lose their apical attachment to the ventricular surface and undergo distinct migratory and division behaviours; also known as basal radial glial cells.

Pleiotropy

The phenomenon that one gene or regulatory element affects multiple phenotypic traits (for example, biological processes, diseases).

Pluripotent stem cell

A cell that can be maintained in an undifferentiated state and can differentiate into most, if not all, cells of the body.

Polygenicity

A genetic disorder that is caused by the combined action of more than one gene.

Primary microcephaly

A brain disorder — known as ‘small head’ — characterized by significant reduction in head circumference at birth (more than three standard deviations below the mean for age and gender) usually coincident with intellectual disabilities.

Prime editing

A gene editing method by which new genetic information is written into a targeted DNA site in a precise ‘search-and-replace’ manner, involving a prime editing guide RNA capable of identifying the target site.

Single-cell multi-omic

Referring to high-throughput quantification of multiple types of biomolecules (for example, DNA, RNA, chromatin, protein and metabolites) from the same individual cell, aiming to achieve more biological insight than can be inferred by analysing each molecular layer from separate cells.

Xenografted

Refers to cells or tissue transplanted from a donor into a recipient of a different species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Song, H. & Ming, Gl. Genetics of human brain development. Nat Rev Genet 25, 26–45 (2024). https://doi.org/10.1038/s41576-023-00626-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00626-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research