Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nexus between RNA-binding proteins and their effectors

Abstract

RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP–effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Traits and organization of RNA networks associated with the management of regulatory complexity.
Fig. 2: Modes and dynamics of RBP-dependent effector engagement with RNA.
Fig. 3: Converging RBP–effector interactions regulating (peri-)nuclear RNA processing.
Fig. 4: Converging RBP–effector interactions regulating cytoplasmic RNA processing.
Fig. 5: Physiological regulation at the interface of RBPs and their effectors.
Fig. 6: A network view of the nexus.

Similar content being viewed by others

References

  1. Licatalosi, D. D. & Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramskold, D., Wang, E. T., Burge, C. B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5, e1000598 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gebauer, F., Schwarzl, T., Valcarcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Forch, P., Puig, O., Martinez, C., Seraphin, B. & Valcarcel, J. The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J. 21, 6882–6892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Forch, P. et al. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol. Cell 6, 1089–1098 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sgromo, A. et al. A CAF40-binding motif facilitates recruitment of the CCR4–NOT complex to mRNAs targeted by Drosophila Roquin. Nat. Commun. 8, 14307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sandler, H., Kreth, J., Timmers, H. T. & Stoecklin, G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 39, 4373–4386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fabian, M. R. et al. Structural basis for the recruitment of the human CCR4–NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20, 735–739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem–loop recognition motifs. Cell 153, 869–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Cho, P. F. et al. A new paradigm for translational control: inhibition via 5′–3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121, 411–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Song, T. et al. Specific interaction of KIF11 with ZBP1 regulates the transport of beta-actin mRNA and cell motility. J. Cell Sci. 128, 1001–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993). This study was the first to functionally characterize RBP–effector interactions and their impact on RNA processing by showing that PPIs between SR proteins and the spliceosome have a regulatory role in alternative splicing.

    Article  CAS  PubMed  Google Scholar 

  22. Park, E., Gleghorn, M. L. & Maquat, L. E. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc. Natl Acad. Sci. USA 110, 405–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Mengistu, H., Huizinga, J., Mouret, J. B. & Clune, J. The evolutionary origins of hierarchy. PLoS Comput. Biol. 12, e1004829 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilinski, D. et al. Recurrent rewiring and emergence of RNA regulatory networks. Proc. Natl Acad. Sci. USA 114, E2816–E2825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bose, M., Lampe, M., Mahamid, J. & Ephrussi, A. Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell 185, 1308–1324.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem. Rev. 108, 1225–1244 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, R. et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bi, X. et al. RNA targets ribogenesis factor WDR43 to chromatin for transcription and pluripotency control. Mol. Cell 75, 102–116.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tahirov, T. H. et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465, 747–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Xiao, S. H. & Manley, J. L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997). This paper provides early evidence that RBP–effector interactions can be regulated by PTMs; it demonstrates that phosphorylation of RS domains strengthens the interactions between SR proteins and U1 snRNP with relevance to pre-mRNA splicing.

    Article  CAS  PubMed  Google Scholar 

  42. Jutzi, D. et al. Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat. Commun. 11, 6341 (2020). This study demonstrates that the splicing activity of FUS relies on an interaction with spliceosomal RNA rather than a protein subunit, providing a rare case of protein–RNA interactions that connect an RBP and an effector.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh, R. N., Howell, M. D., Ottesen, E. W. & Singh, N. N. Diverse role of survival motor neuron protein. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 299–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Li, D. K., Tisdale, S., Lotti, F. & Pellizzoni, L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 32, 22–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Hubers, L. et al. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum. Mol. Genet. 20, 553–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Fallini, C. et al. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev. Neurobiol. 74, 319–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Thandapani, P., O’Connor, T. R., Bailey, T. L. & Richard, S. Defining the RGG/RG motif. Mol. Cell 50, 613–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Tripsianes, K. et al. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat. Struct. Mol. Biol. 18, 1414–1420 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Wijaya, Y. O. S. et al. Phenotypes of SMA patients retaining SMN1 with intragenic mutation. Brain Dev. 43, 745–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Kotani, T. et al. A novel mutation at the N-terminal of SMN Tudor domain inhibits its interaction with target proteins. J. Neurol. 254, 624–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Marfori, M. et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta 1813, 1562–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell 173, 720–734.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22 (2018). Together with Qamar et al. (2018), Hofwebe. et al. (2018) and Guo et al. (2018), the authors demonstrate that NIRs can act as RBP chaperones and disaggregases beyond their canonical roles in the nuclear import of RBPs, highlighting the relevance of misregulated RBP–NIR interactions to neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holt, C. E. & Bullock, S. L. Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212–1216 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pushpalatha, K. V. & Besse, F. Local translation in axons: when membraneless RNP granules meet membrane-bound organelles. Front. Mol. Biosci. 6, 129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Edelmann, F. T. et al. Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex. Nat. Struct. Mol. Biol. 24, 152–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Muller, M. et al. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol. 9, e1000611 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Davidovic, L. et al. The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum. Mol. Genet. 16, 3047–3058 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, Y. K. & Maquat, L. E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Clerici, M. et al. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO J. 28, 2293–2306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, Y. K., Furic, L., Desgroseillers, L. & Maquat, L. E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005). This study identifies the first RBP that directly interacts with the RNA helicase UPF1 to promote decay of targeted mRNAs.

    Article  CAS  PubMed  Google Scholar 

  69. Mino, T. et al. Translation-dependent unwinding of stem-loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Res. 47, 8838–8859 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kanaan, J. et al. UPF1-like helicase grip on nucleic acids dictates processivity. Nat. Commun. 9, 3752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Raisch, T. et al. Reconstitution of recombinant human CCR4–NOT reveals molecular insights into regulated deadenylation. Nat. Commun. 10, 3173 (2019). This study proposes that RBPs might, through competition with non-specifically bound mRNAs, divert the deadenylating activity of CCR4–NOT from bulk mRNA to specific mRNA targets.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Keskeny, C. et al. A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4–NOT complex. Genes Dev. 33, 236–252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sgromo, A. et al. Drosophila bag-of-marbles directly interacts with the CAF40 subunit of the CCR4-NOT complex to elicit repression of mRNA targets. RNA 24, 381–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bulbrook, D. et al. Tryptophan-mediated interactions between tristetraprolin and the CNOT9 subunit are required for CCR4–NOT deadenylase complex recruitment. J. Mol. Biol. 430, 722–736 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Bhandari, D., Raisch, T., Weichenrieder, O., Jonas, S. & Izaurralde, E. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression. Genes Dev. 28, 888–901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Enwerem, I. I. I. et al. Human Pumilio proteins directly bind the CCR4–NOT deadenylase complex to regulate the transcriptome. RNA 27, 445–464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y. et al. A DDX6–CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54, 737–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Duchaine, T. F. & Fabian, M. R. Mechanistic insights into microRNA-mediated gene silencing. Cold Spring Harb. Perspect. Biol. 11, a032771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Mathys, H. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54, 751–765 (2014). Together with Chen et al. (2014), this report reveals the location of W-binding pockets in CNOT9, one of the hotspots for interactions of RBPs and TNRC6 adaptor proteins with the CCR4–NOT complex; these studies also present the structure of DDX6 bound to CCR4–NOT, pointing to physical links between miRNA- or RBP-dependent target recognition and regulation of mRNA stability and/or translation.

    Article  CAS  PubMed  Google Scholar 

  82. Xie, J., Kozlov, G. & Gehring, K. The “tale” of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. Biochim. Biophys. Acta 1839, 1062–1068 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Katzenellenbogen, R. A., Vliet-Gregg, P., Xu, M. & Galloway, D. A. NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J. Virol. 83, 6446–6456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dold, A. et al. Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genet. 16, e1008581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Boeynaems, S. et al. Poly(A)-binding protein is an ataxin-2 chaperone that emulsifies biomolecular condensates. Preprint at bioRxiv https://doi.org/10.1101/2021.08.23.457426 (2021). This report documents the moonlighting activity of PABPC as a chaperone that prevents spontaneous condensation of the intrinsically disordered RBP ATXN2.

    Article  Google Scholar 

  86. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hildebrandt, A. et al. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol. 20, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Rajyaguru, P., She, M. & Parker, R. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol. Cell 45, 244–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Christie, M. & Igreja, C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J. https://doi.org/10.1111/febs.16275 (2021).

    Article  PubMed  Google Scholar 

  91. Villaescusa, J. C. et al. Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 translation. PLoS ONE 4, e5213 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kamenska, A., Simpson, C. & Standart, N. eIF4E-binding proteins: new factors, new locations, new roles. Biochem. Soc. Trans. 42, 1238–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014). This comprehensive review considers SLiMs as a distinct class of protein interaction module and provides an in-depth analysis of their properties and functions in the control of cell physiology.

    Article  PubMed  Google Scholar 

  94. Davey, N. E., Cyert, M. S. & Moses, A. M. Short linear motifs – ex nihilo evolution of protein regulation. Cell Commun. Signal. 13, 43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Buljan, M. et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 46, 871–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Poetz, F. et al. RNF219 attenuates global mRNA decay through inhibition of CCR4–NOT complex-mediated deadenylation. Nat. Commun. 12, 7175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma, D. et al. The kinetic landscape of an RNA-binding protein in cells. Nature 591, 152–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gotze, M. et al. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA 23, 1552–1568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Baumann, S. et al. A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs. Sci. Adv. 6, eaaz1588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012). Together with Buljan et al. (2012), the authors argue that tissue-regulated exons are enriched in PPI-forming IDRs and provide experimental evidence that alternative splicing of these exons often diversifies protein interaction capabilities.

    Article  CAS  PubMed  Google Scholar 

  103. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nabel-Rosen, H., Volohonsky, G., Reuveny, A., Zaidel-Bar, R. & Volk, T. Two isoforms of the Drosophila RNA binding protein, How, act in opposing directions to regulate tendon cell differentiation. Dev. Cell 2, 183–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Yamagishi, R., Tsusaka, T., Mitsunaga, H., Maehata, T. & Hoshino, S. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs. Nucleic Acids Res. 44, 2475–2490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Volk, T., Israeli, D., Nir, R. & Toledano-Katchalski, H. Tissue development and RNA control: “HOW” is it coordinated? Trends Genet. 24, 94–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Fagg, W. S. et al. Autogenous cross-regulation of Quaking mRNA processing and translation balances Quaking functions in splicing and translation. Genes. Dev. 31, 1894–1909 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwerk, J. et al. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat. Immunol. 20, 1610–1620 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zimmer, M. M. et al. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nat. Commun. 12, 7193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. MacNicol, M. C. et al. Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci. Rep. 7, 11503 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. England, W. E. et al. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Res. 50, 4329–4339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gelens, L. & Saurin, A. T. Exploring the function of dynamic phosphorylation-dephosphorylation cycles. Dev. Cell 44, 659–663 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, Z. & Fu, X. D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, Z. et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ninomiya, K., Kataoka, N. & Hagiwara, M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. J. Cell Biol. 195, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Richter, J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Sarkissian, M., Mendez, R. & Richter, J. D. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 18, 48–61 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, J. H. & Richter, J. D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Udagawa, T. et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol. Cell 47, 253–266 (2012). Together with Sarkissian et al. (2004) and Kim et al. (2006), the authors describe phosphorylation-dependent reconfiguration of CPEB–effector interactions that turn CPEB from a repressor to an activator of polyadenylation-induced translation, a process that is crucial for development of germ cells and for synaptic plasticity in the nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alarcon, J. M. et al. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Mahtani, K. R. et al. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol. Cell Biol. 21, 6461–6469 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clement, S. L., Scheckel, C., Stoecklin, G. & Lykke-Andersen, J. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol. Cell Biol. 31, 256–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Poornima, G., Shah, S., Vignesh, V., Parker, R. & Rajyaguru, P. I. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res. 44, 9358–9368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhatter, N. et al. Arginine methylation augments Sbp1 function in translation repression and decapping. FEBS J. 286, 4693–4708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tadesse, H., Deschenes-Furry, J., Boisvenue, S. & Cote, J. KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum. Mol. Genet. 17, 506–524 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 31, 4258–4275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barth, T. K. & Imhof, A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Biggar, K. K. & Li, S. S. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol. 16, 5–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arenas, A. et al. Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum. Mol. Genet. 29, 2684–2697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, T. et al. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene 41, 3694–3704 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Gazzara, M. R. et al. Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes. Genome Res. 27, 1360–1370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, Y., Ma, M., Xiao, X. & Wang, Z. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat. Struct. Mol. Biol. 19, 1044–1052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ivanov, P. & Anderson, P. Post-transcriptional regulatory networks in immunity. Immunol. Rev. 253, 253–272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fu, X. D. & Ares, M. Jr Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gong, C., Kim, Y. K., Woeller, C. F., Tang, Y. & Maquat, L. E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23, 54–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Funakoshi, Y. et al. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21, 3135–3148 (2007). Together with Gong et al. (2009), this report provides experimental support for in vivo competition between RBPs and non-RBPs for a common binding site on an effector.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Uyar, B., Weatheritt, R. J., Dinkel, H., Davey, N. E. & Gibson, T. J. Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer. Mol. Biosyst. 10, 2626–2642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kumar, M. et al. ELM — the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 48, D296–D306 (2020).

    CAS  PubMed  Google Scholar 

  142. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dormann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chio, A. et al. Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol. Aging 30, 1272–1275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. DeJesus-Hernandez, M. et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum. Mutat. 31, E1377–E1389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, H. J. & Taylor, J. P. Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96, 285–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Bain, J. M. et al. Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am. J. Hum. Genet. 99, 728–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Boehringer, A. et al. ALS associated mutations in Matrin 3 alter protein–protein interactions and impede mRNA nuclear export. Sci. Rep. 7, 14529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Malik, A. M. & Barmada, S. J. Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight 6, e143948 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Pena, V., Liu, S., Bujnicki, J. M., Luhrmann, R. & Wahl, M. C. Structure of a multipartite protein-protein interaction domain in splicing factor Prp8 and its link to retinitis pigmentosa. Mol. Cell 25, 615–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Buskin, A. et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 9, 4234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Danilova, N. & Gazda, H. T. Ribosomopathies: how a common root can cause a tree of pathologies. Dis. Model. Mech. 8, 1013–1026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Gonatopoulos-Pournatzis, T. et al. Autism-misregulated eIF4G microexons control synaptic translation and higher order cognitive functions. Mol. Cell 77, 1176–1192.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Ajiro, M. et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat. Commun. 12, 4507 (2021). This study provides a mechanistic insight into how RBP–effector interactions can be modulated by small synthetic molecules that affect phosphorylation with potential therapeutic effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yoshida, M. et al. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc. Natl Acad. Sci. USA 112, 2764–2769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nishida, A. et al. Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat. Commun. 2, 308 (2011).

    Article  PubMed  Google Scholar 

  159. Tzelepis, K. et al. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nat. Commun. 9, 5378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Amin, E. M. et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20, 768–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Batson, J. et al. Development of potent, selective SRPK1 inhibitors as potential topical therapeutics for neovascular eye disease. ACS Chem. Biol. 12, 825–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Hatcher, J. M. et al. SRPKIN-1: a covalent SRPK1/2 inhibitor that potently converts VEGF from pro-angiogenic to anti-angiogenic isoform. Cell Chem. Biol. 25, 460–470.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nussbacher, J. K., Tabet, R., Yeo, G. W. & Lagier-Tourenne, C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron 102, 294–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guo, L., Fare, C. M. & Shorter, J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 29, 308–322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ross, E. A. et al. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann. Rheum. Dis. 76, 612–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Patil, C. S. et al. Targeting mRNA stability arrests inflammatory bone loss. Mol. Ther. 16, 1657–1664 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Patial, S. et al. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proc. Natl Acad. Sci. USA 113, 1865–1870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, J. et al. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 25, 1528–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lucchesi, C. A., Zhang, J., Ma, B., Chen, M. & Chen, X. Disruption of the Rbm38-eIF4E complex with a synthetic peptide Pep8 increases p53 expression. Cancer Res. 79, 807–818 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Yu, A. M. & Tu, M. J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol. Ther. 230, 107967 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Morita, M. et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol. Cell Biol. 32, 3585–3593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Naarmann-de Vries, I. S. et al. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res. 49, 3507–3523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Braun, J. E., Huntzinger, E. & Izaurralde, E. The role of GW182 proteins in miRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Liu, Q. et al. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87, 1763–1769 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Winton, M. J. et al. A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro. FEBS Lett. 582, 2252–2256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Doll, S. G. et al. Recognition of the TDP-43 nuclear localization signal by importin alpha1/beta. Cell Rep. 39, 111007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Johnson, J. O. et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Selenko, P. et al. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 27–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Shibata, S., Ajiro, M. & Hagiwara, M. Mechanism-based personalized medicine for cystic fibrosis by suppressing pseudo exon inclusion. Cell Chem. Biol. 27, 1472–1482 e1476 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Boisson, B. et al. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J. Clin. Invest. 129, 583–597 (2019).

    Article  PubMed  Google Scholar 

  182. Carrick, D. M. et al. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J. Autoimmun. 26, 182–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Patial, S. & Blackshear, P. J. Tristetraprolin as a therapeutic target in inflammatory disease. Trends Pharmacol. Sci. 37, 811–821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lucas, B. A. et al. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc. Natl Acad. Sci. USA 115, 968–973 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yue, Y. et al. Role and convergent evolution of competing RNA secondary structures in mutually exclusive splicing. RNA Biol. 14, 1399–1410 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Calabretta, S. & Richard, S. Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40, 662–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Bourgeois, C. F., Mortreux, F. & Auboeuf, D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Biol. 17, 426–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Hildebrandt, A. et al. Interaction profiling of RNA-binding ubiquitin ligases reveals a link between posttranscriptional regulation and the ubiquitin system. Sci. Rep. 7, 16582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Rintala-Dempsey, A. C. & Kothe, U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 14, 1185–1196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Curtis, N. J. & Jeffery, C. J. The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochem. Soc. Trans. 49, 1099–1108 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Gayatri, S. & Bedford, M. T. Readers of histone methylarginine marks. Biochim. Biophys. Acta 1839, 702–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell 65, 8–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Ivshina, M., Lasko, P. & Richter, J. D. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 393–415 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Jankowsky, L. Maquat, A. Ephrussi and members of the authors’ laboratories for helpful discussions. The authors’ work pertaining to the reviewed topic is supported by the Intramural Research Program, Center for Cancer Research (to E.V.) and grant GM144693 (to J.M.) from the US NIH, and grant no. 2054195 (to S.C. and J.M.) from the US National Science Foundation. The authors apologize for the literature omitted owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

S.H. performed the bioinformatic analyses. All authors contributed to all other aspects of the article.

Corresponding authors

Correspondence to Sihem Cheloufi or Jernej Murn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Matthias Hentze and Sarath Janga for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AlphaFold: https://alphafold.ebi.ac.uk/

ELM database: http://elm.eu.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Valkov, E., Cheloufi, S. et al. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 24, 276–294 (2023). https://doi.org/10.1038/s41576-022-00550-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00550-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing