Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic newborn screening for rare diseases

Abstract

Rare diseases are a leading cause of infant mortality and lifelong disability. To improve outcomes, timely diagnosis and effective treatments are needed. Genomic sequencing has transformed the traditional diagnostic process, providing rapid, accurate and cost-effective genetic diagnoses to many. Incorporating genomic sequencing into newborn screening programmes at the population scale holds the promise of substantially expanding the early detection of treatable rare diseases, with stored genomic data potentially benefitting health over a lifetime and supporting further research. As several large-scale newborn genomic screening projects launch internationally, we review the challenges and opportunities presented, particularly the need to generate evidence of benefit and to address the ethical, legal and psychosocial issues that genomic newborn screening raises.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Large-scale genomic newborn screening studies launching internationally.
Fig. 2: The impact of genomic sequencing on rare disease diagnosis and treatment.
Fig. 3: Stages in newborn screening programmes.

Similar content being viewed by others

References

  1. Owen, M. J. et al. Reclassification of the etiology of infant mortality with whole-genome sequencing. JAMA Netw. Open. 6, e2254069 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wojcik, M. H. et al. Infant mortality: the contribution of genetic disorders. J. Perinatol. 39, 1611–1619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gjorgioski, S. et al. Genetics and pediatric hospital admissions, 1985 to 2017. Genet. Med. 22, 1777–1785 (2020).

    Article  PubMed  Google Scholar 

  4. Navarrete-Opazo, A. A., Singh, M., Tisdale, A., Cutillo, C. M. & Garrison, S. R. Can you hear us now? The impact of health-care utilization by rare disease patients in the United States. Genet. Med. 23, 2194–2201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haendel, M. et al. How many rare diseases are there? Nat. Rev. Drug Discov. 19, 77–78 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tambuyzer, E. et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19, 93–111 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boycott, K. M. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 100, 695–705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boycott, K. M. et al. Care4Rare Canada: outcomes from a decade of network science for rare disease gene discovery. Am. J. Hum. Genet. 109, 1947–1959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Article  Google Scholar 

  11. Turnbull, C. et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. Br. Med. J. 361, k1687 (2018).

    Article  Google Scholar 

  12. Splinter, K. et al. Effect of genetic diagnosis on patients with previously undiagnosed disease. N. Engl. J. Med. 379, 2131–2139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baxter, S. M. et al. Centers for Mendelian Genomics: a decade of facilitating gene discovery. Genet. Med. 24, 784–797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rehm, H. L. et al. GA4GH: international policies and standards for data sharing across genomic research and healthcare. Cell Genom. 1, 100029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boycott, K. M., Azzariti, D. R., Hamosh, A. & Rehm, H. L. Seven years since the launch of the Matchmaker Exchange: the evolution of genomic matchmaking. Hum. Mutat. 43, 659–667 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stark, Z. et al. Integrating genomics into healthcare: a global responsibility. Am. J. Hum. Genet. 104, 13–20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stark, Z. et al. Australian genomics: a federated model for integrating genomics into healthcare. Am. J. Hum. Genet. 105, 7–14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark, M. M. et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. npj Genomic Med. 3, 16 (2018).

    Article  Google Scholar 

  19. Srivastava, S. et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 21, 2413–2421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schofield, D., Rynehart, L., Shresthra, R., White, S. M. & Stark, Z. Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes. Genet. Med. 21, 2586–2593 (2019).

    Article  PubMed  Google Scholar 

  21. Goranitis, I. et al. Is faster better? An economic evaluation of rapid and ultra-rapid genomic testing in critically ill infants and children. Genet. Med. 24, 1037–1044 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Li, C. et al. Cost-effectiveness of genome-wide sequencing for unexplained developmental disabilities and multiple congenital anomalies. Genet. Med. 23, 451–460 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kingsmore, S. F., Petrikin, J., Willig, L. K. & Guest, E. Emergency medical genomes: a breakthrough application of precision medicine. Genome Med. 7, 82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stark, Z. & Ellard, S. Rapid genomic testing for critically ill children: time to become standard of care? Eur. J. Hum. Genet. 30, 142–149 (2022).

    Article  PubMed  Google Scholar 

  25. Smedley, D. et al. 100,000 Genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Stranneheim, H. et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 13, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stark, Z. et al. Australian Genomics: outcomes of a 5-year national program to accelerate the integration of genomics in healthcare. Am. J. Hum. Genet. 110, 419–426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dimmock, D. et al. Project Baby Bear: rapid precision care incorporating rWGS in 5 California children’s hospitals demonstrates improved clinical outcomes and reduced costs of care. Am. J. Hum. Genet. 108, 1231–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lunke, S. et al. Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian Public Health Care System. J. Am. Med. Assoc. 323, 2503–2511 (2020).

    Article  CAS  Google Scholar 

  30. Gorzynski, J. E. et al. Ultrarapid nanopore genome sequencing in a critical care setting. N. Engl. J. Med. 386, 700–702 (2022).

    Article  PubMed  Google Scholar 

  31. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. https://doi.org/10.1038/s41591-023-02401-9 (2023).

  32. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rehm, H. L., Harrison, S. M. & Martin, C. L. ClinVar is a critical resource to advance variant interpretation. Oncologist 22, 1562 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).

    Article  PubMed  Google Scholar 

  35. DiStefano, M. T. et al. The gene curation coalition: a global effort to harmonize gene-disease evidence resources. Genet. Med. 24, 1732–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Phillips, K. A., Douglas, M. P., Wordsworth, S., Buchanan, J. & Marshall, D. A. Availability and funding of clinical genomic sequencing globally. BMJ Glob. Health 6, e004415 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bick, D. et al. An online compendium of treatable genetic disorders. Am. J. Med. Genet. Part C 187, 48–54 (2021).

    Article  PubMed  Google Scholar 

  38. Ferreira, C. R., Rahman, S., Keller, M., Zschocke, J. & ICIMD Advisory Group. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 44, 164–177 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Edmondson, C. & Davies, J. C. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther. Adv. Chronic Dis. 7, 170–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skalet, A. H. et al. Screening children at risk for retinoblastoma: consensus report from the American Association of Ophthalmic Oncologists and Pathologists. Ophthalmology 125, 453–458 (2018).

    Article  PubMed  Google Scholar 

  41. Slatter, M. A. & Gennery, A. R. Advances in the treatment of severe combined immunodeficiency. Clin. Immunol. 242, 109084 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Strug, L. J., Stephenson, A. L., Panjwani, N. & Harris, A. Recent advances in developing therapeutics for cystic fibrosis. Hum. Mol. Genet. 27, R173–R186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schorling, D. C., Pechmann, A. & Kirschner, J. Advances in treatment of spinal muscular atrophy — new phenotypes, new challenges, new implications for care. J. Neuromuscul. Dis. 7, 1–13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chowdary, P. et al. Phase 1–2 trial of AAVS3 gene therapy in patients with hemophilia B. N. Engl. J. Med. 387, 237–247 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Savarirayan, R. et al. C-type natriuretic peptide analogue therapy in children with achondroplasia. N. Engl. J. Med. 381, 25–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Guide, S. V. et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N. Engl. J. Med. 387, 2211–2219 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seaby, E. G., Rehm, H. L. & O’Donnell-Luria, A. Strategies to uplift novel Mendelian gene discovery for improved clinical outcomes. Front. Genet. 12, 674295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marwaha, S., Knowles, J. W. & Ashley, E. A. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med. 14, 23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Michaels-Igbokwe, C. et al. (Un)standardized testing: the diagnostic odyssey of children with rare genetic disorders in Alberta, Canada. Genet. Med. 23, 272–279 (2021).

    Article  PubMed  Google Scholar 

  51. Callahan, K. P. et al. Hospital-level variation in genetic testing in children’s hospitals neonatal intensive care units from 2016 to 2021. Genet. Med. 25, 100357 (2022).

    Article  PubMed  Google Scholar 

  52. Best, S., Vidic, N., An, K., Collins, F. & White, S. M. A systematic review of geographical inequities for accessing clinical genomic and genetic services for non-cancer related rare disease. Eur. J. Hum. Genet. 30, 645–652 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Horton, A. et al. Ethylmalonic encephalopathy masquerading as meningococcemia. Cold Spring Harb. Mol. Case Stud. 8, a006193 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kingsmore, S. F. et al. Mortality in a neonate with molybdenum cofactor deficiency illustrates the need for a comprehensive rapid precision medicine system. Cold Spring Harb. Mol. Case Stud. 6, a004705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kingsmore, S. F. et al. Dispatches from biotech beginning BeginNGS: rapid newborn genome sequencing to end the diagnostic and therapeutic odyssey. Am. J. Med. Genet. Part C 190, 243–256 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Centers for Disease Control and Prevention. Ten great public health achievements — worldwide, 2001-2010. MMWR Morb. Mortal. Wkly. Rep. 60, 814–818 (2011).

    Google Scholar 

  57. Guthrie, R. & Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).

    Article  CAS  PubMed  Google Scholar 

  58. Sweetman, L. Newborn screening by tandem mass spectrometry (MS-MS). Clin. Chem. 42, 345–346 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Therrell, B. L. et al. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 39, 171–187 (2015).

    Article  PubMed  Google Scholar 

  60. Manfredi, C., Tindall, J. M., Hong, J. S. & Sorscher, E. J. Making precision medicine personal for cystic fibrosis. Science 365, 220–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kariyawasam, D. S. et al. Newborn screening for spinal muscular atrophy in Australia: a non-randomised cohort study. Lancet Child Adolesc. Health 7, 159–170 (2023).

    Article  PubMed  Google Scholar 

  62. Muller-Felber, W. et al. Newbornscreening SMA — from pilot project to nationwide screening in Germany. J. Neuromuscul. Dis. 10, 55–65 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brower, A. et al. Population-based screening of newborns: findings from the NBS Expansion Study (part one). Front. Genet. 13, 867337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wilson, J. M. G. and Jungner, G. Principles and practice of screening for disease (World Health Organization, 1968). Outlines the ten classic principles on which population screening programmes should be based.

  65. Dobrow, M. J., Hagens, V., Chafe, R., Sullivan, T. & Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. Can. Med. Assoc. J. 190, E422–E429 (2018).

    Article  Google Scholar 

  66. Bombard, Y. et al. A secondary benefit: the reproductive impact of carrier results from newborn screening for cystic fibrosis. Genet. Med. 19, 403–411 (2017).

    Article  PubMed  Google Scholar 

  67. Bick, D. et al. Newborn screening by genomic sequencing: opportunities and challenges. Int. J. Neonatal Screen. 8, 40 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Golding, J., Pembrey, M., Jones, R. & Team, A. S. ALSPAC–the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr. Perinat. Epidemiol. 15, 74–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Gray, J. A., Patnick, J. & Blanks, R. G. Maximising benefit and minimising harm of screening. Br. Med. J. 336, 480–483 (2008).

    Article  CAS  Google Scholar 

  70. Hanley, W. B. Newborn screening in Canada - Are we out of step? Paediatr. Child Health 10, 203–207 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Therrell, B. L., Johnson, A. & Williams, D. Status of newborn screening programs in the United States. Pediatrics 117, S212–S252 (2006).

    Article  PubMed  Google Scholar 

  72. Ross, L. F. Mandatory versus voluntary consent for newborn screening? Kennedy Inst. Ethics J. 20, 299–328 (2010).

    Article  PubMed  Google Scholar 

  73. Parisi, M. A. et al. When is the best time to screen and evaluate for treatable genetic disorders?: a lifespan perspective. Am. J. Med. Genet. Part C 193, 44–55 (2023).

    Article  PubMed  Google Scholar 

  74. Holm, I. A. et al. Returning a genomic result for an adult-onset condition to the parents of a newborn: insights from the BabySeq project. Pediatrics 143, S37–S43 (2019).

    Article  PubMed  Google Scholar 

  75. VanNoy, G. E. et al. Challenging the current recommendations for carrier testing in children. Pediatrics 143, S27–S32 (2019).

    Article  PubMed  Google Scholar 

  76. Fallat, M. et al. Ethical and policy issues in genetic testing and screening of children. Pediatrics 131, 620–622 (2013).

    Article  Google Scholar 

  77. No authors listed. Guidelines for genetic testing of healthy children — addendum: a joint statement with the Canadian College of Medical Geneticists. Paediatr. Child Health 13, 311–312 (2008).

    Article  Google Scholar 

  78. Chung, W. K. et al. Newborn screening for neurodevelopmental diseases: are we there yet? Am. J. Med. Genet. Part C 190, 222–230 (2022).

    Article  PubMed  Google Scholar 

  79. Frankel, L. A., Pereira, S. & McGuire, A. L. Potential psychosocial risks of sequencing newborns. Pediatrics 137, S24–S29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Murray, M. F. et al. DNA-based screening and population health: a points to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 989–995 (2021). Presents a position statement by the American College of Medical Genetics and Genomics on the use of genetic and genomic testing in population screening programmes.

    Article  PubMed  Google Scholar 

  81. Berg, J. S. et al. Newborn sequencing in genomic medicine and public health. Pediatrics 139, e20162252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Downie, L., Halliday, J., Lewis, S. & Amor, D. J. Principles of genomic newborn screening programs: a systematic review. JAMA Netw. Open 4, e2114336 (2021). Presents a systematic literature review summarizing empirical research into the design of gNBS programmes.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bombard, Y. et al. Public views on participating in newborn screening using genome sequencing. Eur. J. Hum. Genet. 22, 1248–1254 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goldenberg, A. J., Dodson, D. S., Davis, M. M. & Tarini, B. A. Parents’ interest in whole-genome sequencing of newborns. Genet. Med. 16, 78–84 (2014).

    Article  PubMed  Google Scholar 

  85. Waisbren, S. E. et al. Parents are interested in newborn genomic testing during the early postpartum period. Genet. Med. 17, 501–504 (2015).

    Article  PubMed  Google Scholar 

  86. Joseph, G. et al. Parental views on expanded newborn screening using whole-genome sequencing. Pediatrics 137, S36–S46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. YouGov. Almost seven in ten people would back genome sequencing for newborn babies. YouGov https://yougov.co.uk/topics/health/articles-reports/2021/08/16/people-support-genome-testing-newborn-babies (2021).

  88. Kinsella, S., Hopkins, H., Cooper, L. & Bonham, J. R. A public dialogue to inform the use of wider genomic testing when used as part of newborn screening to identify cystic fibrosis. Int. J. Neonatal Screen. 8, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Iskrov, G., Ivanov, S., Wrenn, S. & Stefanov, R. Whole-genome sequencing in newborn screening-attitudes and opinions of Bulgarian pediatricians and geneticists. Front. Public Health 5, 308 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ulm, E., Feero, W. G., Dineen, R., Charrow, J. & Wicklund, C. Genetics professionals’ opinions of whole-genome sequencing in the newborn period. J. Genet. Couns. 24, 452–463 (2015).

    Article  PubMed  Google Scholar 

  91. Wu, X., Yang, Y., Zhou, L., Long, W. & Yu, B. Are we ready for newborn genetic screening? A cross-sectional survey of healthcare professionals in Southeast China. Front. Pediatr. 10, 875229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cao, M., Notini, L., Ayres, S. & Vears, D. F. Australian healthcare professionals’ perspectives on the ethical and practical issues associated with genomic newborn screening. J. Genet. Couns. 32, 376–386 (2022).

    Article  PubMed  Google Scholar 

  93. Friedman, J. M. et al. Genomic newborn screening: public health policy considerations and recommendations. BMC Med. Genomics 10, 9 (2017). Presents consensus recommendations for the use of genomics in NBS developed by the Paediatric Task Team of the Regulatory and Ethics Working Group of the Global Alliance for Genomics and Health.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Howard, H. C. et al. Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes. Eur. J. Hum. Genet. 23, 1593–1600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cornel, M. C. [New recommendations for the Dutch neonatal screening programme. A report from the Health Council of the Netherlands]. Ned. Tijdschr. Geneeskd. 159, A9115 (2015).

    PubMed  Google Scholar 

  96. Borghesi, A. et al. Intersociety policy statement on the use of whole-exome sequencing in the critically ill newborn infant. Ital. J. Pediatr. 43, 100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet. Med. 14, 759–761 (2012).

    Article  Google Scholar 

  98. Ceyhan-Birsoy, O. et al. A curated gene list for reporting results of newborn genomic sequencing. Genet. Med. 19, 809–818 (2017). Describes the systematic evaluation of gene–disease pairs for analysis by the BabySeq gNBS project.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022). Describes the development of a gNBS pipeline, including an assessment of 457 gene–disease pairs, and the assessment of simulated performance in two cohorts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Milko, L. V. et al. An age-based framework for evaluating genome-scale sequencing results in newborn screening. J. Pediatr. 209, 68–76 (2019). Describes the systematic evaluation of gene–disease pairs for analysis by the NC NEXUS gNBS project.

    Article  PubMed  PubMed Central  Google Scholar 

  101. DeCristo, D. M. et al. Actionability of commercial laboratory sequencing panels for newborn screening and the importance of transparency for parental decision-making. Genome Med. 13, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ding, Y. et al. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. npj Genomic Med. 8, 5 (2023).

    Article  CAS  Google Scholar 

  103. Kim, M. J. et al. Rapid targeted sequencing using dried blood spot samples for patients with suspected actionable genetic diseases. Ann. Lab. Med. 43, 280–289 (2023).

    Article  PubMed  Google Scholar 

  104. Adhikari, A. N. et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 26, 1392–1397 (2020). Describes the development of a gNBS pipeline and assessment of performance using exome sequencing in a historical cohort of newborns who had been diagnosed with inborn errors of metabolism using standard NBS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pavey, A. R. et al. Utilization of genomic sequencing for population screening of immunodeficiencies in the newborn. Genet. Med. 19, 1367–1375 (2017).

    Article  PubMed  Google Scholar 

  106. Milko, L. V. et al. Evaluating parents’ decisions about next-generation sequencing for their child in the NC NEXUS (North Carolina Newborn Exome Sequencing for Universal Screening) study: a randomized controlled trial protocol. Trials 19, 344 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lewis, M. A. et al. Supporting parental decisions about genomic sequencing for newborn screening: the NC NEXUS decision aid. Pediatrics 137, S16–S23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Roman, T. S. et al. Genomic sequencing for newborn screening: results of the NC NEXUS project. Am. J. Hum. Genet. 107, 596–611 (2020). Presents results of the NC NEXUS study, a prospective cohort of 106 infants undergoing gNBS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq project. Am. J. Hum. Genet. 104, 76–93 (2019). Presents results of the BabySeq study, a prospective cohort of 159 infants undergoing gNBS for treatable and untreatable childhood-onset disorders, carrier status, pharmacogenomic variants and a small number of adult-onset conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wojcik, M. H. et al. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq Project. Genet. Med. 23, 1372–1375 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Genetti, C. A. et al. Parental interest in genomic sequencing of newborns: enrollment experience from the BabySeq Project. Genet. Med. 21, 622–630 (2019).

    Article  PubMed  Google Scholar 

  112. Pereira, S. et al. Psychosocial effect of newborn genomic sequencing on families in the BabySeq Project: a randomized clinical trial. JAMA Pediatr. 175, 1132–1141 (2021).

    Article  PubMed  Google Scholar 

  113. Armstrong, B. et al. Parental attitudes toward standard newborn screening and newborn genomic sequencing: findings from the BabySeq study. Front. Genet. 13, 867371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pereira, S. et al. Parents’ decision-making regarding whether to receive adult-onset only genetic findings for their children: findings from the BabySeq Project. Genet. Med. 25, 100002 (2022).

    Article  PubMed  Google Scholar 

  115. Schwartz, T. S. et al. Effects of participation in a U.S. trial of newborn genomic sequencing on parents at risk for depression. J. Genet. Couns. 31, 218–229 (2022).

    Article  PubMed  Google Scholar 

  116. Downie, L. et al. Exome sequencing in newborns with congenital deafness as a model for genomic newborn screening: the Baby Beyond Hearing project. Genet. Med. 22, 937–944 (2020).

    Article  PubMed  Google Scholar 

  117. Mackay, Z. P. et al. Quantifying downstream healthcare utilization in studies of genomic testing. Value Health 23, 559–565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yeh, J. M. et al. Universal newborn genetic screening for pediatric cancer predisposition syndromes: model-based insights. Genet. Med. 23, 1366–1371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Christensen, K. D. et al. Benefits, harms, and costs of newborn genetic screening for hypertrophic cardiomyopathy: estimates from the PreEMPT model. Genet. Med. 25, 100797 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Buchanan, A. H. et al. Clinical outcomes of a genomic screening program for actionable genetic conditions. Genet. Med. 22, 1874–1882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Casalino, S. et al. Genome screening, reporting, and genetic counseling for healthy populations. Hum. Genet. 142, 181–192 (2023).

    Article  PubMed  Google Scholar 

  122. Archibald, A. D. et al. The Australian Reproductive Genetic Carrier Screening Project (Mackenzie’s Mission): design and implementation. J. Pers. Med. 12, 1781 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kelly, M. A. et al. Leveraging population-based exome screening to impact clinical care: the evolution of variant assessment in the Geisinger MyCode research project. Am. J. Med. Genet. Part C 187, 83–94 (2021).

    Article  PubMed  Google Scholar 

  124. Frangione, E. et al. Genome reporting for healthy populations-pipeline for genomic screening from the GENCOV COVID-19 study. Curr. Protoc. 2, e534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schmidlen, T. et al. Use of a chatbot to increase uptake of cascade genetic testing. J. Genet. Couns. 31, 1219–1230 (2022).

    Article  PubMed  Google Scholar 

  126. Carey, D. J. et al. The Geisinger MyCode community health initiative: an electronic health record-linked biobank for precision medicine research. Genet. Med. 18, 906–913 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. McCormick, C. Z. et al. Investigating psychological impact after receiving genetic risk results — a survey of participants in a population genomic screening program. J. Pers. Med. 12, 1943 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jones, L. K. et al. A RE-AIM framework analysis of DNA-based population screening: using implementation science to translate research into practice in a healthcare system. Front. Genet. 13, 883073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guzauskas, G. F. et al. Cost-effectiveness of population-wide genomic screening for hereditary breast and ovarian cancer in the United States. JAMA Netw. Open. 3, e2022874 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Spencer, S. J. et al. Cost-effectiveness of population-wide genomic screening for familial hypercholesterolemia in the United States. J. Clin. Lipidol. 16, 667–675 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pichini, A. et al. Developing a national newborn genomes program: an approach driven by ethics, engagement and co-design. Front. Genet. 13, 866168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Proctor, E. et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm. Policy Ment. Health 38, 65–76 (2011).

    Article  PubMed  Google Scholar 

  133. Png, M. E. et al. Benefits and harms adopted by health economic assessments evaluating antenatal and newborn screening programmes in OECD countries: a systematic review of 336 articles and reports. Soc. Sci. Med. 314, 115428 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hayeems, R. Z. et al. Clinical utility of genomic sequencing: a measurement toolkit. npj Genomic Med. 5, 56 (2020).

    Article  Google Scholar 

  135. Kemper, A. R. et al. Decision-making process for conditions nominated to the recommended uniform screening panel: statement of the US Department of Health and Human Services Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children. Genet. Med. 16, 183–187 (2014).

    Article  PubMed  Google Scholar 

  136. Grosse, S. D. & Van Vliet, G. Challenges in assessing the cost-effectiveness of newborn screening: the example of congenital adrenal hyperplasia. Int. J. Neonatal Screen. 6, 82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Turbitt, E. et al. The PrU: development and validation of a measure to assess personal utility of genomic results. Genet. Med. 25, 100356 (2022).

    Article  PubMed  Google Scholar 

  138. Goranitis, I., Best, S., Christodoulou, J., Stark, Z. & Boughtwood, T. The personal utility and uptake of genomic sequencing in pediatric and adult conditions: eliciting societal preferences with three discrete choice experiments. Genet. Med. 22, 1311–1319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nisselle, A. et al. Ensuring best practice in genomics education and evaluation: reporting item standards for education and its evaluation in genomics (RISE2 Genomics). Genet. Med. 23, 1356–1365 (2021).

    Article  PubMed  Google Scholar 

  140. Bombard, Y., Ginsburg, G. S., Sturm, A. C., Zhou, A. Y. & Lemke, A. A. Digital health-enabled genomics: opportunities and challenges. Am. J. Hum. Genet. 109, 1190–1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Easteal, S. et al. Equitable expanded carrier screening needs indigenous clinical and population genomic data. Am. J. Hum. Genet. 107, 175–182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Zornitza Stark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Robert Green and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Baby Detect: https://babydetect.com/en/

BabyScreen+: http://www.babyscreen.mcri.edu.au

BabySeq: https://www.genomes2people.org/research/babyseq/

BeginNGS: https://radygenomics.org/begin-ngs-newborn-sequencing/

Early Check: https://earlycheck.org/news-and-outreach/newsroom/

GUARDIAN Study: https://guardian-study.org

International Consortium for Newborn Sequencing: https://www.iconseq.org

Newborn Genomes Programme, Genomics England: https://www.genomicsengland.co.uk/initiatives/newborns

Screen4Care (European Union): https://screen4care.eu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, Z., Scott, R.H. Genomic newborn screening for rare diseases. Nat Rev Genet 24, 755–766 (2023). https://doi.org/10.1038/s41576-023-00621-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00621-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing