Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Context-specific Polycomb mechanisms in development

Abstract

Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composition and molecular functions of Polycomb complexes.
Fig. 2: Formation of repressed domains by positive feedback between Polycomb complexes.
Fig. 3: Examples of cell type-specific Polycomb complexes.
Fig. 4: Redistribution of Polycomb complexes.
Fig. 5: Hypothetical models of the different roles of Polycomb complexes in the maintenance of gene repression.

Similar content being viewed by others

References

  1. Lewis, P. H. Pc: polycomb. Drosoph. Inf. Serv. 21, 69 (1947).

    Google Scholar 

  2. Slifer, E. H. A mutant stock of Drosophila with extra sex-combs. J. Exp. Zool. 90, 31–40 (1942).

    Article  Google Scholar 

  3. Struhl, G. & Akam, M. Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J. 4, 3259–3264 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wedeen, C., Harding, K. & Levine, M. Spatial regulation of Antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell 44, 739–748 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Zink, B. & Paro, R. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337, 468–471 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Whitcomb, S. J., Basu, A., Allis, C. D. & Bernstein, E. Polycomb group proteins: an evolutionary perspective. Trends Genet. 23, 494–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Parreno, V., Martinez, A. M. & Cavalli, G. Mechanisms of polycomb group protein function in cancer. Cell Res. 32, 231–253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  PubMed  Google Scholar 

  9. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25, 2210–2221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz, Y. B. et al. Genome-wide analysis of polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan, W. et al. Dense chromatin activates polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337, 971–975 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, J. et al. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat. Cell Biol. 22, 439–452 (2020). This study demonstrates that the interaction between RYBP and H2AK119ub1 is crucial for spreading of H2AK119ub1 by ncPRC1.

    Article  CAS  PubMed  Google Scholar 

  23. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012). Through systematic pull-downs and follow-up experiments, this study shows that the composition of distinct PRC1 complexes are based on combinations of PCGF, CBX and RYBP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during polycomb group silencing. Genes Dev. 22, 2799–2810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016). Using low-input ChIP–seq experiments, the authors identify atypical H3K27me3 distribution in mouse oocytes and preimplantation embryos.

    Article  CAS  PubMed  Google Scholar 

  30. Jadhav, U. et al. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 165, 1389–1400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen, I. et al. PRC1 fine-tunes gene repression and activation to safeguard skin development and stem cell specification. Cell Stem Cell 22, 726–739 e727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blackledge, N. P. & Klose, R. J. The molecular principles of gene regulation by polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815–833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piunti, A. & Shilatifard, A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 22, 326–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, H. G., Kahn, T. G., Simcox, A., Schwartz, Y. B. & Pirrotta, V. Genome-wide activities of Polycomb complexes control pervasive transcription. Genome Res. 25, 1170–1181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Dobrinic, P., Szczurek, A. T. & Klose, R. J. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat. Struct. Mol. Biol. 28, 811–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Tavares, L. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farcas, A. M. et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Taherbhoy, A. M., Huang, O. W. & Cochran, A. G. BMI1-RING1B is an autoinhibited RING E3 ubiquitin ligase. Nat. Commun. 6, 7621 (2015).

    Article  PubMed  Google Scholar 

  48. Endoh, M. et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8, e1002774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kallin, E. M. et al. Genome-wide uH2A localization analysis highlights Bmi1-dependent deposition of the mark at repressed genes. PLoS Genet. 5, e1000506 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fursova, N. A. et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol. Cell 74, 1020–1036.e1028 (2019). Through systematic deletion of PCGF proteins in mES cells, the authors of this study and that of Scelfo et al. (2019) characterize the synergistic roles of the PCGF proteins in H2A ubiquitylation and gene repression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rose, N. R. et al. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 5, e18591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Tamburri, S. et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 77, 840–856 e845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function. Mol. Cell 77, 857–874 e859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Illingworth, R. S. et al. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes Dev. 29, 1897–1902 (2015). This study, along with that of Pengelly et al. (2015), shows that the bulk of ubiquitylation is dispensable for correct patterning of animals by generating ubiquitylation-deficient flies and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pengelly, A. R., Kalb, R., Finkl, K. & Muller, J. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev. 29, 1487–1492 (2015). This study, along with that of Illingworth et al. (2015), shows that the bulk of ubiquitylation is dispensable for correct patterning of animals by generating ubiquitylation-deficient flies and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cohen, I., Bar, C. & Ezhkova, E. Activity of PRC1 and histone H2AK119 monoubiquitination: revising popular misconceptions. Bioessays 42, e1900192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, R. et al. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18, 966–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Isono, K. et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 26, 565–577 (2013). This study demonstrates that the SAM domain-mediated clustering of the PHC protein is crucial for Polycomb body formation and proper mouse development.

    Article  CAS  PubMed  Google Scholar 

  61. Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453–457 (2002).

    CAS  PubMed  Google Scholar 

  62. Kundu, S. et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65, 432–446 e435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wani, A. H. et al. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat. Commun. 7, 10291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019). This study, along with that of Tatavosian et al. (2019), shows that the cPRC1 component CBX2 can phase separate, suggesting another potential way of physically regulating Polycomb domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seif, E. et al. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb group proteins and enhances their activity. Nat. Commun. 11, 5609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tatavosian, R. et al. Nuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019). This study, along with that of Plys et al. (2019), shows that the cPRC1 component CBX2 can phase separate, suggesting another potential way of physically regulating Polycomb domains.

    Article  CAS  PubMed  Google Scholar 

  67. Satijn, D. P. et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol. Cell Biol. 17, 4105–4113 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saurin, A. J. et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142, 887–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016). Using oligopaint FISH and super resolution microscopy, this study is one of the first imaging-based studies to show that Polycomb-bound regions are more densely packed than transcriptionally active regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179–1186 (2015). Through promoter capture Hi-C, this study demonstrates the role of PRC1 in genome organization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morey, L. et al. Nonoverlapping functions of the polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012). This study, along with that of O’Loghlen et al. (2012), shows that CBX component switching occurs during mES cell differentiation, suggesting that cPRC1 composition can be dynamically changed depending on the cellular contexts.

    Article  CAS  PubMed  Google Scholar 

  74. O’Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012). This study, along with that of Morey et al. (2012), shows that CBX component switching occurs during mES cell differentiation, suggesting that cPRC1 composition can be dynamically changed depending on the cellular contexts.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Isono, K. et al. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol. Cell Biol. 25, 6694–6706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Core, N. et al. Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice. Development 124, 721–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Katoh-Fukui, Y. et al. Male-to-female sex reversal in M33 mutant mice. Nature 393, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014). This study, along with that of Cooper et al. (2014), demonstrates through ectopic recruitment of various PRC components to artificial loci that ncPRC1 is upstream of PRC2 and cPRC1 in the hierarchical pathway in mES cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cooper, S. et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7, 1456–1470 (2014). This study, along with that of Blackledge et al. (2014), demonstrates through ectopic recruitment of various PRC components to artificial loci that ncPRC1 is upstream of PRC2 and cPRC1 in the hierarchical pathway in mES cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162.e1145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arrigoni, R. et al. The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett. 580, 6233–6241 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Kagey, M. H., Melhuish, T. A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Jaensch, E. S. et al. A Polycomb domain found in committed cells impairs differentiation when introduced into PRC1 in pluripotent cells. Mol. Cell 81, 4677–4691 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, J. & Kingston, R. E. The CBX family of proteins in transcriptional repression and memory. J. Biosci. 45, 16 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol. 26, 2560–2569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhen, C. Y. et al. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. eLife 5, e17667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhen, C. Y., Duc, H. N., Kokotovic, M., Phiel, C. J. & Ren, X. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol. Biol. Cell 25, 3726–3739 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tardat, M. et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell 58, 157–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Junco, S. E. et al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure 21, 665–671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gray, F. et al. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat. Commun. 7, 13343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scelfo, A. et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent-and RING1A/B-independent-specific activities. Mol. Cell 74, 1037–1052.e1037 (2019). Through systematic deletion of PCGF proteins in mES cells, the authors of this study and that of Fursova et al. (2019) characterize the synergistic roles of the PCGF proteins in H2A ubiquitylation and gene repression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Almeida, M. et al. PCGF3/5-PRC1 initiates polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084 (2017). Using livecell imaging and genetic mouse models, the authors show the specific roles of PCGF3 and PCGF5 in X chromosome-inactivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Endoh, M. et al. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. eLife 6, e21064 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zdzieblo, D. et al. Pcgf6, a polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming. Stem Cell 32, 3112–3125 (2014).

    Article  CAS  Google Scholar 

  97. Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is high maintenance. Genes Dev. 33, 903–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perino, M. et al. MTF2 recruits polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50, 1002–1010 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Healy, E. et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol. Cell 76, 437–452 e436 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Hojfeldt, J. W. et al. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol. Cell 76, 423–436.e423 (2019).

    Article  PubMed  Google Scholar 

  102. Petracovici, A. & Bonasio, R. Distinct PRC2 subunits regulate maintenance and establishment of polycomb repression during differentiation. Mol. Cell 81, 2625–2639.e2625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kloet, S. L. et al. The dynamic interactome and genomic targets of polycomb complexes during stem-cell differentiation. Nat. Struct. Mol. Biol. 23, 682–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pemberton, H. et al. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol. 15, R23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Akasaka, T. et al. Mice doubly deficient for the polycomb group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Moussa, H. F. et al. Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nat. Commun. 10, 1931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Posfai, E. et al. Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cohen, I. et al. Polycomb complexes redundantly maintain epidermal stem cell identity during development. Genes Dev. 35, 354–366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zepeda-Martinez, J. A. et al. Parallel PRC2/cPRC1 and vPRC1 pathways silence lineage-specific genes and maintain self-renewal in mouse embryonic stem cells. Sci. Adv. 6, eaax5692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takada, Y. et al. Mammalian Polycomb Scmh1 mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes. Development 134, 579–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Garcia-Moreno, S. A. et al. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet. 15, e1007895 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hasegawa, K. et al. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev. Cell 32, 574–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Luo, M. et al. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet. 11, e1004954 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65, 753–763 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  PubMed  Google Scholar 

  120. Gil, J., Bernard, D., Martinez, D. & Beach, D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol. 6, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Klauke, K. et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat. Cell Biol. 15, 353–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Luis, N. M. et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell 9, 233–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Chung, C. Y. et al. Cbx8 acts non-canonically with Wdr5 to promote mammary tumorigenesis. Cell Rep. 16, 472–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tan, J. et al. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20, 563–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Morey, L. et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell 17, 300–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Xu, J. et al. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol. Cell 57, 304–316 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stojic, L. et al. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics Chromatin 4, 16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Laible, G. et al. Mammalian homologues of the polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 16, 3219–3232 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. O’Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol. 21, 4330–4336 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Voncken, J. W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. del Mar Lorente, M. et al. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 127, 5093–5100 (2000).

    Article  PubMed  Google Scholar 

  133. Bhattacharya, D., Talwar, S., Mazumder, A. & Shivashankar, G. V. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J. 96, 3832–3839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Oliviero, G. et al. Dynamic protein interactions of the polycomb repressive complex 2 during differentiation of pluripotent cells. Mol. Cell Proteom. 15, 3450–3460 (2016).

    Article  CAS  Google Scholar 

  136. Beringer, M. et al. EPOP functionally links elongin and polycomb in pluripotent stem cells. Mol. Cell 64, 645–658 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Frey, F. et al. Molecular basis of PRC1 targeting to polycomb response elements by PhoRC. Genes Dev. 30, 1116–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kang, H. et al. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. Genes Dev. 29, 1136–1150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. DeLuca, S. Z., Ghildiyal, M., Pang, L. Y. & Spradling, A. C. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 9, e56922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gao, Z. et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516, 349–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, S. et al. NRF1 association with AUTS2-polycomb mediates specific gene activation in the brain. Mol. Cell 81, 4663–4676 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Frangini, A. et al. The aurora B kinase and the polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. Mol. Cell 51, 647–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Piunti, A. et al. CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci. Adv. 5, eaax2887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jain, S. U. et al. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat. Commun. 10, 2146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ragazzini, R. et al. EZHIP constrains polycomb repressive complex 2 activity in germ cells. Nat. Commun. 10, 3858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pajtler, K. W. et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 136, 211–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsuboi, M. et al. Ubiquitination-independent repression of PRC1 targets during neuronal fate restriction in the developing mouse neocortex. Dev. Cell 47, 758–772.e755 (2018). This study shows that distinct PRC1 activity (ubiquitylation versus PHC-mediated clustering) is required for gene silencing in different stages of NPCs during cortical development.

    Article  CAS  PubMed  Google Scholar 

  149. Li, X. Y., Harrison, M. M., Villalta, J. E., Kaplan, T. & Eisen, M. B. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition. eLife 3, e03737 (2014).

    Article  PubMed Central  Google Scholar 

  150. Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Du, Z. et al. Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol. Cell 77, 825–839.e827 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat. Genet. 53, 551–563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat. Genet. 53, 539–550 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Koyama-Nasu, R., David, G. & Tanese, N. The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nat. Cell Biol. 9, 1074–1080 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Lynch, M. D. et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate polycomb complex recruitment. EMBO J. 31, 317–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reddington, J. P. et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol. 14, R25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Harris, C. et al. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 8, e44258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Inoue, A., Chen, Z., Yin, Q. & Zhang, Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017). This study identifies a set of genes that require maternally inherited H3K27me3 for their allele-specific repression, demonstrating that the Polycomb system is involved in imprinting in early mouse embryos.

    Article  CAS  PubMed  Google Scholar 

  163. Inoue, A., Jiang, L., Lu, F. & Zhang, Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev. 31, 1927–1932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Conway, E. et al. BAP1 enhances Polycomb repression by counteracting widespread H2AK119ub1 deposition and chromatin condensation. Mol. Cell 81, 3526–3541.e3528 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fursova, N. A. et al. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev. 35, 749–770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kadoch, C. et al. Dynamics of BAF-polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Weber, C. M. et al. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sharp, E. J., Martin, E. C. & Adler, P. N. Directed overexpression of suppressor 2 of zeste and posterior sex combs results in bristle abnormalities in Drosophila melanogaster. Dev. Biol. 161, 379–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  171. Bel, S. et al. Genetic interactions and dosage effects of polycomb group genes in mice. Development 125, 3543–3551 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Alkema, M. J., van der Lugt, N. M., Bobeldijk, R. C., Berns, A. & van Lohuizen, M. Transformation of axial skeleton due to overexpression of bmi-1 in transgenic mice. Nature 374, 724–727 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Lau, M. S. Mutations in the Charged Domain of CBX2 Disrupt PRC1 Function in Vivo. Doctoral thesis, Harvard University (2016).

  174. Zhu, L. & Brangwynne, C. P. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol. 34, 23–30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hosogane, M., Funayama, R., Shirota, M. & Nakayama, K. Lack of transcription triggers H3K27me3 accumulation in the gene body. Cell Rep. 16, 696–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Riising, E. M. et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Stielow, B., Finkernagel, F., Stiewe, T., Nist, A. & Suske, G. MGA, L3MBTL2 and E2F6 determine genomic binding of the non-canonical Polycomb repressive complex PRC1.6. PLoS Genet. 14, e1007193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Miller, S. A., Damle, M., Kim, J. & Kingston, R. E. Full methylation of H3K27 by PRC2 is dispensable for initial embryoid body formation but required to maintain differentiated cell identity. Development 148, dev196329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lu, T. T. et al. The polycomb-dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab. 27, 1294–1308 e1297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Iovino, N., Ciabrelli, F. & Cavalli, G. PRC2 controls Drosophila oocyte cell fate by repressing cell cycle genes. Dev. Cell 26, 431–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236 (2017). This study, together with that of Laprell et al. (2017), demonstrates that existing H3K27me3 is not sufficient for self-maintenance and gene repression by inducing the deletion of DNA elements needed for de novo PcG recruitment.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Laprell, F., Finkl, K. & Muller, J. Propagation of polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017). This study, together with that of Coleman et al. (2017), demonstrates that existing H3K27me3 is not sufficient for self-maintenance and gene repression by inducing the deletion of DNA elements needed for de novo PcG recruitment.

    Article  CAS  PubMed  Google Scholar 

  184. Jadhav, U. et al. Replicational dilution of H3K27me3 in mammalian cells and the role of poised promoters. Mol. Cell 78, 141–151 e145 (2020). This study shows slow replicative dilution and resulting gene derepression in mammalian systems including intestinal stem cells and human lymphoma cells after disrupting PRC2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang, H. et al. Distinct phases of polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357, 1142–1145 (2017). This study shows that the loss of Polycomb-mediated memory can be variable between cells within an organism.

    Article  CAS  PubMed  Google Scholar 

  187. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Struhl, G. A gene product required for correct initiation of segmental determination in Drosophila. Nature 293, 36–41 (1981).

    Article  CAS  PubMed  Google Scholar 

  189. Chan, C. S., Rastelli, L. & Pirrotta, V. A polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13, 2553–2564 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. De, S., Mitra, A., Cheng, Y., Pfeifer, K. & Kassis, J. A. Formation of a Polycomb-domain in the absence of strong polycomb response elements. PLoS Genet. 12, e1006200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mukund, A. & Bintu, L. Temporal signaling, population control, and information processing through chromatin-mediated gene regulation. J. Theor. Biol. 535, 110977 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Sneppen, K. & Ringrose, L. Theoretical analysis of Polycomb-trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat. Commun. 10, 2133 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Akasaka, T. et al. A role for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122, 1513–1522 (1996).

    Article  CAS  PubMed  Google Scholar 

  194. Capdevila, M. P., Botas, J. & Garcia-Bellido, A. Genetic interactions between the polycomb locus and the antennapedia and bithorax complexes of Drosophila. Rouxs Arch. Dev. Biol. 195, 417–432 (1986).

    Article  CAS  PubMed  Google Scholar 

  195. Dura, J. M., Brock, H. W. & Santamaria, P. Polyhomeotic: a gene of Drosophila melanogaster required for correct expression of segmental identity. Mol. Gen. Genet. 198, 213–220 (1985).

    Article  CAS  PubMed  Google Scholar 

  196. Tokunaga, C. & Stern, C. The developmental autonomy of extra sex combs in Drosophila melanogaster. Dev. Biol. 11, 50–81 (1965).

    Article  CAS  PubMed  Google Scholar 

  197. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    Article  PubMed  Google Scholar 

  198. Beuchle, D., Struhl, G. & Muller, J. Polycomb group proteins and heritable silencing of Drosophila hox genes. Development 128, 993–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Beh, L. Y., Colwell, L. J. & Francis, N. J. A core subunit of polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proc. Natl Acad. Sci. USA 109, E1063–E1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sugishita, H. et al. Variant PCGF1-PRC1 links PRC2 recruitment with differentiation-associated transcriptional inactivation at target genes. Nat. Commun. 12, 5341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hickey, G. J. et al. Establishment of developmental gene silencing by ordered polycomb complex recruitment in early zebrafish embryos. eLife 11, e67738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cheutin, T. & Cavalli, G. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet. 8, e1002465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Buchwald, G. et al. Structure and E3-ligase activity of the ring-ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, Z. et al. Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J. Biol. Chem. 281, 20643–20649 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Shen, Y. et al. A map of the 32-cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Zhu, M. Mauger, E. Steinson, J. Wucherpfennig, U. Cho and E. Grow for critical reading of the manuscript. This work was supported by NIH grant R35-GM131743 to R.E.K.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert E. Kingston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks I. Cohen, H. Koseki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Homeotic transformation

A class of mutant phenotypes in which a body segment transforms into another body segment, usually as a result of misregulation of Hox genes. A classic example is the Antennapedia mutation in Drosophila melanogaster, which results in legs instead of antennae.

Paralogous

Paralogous genes are derived from an ancestral gene by gene duplication events within the same species. Paralogous proteins can retain similar functions, but they can also acquire distinct functions.

Preimplantation embryos

Placental animal embryos from zygote to before implantation stages. The first lineage specification between inner cell mass (which gives rise to embryo proper) and trophectoderm (which gives rise to the placenta) happens during this stage.

Orthologue

Orthologous genes are derived by speciation events, therefore, orthologues are present in different species. Orthologous proteins can retain similar functions, but they can also acquire distinct functions.

Nucleosome arrays

In vitro reconstituted chromatin templates used to study biochemical properties of chromatin-modifying proteins, which are made from DNA with nucleosome positioning sequences and linker mixed with histone octamers.

mSWI/SNF

A protein complex that can destabilize histone–DNA interactions in an ATP-dependent manner. It can create accessibility to DNA and counteract Polycomb-mediated repression.

Phase separation

A phenomenon whereby proteins transition to another phase with different physicochemical properties, often through multivalent interactions between themselves. It is potentially one of the driving forces in the formation of membraneless organelles and condensates in the cell.

Pericentromeres

Regions of chromosome adjacent to the centromeres, composed of AT-rich satellite DNA tandem repeats, usually DNA-methylated and methylated at lysine 9 of histone H3.

CpG islands

Approximately 1 kb DNA regions in vertebrates with overrepresentation of CpG dinucleotides compared with the genome average. They are often a site of transcription initiation, and more than half of annotated gene promoters are CpG islands.

Polycomb response element

(PRE). Discrete regulatory DNA element that can nucleate recruitment of Polycomb complexes and silencing in Drosophila melanogaster.

Vernalization

A process of prolonged exposure to the cold that induces flowering in plants. Genetic screens to find genes required for vernalization uncovered several genes later identified to be part of plant Polycomb complexes.

Trithorax group

(trxG). A group of chromatin regulators that maintains an active state of gene expression that includes mSWI/SNF complex. Genes encoding trxG proteins were originally discovered by a genetic suppression screen in Drosophila melanogaster to suppress the Polycomb mutant phenotype.

Zygotic genome activation

After fertilization, transcription is absent in the zygotic genome, therefore, embryos develop with maternally provided transcripts. Zygotic genome activation happens as maternal mRNA decays, and genes are transcribed from the zygotic genome through the process called maternal-to-zygotic transition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.J., Kingston, R.E. Context-specific Polycomb mechanisms in development. Nat Rev Genet 23, 680–695 (2022). https://doi.org/10.1038/s41576-022-00499-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00499-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing