Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

microRNAs in action: biogenesis, function and regulation

Abstract

Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical and non-canonical miRNA biogenesis pathways.
Fig. 2: Structural and sequence features of miRNA substrates and targets.
Fig. 3: Cryo-EM and single-molecule studies of Microprocessor and Dicer complexes.
Fig. 4: Strategies for the regulation of miRNA biogenesis.
Fig. 5: Regulation of miRNA turnover.

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Leviten, M. W., Lai, E. C. & Posakony, J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3′ UTR sequence motifs with multiple Enhancer of split complex genes. Development 124, 4039–4051 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split complex gene expression. Development 124, 4847–4856 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of Enhancer of split complex transcripts. Development 125, 4077–4088 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lai, E. C. microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Lau, N., Lim, L., Weinstein, E. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Maurin, T., Cazalla, D., Yang, J. S., Bortolamiol-Becet, D. & Lai, E. C. RNase III-independent microRNA biogenesis in mammalian cells. RNA 18, 2166–2173 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shang, R. et al. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat. Commun. 6, 8430 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA–target recognition. PLoS Biol. 3, e85 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing Argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Park, M. S. et al. Human Argonaute3 has slicer activity. Nucleic acids Res. 45, 11867–11877 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Park, M. S., Sim, G., Kehling, A. C. & Nakanishi, K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc. Natl Acad. Sci. USA 117, 28576–28578 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nguyen, H. M., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Orientation of human microprocessor on primary microRNAs. Biochemistry 58, 189–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Zeng, Y. & Cullen, B. R. Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ma, H., Wu, Y., Choi, J. G. & Wu, H. Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site. Proc. Natl Acad. Sci. USA 110, 20687–20692 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013). This study is the first to utilize massively parallel substrate assays to reveal motifs involved in pri-miRNA processing.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fang, W. & Bartel, D. P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol. Cell 60, 131–145 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Partin, A. C. et al. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat. Commun. 8, 1737 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nguyen, T. A., Park, J., Dang, T. L., Choi, Y. G. & Kim, V. N. Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic acids Res. 46, 5726–5736 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kim, K., Nguyen, T. D., Li, S. & Nguyen, T. A. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 24, 892–898 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fernandez, N. et al. Genetic variation and RNA structure regulate microRNA biogenesis. Nat. Commun. 8, 15114 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  36. Li, S., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor. Nat. Commun. 11, 1926 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, S., Le, T. N., Nguyen, T. D., Trinh, T. A. & Nguyen, T. A. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol. 18, 1716–1726 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, Y. Y., Kim, H. & Kim, V. N. Sequence determinant of small RNA production by DICER. Nature 615, 323–330 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Rice, G. M., Shivashankar, V., Ma, E. J., Baryza, J. L. & Nutiu, R. Functional atlas of primary miRNA maturation by the microprocessor. Mol. Cell 80, 892–902.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, K. et al. A quantitative map of human primary microRNA processing sites. Mol. Cell 81, 3422–3439.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Kang, W. et al. MapToCleave: high-throughput profiling of microRNA biogenesis in living cells. Cell Rep. 37, 110015 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Consortium, R. RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic acids Res. 49, D212–D220 (2021).

    Article  Google Scholar 

  44. Fromm, B., Zhong, X., Tarbier, M., Friedlander, M. R. & Hackenberg, M. The limits of human microRNA annotation have been met. RNA https://doi.org/10.1261/rna.079098.122 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Nguyen, T. L., Nguyen, T. D., Bao, S., Li, S. & Nguyen, T. A. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human microprocessor. Nucleic acids Res. 48, 2579–2593 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Luo, Q. J. et al. RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat. Commun. 12, 3397 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nguyen, T. D., Trinh, T. A., Bao, S. & Nguyen, T. A. Secondary structure RNA elements control the cleavage activity of DICER. Nat. Commun. 13, 2138 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep. 11, 522–527 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C. & MacRae, I. J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife https://doi.org/10.7554/eLife.07646 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science https://doi.org/10.1126/science.aav1741 (2019). This paper reveals broad features of miRNA–target interactions using RBNS.

    Article  PubMed Central  PubMed  Google Scholar 

  65. McGeary, S. E., Bisaria, N., Pham, T. M., Wang, P. Y. & Bartel, D. P. microRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. eLife https://doi.org/10.7554/eLife.69803 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  66. Grimson, A. et al. microRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol. 16, 144–150 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Schnall-Levin, M. et al. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res. 21, 1395–1403 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang, K. et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat. Struct. Mol. Biol. 25, 1019–1027 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0246-8 (2020).

    Article  PubMed  Google Scholar 

  71. Yang, A. et al. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell 75, 511–522.e4 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sim, G. et al. Manganese-dependent microRNA trimming by 3′ → 5′ exonucleases generates 14-nucleotide or shorter tiny RNAs. Proc. Natl Acad. Sci. USA 119, e2214335119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Sternburg, E. L., Estep, J. A., Nguyen, D. K., Li, Y. & Karginov, F. V. Antagonistic and cooperative AGO2–PUM interactions in regulating mRNAs. Sci. Rep. 8, 15316 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, S. et al. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 12, 5057 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Z. et al. Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173, 1191–1203.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen, T. A. et al. Functional anatomy of the human microprocessor. Cell 161, 1374–1387 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Kwon, S. C. et al. Structure of human DROSHA. Cell 164, 81–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Barr, I. et al. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J. Biol. Chem. 286, 16716–16725 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Quick-Cleveland, J. et al. The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep. 7, 1994–2005 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Jin, W., Wang, J., Liu, C. P., Wang, H. W. & Xu, R. M. Structural basis for pri-miRNA recognition by Drosha. Mol. Cell 78, 423–433.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Partin, A. C. et al. Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA. Mol. Cell 78, 411–422 e414 (2020). Together with Jin et al. (2020), this work is the first cryo-EM study of Microprocessor structures.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Shi, Z., Nicholson, R. H., Jaggi, R. & Nicholson, A. W. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic acids Res. 39, 2756–2768 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, Y. Y., Lee, H., Kim, H., Kim, V. N. & Roh, S. H. Structure of the human DICER–pre-miRNA complex in a dicing state. Nature 615, 331–338 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Zapletal, D. et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 82, 4064–4079.e13 (2022). Together with Lee et al. (Nature, 2023), this work reports new cryo-EM structures for active mammalian Dicer complex.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Jouravleva, K. et al. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol. Cell 82, 4049–4063.e6 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Wei, X. et al. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants 7, 1389–1396 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Fareh, M. et al. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 7, 13694 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Yamaguchi, S. et al. Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature 607, 393–398 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Su, S. et al. Structural insights into dsRNA processing by Drosophila Dicer-2–Loqs-PD. Nature 607, 399–406 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Wang, Q. et al. Mechanism of siRNA production by a plant Dicer–RNA complex in dicing-competent conformation. Science 374, 1152–1157 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Herbert, K. M. et al. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting. RNA 22, 175–183 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Naganuma, M., Tadakuma, H. & Tomari, Y. Single-molecule analysis of processive double-stranded RNA cleavage by Drosophila Dicer-2. Nat. Commun. 12, 4268 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Iwasaki, S. et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521, 533–536 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Tsuboyama, K., Tadakuma, H. & Tomari, Y. Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Mol. Cell 70, 722–729.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Willkomm, S. et al. Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat. Commun. 13, 3825 (2022). This study uses single-molecule fluorescence to dissect internal motions within human Ago2 during transitions from guide RNA binding to target capture.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D. & Serebrov, V. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Yao, C., Sasaki, H. M., Ueda, T., Tomari, Y. & Tadakuma, H. Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59, 125–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo, C. A dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015). This study uses the distance sensing capability of smFRET to visualize strategies of target interrogation by RISC.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C. & MacRae, I. J. Helix-7 in argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Cui, T. J. et al. Argonaute bypasses cellular obstacles without hindrance during target search. Nat. Commun. 10, 4390 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  108. Ruijtenberg, S. et al. mRNA structural dynamics shape Argonaute–target interactions. Nat. Struct. Mol. Biol. 27, 790–801 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Cialek, C. A. et al. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat. Commun. 13, 3345 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Kobayashi, H. & Singer, R. H. Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat. Commun. 13, 1435 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Sheu-Gruttadauria, J. & MacRae, I. J. Structural foundations of RNA silencing by Argonaute. J. Mol. Biol. 429, 2619–2639 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Nakanishi, K. Anatomy of four human Argonaute proteins. Nucleic acids Res. 50, 6618–6638 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Sheu-Gruttadauria, J. et al. Structural basis for target-directed microRNA degradation. Mol. Cell https://doi.org/10.1016/j.molcel.2019.06.019 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  114. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature https://doi.org/10.1038/nature12119 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  121. Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, H. et al. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell 78, 1224–1236.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Michlewski, G. & Caceres, J. F. Post-transcriptional control of miRNA biogenesis. RNA 25, 1–16 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Nussbacher, J. K. & Yeo, G. W. Systematic discovery of RNA binding proteins that regulate microRNA levels. Mol. Cell 69, 1005–1016.e7 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Treiber, T. et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol. Cell 66, 270–284.e13 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, D. et al. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and microRNA targeting activity. Nucleic acids Res. 48, 4681–4697 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Smibert, P., Yang, J. S., Azzam, G., Liu, J. L. & Lai, E. C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Kobayashi, H., Shoji, K., Kiyokawa, K., Negishi, L. & Tomari, Y. Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state. Mol. Cell 73, 119–129.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Martinez, N. J. & Gregory, R. I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Derrien, B. et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl Acad. Sci. USA 109, 15942–15946 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009). This paper identifies the first cross-regulations between miRNA factors, in this case between Microprocessor components Drosha and DGCR8 (see also references 138 and 139).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Kadener, S. et al. Genome-wide identification of targets of the Drosha-Pasha/DGCR8 complex. RNA 15, 537–545 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Smibert, P. et al. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA 17, 1997–2010 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Cui, Y. et al. Global miRNA dosage control of embryonic germ layer specification. Nature 593, 602–606 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Du, P., Wang, L., Sliz, P. & Gregory, R. I. A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression. Cell 162, 885–899 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Donayo, A. O. et al. Oncogenic biogenesis of pri-miR-17-92 reveals hierarchy and competition among polycistronic microRNAs. Mol. Cell 75, 340–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Truscott, M., Islam, A. B. & Frolov, M. V. Novel regulation and functional interaction of polycistronic miRNAs. RNA 22, 129–138 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Lataniotis, L. et al. CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci. Rep. 7, 8585 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  146. Haar, J. et al. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic acids Res. 44, 1326–1341 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Vilimova, M. et al. Cis regulation within a cluster of viral microRNAs. Nucleic acids Res. 49, 10018–10033 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Yang, J. S. & Lai, E. C. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9, 4455–4460 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Jee, D. et al. Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol. Cell 69, 265–278.e6 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Kretov, D. A. et al. Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis. Mol. Cell 78, 317–328.e6 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Shang, R. et al. Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci. Mol. Cell 78, 303–316.e4 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Fang, W. & Bartel, D. P. microRNA clustering assists processing of suboptimal microRNA hairpins through the action of the ERH protein. Mol. Cell 78, 289–302.e6 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Hutter, K. et al. SAFB2 enables the processing of suboptimal stem–loop structures in clustered primary miRNA transcripts. Mol. Cell 78, 876–889 (2020). Together with Shang et al. (2020) and Fang and Bartel (2020), this work reports mechanisms for miRNA cluster assistance for suboptimal miRNA biogenesis.

    Article  CAS  PubMed  Google Scholar 

  154. Kwon, S. C. et al. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic acids Res. 48, 11097–11112 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632–5638 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Liu, H. et al. HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing. Mol. Cell 63, 420–432 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Church, V. A. et al. Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs. Cell Rep. 20, 3123–3134 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Pawlicki, J. M. & Steitz, J. A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Bernstein, E., Caudy, A., Hammond, S. & Hannon, G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013). This paper reports that an endogenous N-terminally truncated Dicer isoform processes siRNAs in mouse oocytes, an unusual setting for mammalian siRNA biology.

    Article  CAS  PubMed  Google Scholar 

  164. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Suh, N. et al. microRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Kataruka, S. et al. microRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic acids Res. 48, 8050–8062 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Schuster, S., Miesen, P. & van Rij, R. P. Antiviral RNAi in insects and mammals: parallels and differences. Viruses https://doi.org/10.3390/v11050448 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  170. Kennedy, E. M. et al. Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl Acad. Sci. USA 112, E6945–E6954 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S. W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic acids Res. 39, 5692–5703 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  PubMed  Google Scholar 

  176. Kingston, E. R. & Bartel, D. P. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 29, 1777–1790 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314–1321 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Reichholf, B. et al. Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis. Mol. Cell 75, 756–768.e7 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Krol, J. et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141, 618–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Shukla, S., Bjerke, G. A., Muhlrad, D., Yi, R. & Parker, R. The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation. Mol. Cell 73, 1204–1216.e4 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Yu, Y. et al. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol. 15, e2001272 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  183. Ibrahim, F. et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USA 107, 3906–3911 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Marcinowski, L. et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Ghini, F. et al. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  188. de la Mata, M. et al. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. https://doi.org/10.15252/embr.201540078 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  189. Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Yang, A. et al. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun. 11, 2765 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Yang, A. et al. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat. Commun. 13, 5260 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science https://doi.org/10.1126/science.abc9359 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  194. Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science https://doi.org/10.1126/science.abc9546 (2020). Together with Shi et al. (2020), this work reveals the regulatory mechanism of TDMD, via ZSWIM8-mediated Argonaute protein degradation.

    Article  PubMed Central  PubMed  Google Scholar 

  195. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science https://doi.org/10.1126/science.aam8526 (2017).

    Article  PubMed  Google Scholar 

  196. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Donnelly, B. F. et al. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep. 40, 111154 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Li, L. et al. Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins. Genes Dev. 35, 1595–1609 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Bitetti, A. et al. microRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Kingston, E. R., Blodgett, L. W. & Bartel, D. P. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Mol. Cell 82, 3872–3884.e9 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Sheng, P. et al. Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999. Nat. Commun. 14, 2108 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. D’Ambrogio, A., Gu, W., Udagawa, T., Mello, C. C. & Richter, J. D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. https://doi.org/10.1016/j.celrep.2012.10.023 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  205. Jeong, H. C. et al. USB1 is a miRNA deadenylase that regulates hematopoietic development. Science 379, 901–907 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Mansur, F. et al. Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA 22, 1492–1499 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Vieux, K. F. et al. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res. 49, 11167–11180 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Lee, S. et al. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals. Cell Rep. 42, 112111 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Nishida, K. M. et al. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol. Cell 49, 680–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Drake, M. et al. A requirement for ERK dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in Caenorhabditis elegans. Dev. Cell 31, 614–628 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Shang, R. et al. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic acids Res. 50, 7637–7654 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Gutierrez-Perez, P. et al. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Sci. Adv. 7, eabh1434 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Yang, B., Schwartz, M. & McJunkin, K. In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in C. elegans. Genes Dev. 34, 1227–1238 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Ecsedi, M., Rausch, M. & Grosshans, H. The let-7 microRNA directs vulval development through a single target. Dev. Cell 32, 335–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Garaulet, D. L., Zhang, B., Wei, L., Li, E. & Lai, E. C. miRNAs and neural alternative polyadenylation specify the virgin behavioral state. Dev. Cell 54, 410–423 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007). Together with Okamura et al. (2007), this work reports the first non-canonical miRNA pathway, in which intron splicing bypasses Drosha to generate pre-miRNA mimics, termed mirtrons.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Bogerd, H. P. et al. A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol. Cell 37, 135–142 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Xie, M. et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155, 1568–1580 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Cifuentes, D. et al. A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Yang, J. S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. La Rocca, B. Kleaveland and L. Joshua-Tor for critical reading, and the referees for informative comments. S.L. was supported by a training award from the NYSTEM contract #C32559GG and the Center for Stem Cell Biology at MSK. Work in E.C.L.’s group was supported by the National Institutes of Health (NIH) (R01-GM083300) and MSK Core Grant P30-CA008748. The authors apologize to those whose work is not included owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

R.S., S.L., G.S. and E.C.L. wrote and edited the manuscript. R.S. S.L. and G.S. drafted the figures. R.S., S.L., G.S. and E.C.L. discussed and reviewed the manuscript before submission.

Corresponding author

Correspondence to Eric C. Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Shuo Gu, Tuan Anh Nguyen, Ian Macrae who co-reviewed with Luca Gebert, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, R., Lee, S., Senavirathne, G. et al. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 24, 816–833 (2023). https://doi.org/10.1038/s41576-023-00611-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00611-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing