Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanical regulation of chromatin and transcription

Abstract

Cells and tissues generate and are exposed to various mechanical forces that act across a range of scales, from tissues to cells to organelles. Forces provide crucial signals to inform cell behaviour during development and adult tissue homeostasis, and alterations in forces and in their downstream mechanotransduction pathways can influence disease progression. Recent advances have been made in our understanding of the mechanisms by which forces regulate chromatin organization and state, and of the mechanosensitive transcription factors that respond to the physical properties of the cell microenvironment to coordinate gene expression, cell states and behaviours. These insights highlight the relevance of mechanosensitive transcriptional regulation to physiology, disease and emerging therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular structures involved in mechanotransmission.
Fig. 2: Mechanotransduction of forces into biochemical information.
Fig. 3: General mechanisms by which mechanical forces can regulate gene expression.
Fig. 4: Mechanosensitive transcription factors in development and disease.
Fig. 5: Mechanosensitive transcription factors in vascular physiology and pathological remodelling.
Fig. 6: Mechanosensitive transcription factors in fibrosis and cancer.

Similar content being viewed by others

References

  1. Collinet, C. & Lecuit, T. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 22, 245–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Mishra, N. & Heisenberg, C. P. Dissecting organismal morphogenesis by bridging genetics and biophysics. Annu. Rev. Genet. 55, 209–233 (2021).

    Article  PubMed  CAS  Google Scholar 

  3. Stooke-Vaughan, G. A. & Campas, O. Physical control of tissue morphogenesis across scales. Curr. Opin. Genet. Dev. 51, 111–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janmey, P. A., Fletcher, D. A. & Reinhart-King, C. A. Stiffness sensing by cells. Physiol. Rev. 100, 695–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 23, 1–27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maurer, M. & Lammerding, J. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu. Rev. Biomed. Eng. 21, 443–468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charras, G. & Yap, A. S. Tensile forces and mechanotransduction at cell-cell junctions. Curr. Biol. 28, R445–R457 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Hu, X., Margadant, F. M., Yao, M. & Sheetz, M. P. Molecular stretching modulates mechanosensing pathways. Protein Sci. 26, 1337–1351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saini, K. & Discher, D. E. Forced unfolding of proteins directs biochemical cascades. Biochemistry 58, 4893–4902 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Cox, C. D., Bavi, N. & Martinac, B. Origin of the force: the force-from-lipids principle applied to piezo channels. Curr. Top. Membr. 79, 59–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Douguet, D. & Honore, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. De Belly, H. et al. Membrane tension gates ERK-mediated regulation of pluripotent cell fate. Cell Stem Cell 28, 273–284.e276 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torrino, S. et al. EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. J. Cell Biol. 217, 4092–4105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Discher, D. E. et al. Matrix mechanosensing: from scaling concepts in ‘omics data to mechanisms in the nucleus, regeneration, and cancer. Annu. Rev. Biophys. 46, 295–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miroshnikova, Y. A. & Wickstrom, S. A. Mechanical forces in nuclear organization. Cold Spring Harb. Perspect. Biol. 14, a039685 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Buxboim, A. et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho, S. et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell 49, 920–935 e925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lammerding, J. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J. Cell Biol. 170, 781–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gesson, K. et al. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 26, 462–473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Lund, E. et al. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res. 23, 1580–1589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buxboim, A. et al. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes. Mol. Biol. Cell 28, 3333–3348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ivanovska, I. L. et al. Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e822 (2020). This study shows that chromatin dynamically adapts to changing force environments by altering nuclear mechanical properties and that this has a role in genome mechanoprotection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stephens, A. D., Banigan, E. J., Adam, S. A., Goldman, R. D. & Marko, J. F. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell 28, 1984–1996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rheinlaender, J. et al. Cortical cell stiffness is independent of substrate mechanics. Nat. Mater. 19, 1019–1025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Enyedi, B., Jelcic, M. & Niethammer, P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165, 1160–1170 (2016). This study was among the first to demonstrate that the nucleus is a mechanosensor and to identify calcium as a downstream signalling mediator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Itano, N., Okamoto, S., Zhang, D., Lipton, S. A. & Ruoslahti, E. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl Acad. Sci. USA 100, 5181–5186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lomakin, A. J et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370, eaba2894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venturini, V. et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370, eaba2644 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Aureille, J. et al. Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO Rep. 20, e48084 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 e1314 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman, L. M. et al. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol. Biol. Cell 31, 1774–1787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zimmerli, C. E. et al. Nuclear pores dilate and constrict in cellulo. Science 374, eabd9776 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Guet, D. et al. Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr. Biol. 24, 1700–1711 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. eLife 6, e30292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Romani, P. et al. Extracellular matrix mechanical cues regulate lipid metabolism through lipin-1 and SREBP. Nat. Cell Biol. 21, 338–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Romani, P. et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat. Cell Biol. 24, 168–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Tharp, K. M. et al. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab. 33, 1322–1341 e1313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spasic, M. & Jacobs, C. R. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin. Cell Dev. Biol. 71, 42–52 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, J., Chen, J., Mohagheghian, E. & Wang, N. Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation. Sci. Adv. 6, eaay9095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mardaryev, A. N. et al. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development 141, 101–111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carley, E. et al. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 10, e58541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heo, S. J. et al. Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. eLife 5, e18207 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heo, S. J. et al. Mechanically induced chromatin condensation requires cellular contractility in mesenchymal stem cells. Biophys. J. 111, 864–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Le, H. Q. et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18, 864–875 (2016). This pioneering study shows how mechanical stress alters chromatin architecture with direct impact on lineage gene expression and stem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  60. Miroshnikova, Y. A., Cohen, I., Ezhkova, E. & Wickstrom, S. A. Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis. Curr. Opin. Genet. Dev. 55, 46–51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stephens, A. D. et al. Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol. Biol. Cell 30, 2320–2330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Le Beyec, J. et al. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp. Cell Res. 313, 3066–3075 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li, Y. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100, 1902–1909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, J. et al. Geometric regulation of histone state directs melanoma reprogramming. Commun. Biol. 3, 341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fasciani, A. et al. MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat. Genet. 52, 1397–1411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shao, X., Li, Q., Mogilner, A., Bershadsky, A. D. & Shivashankar, G. V. Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc. Natl Acad. Sci. USA 112, E2595–E2601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wales, P. et al. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. eLife 5, e19850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jung, H. J. et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol. Cell Biol. 34, 4534–4544 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nastaly, P. et al. Role of the nuclear membrane protein emerin in front-rear polarity of the nucleus. Nat. Commun. 11, 2122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson, N. et al. Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differentiation 71, 414–424 (2003).

    Article  PubMed  Google Scholar 

  72. Biedzinski, S. et al. Microtubules control nuclear shape and gene expression during early stages of hematopoietic differentiation. EMBO J. 39, e103957 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Procter, D. J., Furey, C., Garza-Gongora, A. G., Kosak, S. T. & Walsh, D. Cytoplasmic control of intranuclear polarity by human cytomegalovirus. Nature 587, 109–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ulferts, S., Prajapati, B., Grosse, R. & Vartiainen, M. K. Emerging properties and functions of actin and actin filaments inside the nucleus. Cold Spring Harb. Perspect. Biol. 13, a040121 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Dopie, J., Skarp, K. P., Rajakyla, E. K., Tanhuanpaa, K. & Vartiainen, M. K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl Acad. Sci. USA 109, E544–E552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plessner, M., Melak, M., Chinchilla, P., Baarlink, C. & Grosse, R. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 11209–11216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fiore, A. et al. Laminin-111 and the level of nuclear actin regulate epithelial quiescence via exportin-6. Cell Rep. 19, 2102–2115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hofmann, W. A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Qi, T. et al. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286, 15171–15181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sokolova, M. et al. Nuclear actin is required for transcription during drosophila oogenesis. iScience 9, 63–70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Viita, T. et al. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 132, jcs226852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Spencer, V. A. et al. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124, 123–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Hurst, V., Shimada, K. & Gasser, S. M. Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 29, 462–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Jungblut, A., Hopfner, K. P. & Eustermann, S. Megadalton chromatin remodelers: common principles for versatile functions. Curr. Opin. Struct. Biol. 64, 134–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Xie, X. et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 32, 1296–1314 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Xie, X., Jankauskas, R., Mazari, A. M. A., Drou, N. & Percipalle, P. β-Actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet. 14, e1007846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Hari-Gupta, Y. et al. Myosin VI regulates the spatial organisation of mammalian transcription initiation. Nat. Commun. 13, 1346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vreugde, S. et al. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23, 749–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, X. et al. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat. Cell Biol. 8, 756–763 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Xia, P. et al. WASH is required for the differentiation commitment of hematopoietic stem cells in a c-Myc-dependent manner. J. Exp. Med. 211, 2119–2134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Zorca, C. E. et al. Myosin VI regulates gene pairing and transcriptional pause release in T cells. Proc. Natl Acad. Sci. USA 112, E1587–E1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miyamoto, K., Pasque, V., Jullien, J. & Gurdon, J. B. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev. 25, 946–958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miyamoto, K. et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science 341, 1002–1005 (2013). This work provides evidence that nuclear actin polymerization is key for transcription in the context of pluripotency reprogramming.

    Article  CAS  PubMed  Google Scholar 

  97. Yamazaki, S. et al. The actin-family protein arp4 is a novel suppressor for the formation and functions of nuclear F-actin. Cells 9, 758 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  98. Dalton, S. & Treisman, R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68, 597–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Esnault, C. et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev. 28, 943–958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995). This landmark study shows that SRF activity is regulated in response to cytoskeletal dynamics.

    Article  CAS  PubMed  Google Scholar 

  101. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, D. Z. et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc. Natl Acad. Sci. USA 99, 14855–14860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Z. et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428, 185–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Baarlink, C., Wang, H. & Grosse, R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Cui, Y. et al. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6, 6333 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Fearing, B. V. et al. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. FASEB J. 33, 14022–14035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Foster, C. T., Gualdrini, F. & Treisman, R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes. Dev. 31, 2361–2375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Connor, J. W. & Gomez, E. W. Cell adhesion and shape regulate TGF-beta1-induced epithelial-myofibroblast transition via MRTF-A signaling. PLoS ONE 8, e83188 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. O’Connor, J. W., Riley, P. N., Nalluri, S. M., Ashar, P. K. & Gomez, E. W. Matrix rigidity mediates TGFbeta1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J. Cell Physiol. 230, 1829–1839 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Olson, E. N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11, 353–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taskinen, M. E. et al. MASTL promotes cell contractility and motility through kinase- independent signaling. J. Cell Biol. 219, e201906204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Aragona, M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273 (2020). This is one of the first studies to address the in vivo response of a tissue to mechanical perturbation using single-cell sequencing analyses and lineage tracing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koegel, H. et al. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J. Clin. Invest. 119, 899–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Luxenburg, C., Pasolli, H. A., Williams, S. E. & Fuchs, E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 13, 203–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Verdoni, A. M., Ikeda, S. & Ikeda, A. Serum response factor is essential for the proper development of skin epithelium. Mamm. Genome 21, 64–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Verdoni, A. M. et al. A pathogenic relationship between a regulator of the actin cytoskeleton and serum response factor. Genetics 186, 147–157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hinkel, R. et al. MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat. Commun. 5, 3970 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Weinl, C. et al. Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc. Natl Acad. Sci. USA 112, 9914–9919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weinl, C. et al. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. J. Clin. Invest. 123, 2193–2206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Gualdrini, F. et al. SRF co-factors control the balance between cell proliferation and contractility. Mol. Cell 64, 1048–1061 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Watt, F. M., Jordan, P. W. & O’Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85, 5576–5580 (1988). This work pioneers micropatterning to control cell geometry and mechanics and makes a strong case for mechanical control of cell differentiation, 10 years ahead of the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wozniak, M. A. et al. Adhesion regulates MAP kinase/ternary complex factor exchange to control a proliferative transcriptional switch. Curr. Biol. 22, 2017–2026 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gaut, L. et al. EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS ONE 11, e0166237 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Joshi, B. et al. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J. Cell Biol. 199, 425–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morawietz, H. et al. Rapid induction and translocation of Egr-1 in response to mechanical strain in vascular smooth muscle cells. Circ. Res. 84, 678–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Dupont, S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp. Cell Res. 343, 42–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). This article describes discovery of what turned out to be a universal mechanoresponsive nuclear relay system.

    Article  CAS  PubMed  Google Scholar 

  131. Pocaterra, A., Romani, P. & Dupont, S. YAP/TAZ functions and their regulation at a glance. J. Cell Sci. 133, jcs230425 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683–697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, C. L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl Acad. Sci. USA 109, 484–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Ishihara, E. et al. Prostaglandin E2 and its receptor EP2 trigger signaling that contributes to YAP-mediated cell competition. Genes. Cell 25, 197–214 (2020).

    Article  CAS  Google Scholar 

  138. Levayer, R. Solid stress, competition for space and cancer: The opposing roles of mechanical cell competition in tumour initiation and growth. Semin. Cancer Biol. 63, 69–80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, Z. et al. Differential YAP expression in glioma cells induces cell competition and promotes tumorigenesis. J. Cell Sci. 132, jcs225714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366, 1029–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Nishio, M. et al. Hippo pathway controls cell adhesion and context-dependent cell competition to influence skin engraftment efficiency. FASEB J. 33, 5548–5560 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Price, C. J. et al. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev. Cell 56, 2455–2470 e2410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dupont, S. & Morsut, L. Tissue patterning: the winner takes it all, the losers standing small. Curr. Biol. 29, R334–R337 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Xia, P., Gutl, D., Zheden, V. & Heisenberg, C. P. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell 176, 1379–1392 e1314 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Meng, Z. et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 560, 655–660 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shiu, J. Y., Aires, L., Lin, Z. & Vogel, V. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20, 262–271 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). This article describes how tissue mechanical properties can serve as a template to match stem cell differentiation with tissue function.

    Article  CAS  PubMed  Google Scholar 

  152. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Urciuolo, A. et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 4, 1964 (2013).

    Article  PubMed  CAS  Google Scholar 

  154. Cantini, M., Donnelly, H., Dalby, M. J. & Salmeron-Sanchez, M. The plot thickens: the emerging role of matrix viscosity in cell mechanotransduction. Adv. Healthc. Mater. 9, e1901259 (2020).

    Article  PubMed  CAS  Google Scholar 

  155. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  PubMed  CAS  Google Scholar 

  156. Elosegui-Artola, A. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Curr. Opin. Cell Biol. 72, 10–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Donat, S. et al. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. eLife 7, e28939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lerche, M. et al. Integrin binding dynamics modulate ligand-specific mechanosensing in mammary gland fibroblasts. iScience 23, 100907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pocaterra, A. et al. F-actin dynamics regulates mammalian organ growth and cell fate maintenance. J. Hepatol. 71, 130–142 (2019). The study reports a physiological role for actomyosin contractility in regulating adult organ size homeostasis, cell fate maintenance and metabolism in a mammalian system.

    Article  CAS  PubMed  Google Scholar 

  160. Pocaterra, A. et al. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun. Biol. 4, 763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30, 2325–2335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, S. et al. CCM3 is a gatekeeper in focal adhesions regulating mechanotransduction and YAP/TAZ signalling. Nat. Cell Biol. 23, 758–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013). This work demonstrates that YAP mechanotransduction feeds back on ECM remodelling and how this is relevant in the context of cancer-associated fibrosis.

    Article  CAS  PubMed  Google Scholar 

  164. Link, P. A. et al. Combined control of the fibroblast contractile program by YAP and TAZ. Am. J. Physiol. Lung Cell Mol. Physiol. 322, L23–L32 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Pagliari, S. et al. YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death Differ. 28, 1193–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Porazinski, S. et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008). The study demonstrates how tissue deformation can inform cell fate by regulating a TF during embryogenesis.

    Article  CAS  PubMed  Google Scholar 

  170. Roper, J. C. et al. The major beta-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. eLife 7, e33381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nusse, R. & Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Doumpas, N. et al. TCF/LEF dependent and independent transcriptional regulation of Wnt/beta-catenin target genes. EMBO J. 38, e98873 (2019).

    Article  PubMed  CAS  Google Scholar 

  173. Stadeli, R., Hoffmans, R. & Basler, K. Transcription under the control of nuclear Arm/beta-catenin. Curr. Biol. 16, R378–R385 (2006).

    Article  PubMed  CAS  Google Scholar 

  174. Brunet, T. et al. Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat. Commun. 4, 2821 (2013).

    Article  PubMed  CAS  Google Scholar 

  175. Fernandez-Sanchez, M. E. et al. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19, 776–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Muncie, J. M. et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells. Dev. Cell 55, 679–694 e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Przybyla, L., Lakins, J. N. & Weaver, V. M. Tissue mechanics orchestrate wnt-dependent human embryonic stem cell differentiation. Cell Stem Cell 19, 462–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ray, S., Foote, H. P. & Lechler, T. β-Catenin protects the epidermis from mechanical stresses. J. Cell Biol. 202, 45–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gayrard, C., Bernaudin, C., Dejardin, T., Seiler, C. & Borghi, N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and beta-catenin activity. J. Cell Biol. 217, 1063–1077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Miroshnikova, Y. A. et al. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol. Biol. Cell 32, 1724–1736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kono, K., Tamashiro, D. A. & Alarcon, V. B. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev. Biol. 394, 142–155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maitre, J. L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348 (2016). This study shows how YAP/TAZ activity is patterned by forces and the relevance of contractile asymmetry during early mammalian embryogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mihajlovic, A. I. & Bruce, A. W. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod. Biomed. Online 33, 381–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Royer, C. et al. Establishment of a relationship between blastomere geometry and YAP localisation during compaction. Development 147, dev189449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, X. et al. Characterizing inner pressure and stiffness of trophoblast and inner cell mass of blastocysts. Biophys. J. 115, 2443–2450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Morin-Kensicki, E. M. et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol. Cell Biol. 26, 77–87 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hossain, Z. et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc. Natl Acad. Sci. USA 104, 1631–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Makita, R. et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am. J. Physiol. Ren. Physiol. 294, F542–F553 (2008).

    Article  CAS  Google Scholar 

  191. Tian, Y. et al. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol. Cell Biol. 27, 6383–6395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dingare, C. et al. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Development 145, dev167023 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jaslove, J. M. et al. Transmural pressure signals through retinoic acid to regulate lung branching. Development 149, dev199726 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Lin, C. et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 6, e21130 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Han, W. M. et al. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci. Adv. 4, eaar4008 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moyle, L. A. et al. Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions. Mol. Biol. Cell 31, 1703–1713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 e37 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bertolio, R. et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat. Commun. 10, 1326 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). This is one of the founding studies for the field of mechanobiology, showing mechanical control of stem cell commitment.

    Article  CAS  PubMed  Google Scholar 

  202. Sordella, R., Jiang, W., Chen, G. C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402–416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chung, H. et al. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep. 17, 519–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tamm, C., Bower, N. & Anneren, C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J. Cell Sci. 124, 1136–1144 (2011).

    Article  PubMed  Google Scholar 

  207. Qin, H. et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum. Mol. Genet. 21, 2054–2067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Qin, H. et al. YAP induces human naive pluripotency. Cell Rep. 14, 2301–2312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cebola, I. et al. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat. Cell Biol. 17, 615–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Rosado-Olivieri, E. A., Anderson, K., Kenty, J. H. & Melton, D. A. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing beta cells. Nat. Commun. 10, 1464 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    Article  PubMed  CAS  Google Scholar 

  214. Kastan, N. et al. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat. Commun. 12, 3100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pobbati, A. V. et al. Identification of quinolinols as activators of TEAD-dependent transcription. ACS Chem. Biol. 14, 2909–2921 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. De Rosa, L. et al. Laminin 332-dependent YAP dysregulation depletes epidermal stem cells in junctional epidermolysis bullosa. Cell Rep. 27, 2036–2049 e2036 (2019).

    Article  PubMed  CAS  Google Scholar 

  217. Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547, 227–231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Morikawa, Y. et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8, ra41 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99, 9462–9467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Min, E. & Schwartz, M. A. Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease. Exp. Cell Res. 376, 92–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

    Article  PubMed  Google Scholar 

  223. Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Tonelli, C., Chio, I. I. C. & Tuveson, D. A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 29, 1727–1745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chen, X. L. et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278, 703–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Dai, G. et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 101, 723–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Hosoya, T. et al. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 280, 27244–27250 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Hsieh, C. Y. et al. Regulation of shear-induced nuclear translocation of the Nrf2 transcription factor in endothelial cells. J. Biomed. Sci. 16, 12 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Jones, C. I. III et al. Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells. Ann. Biomed. Eng. 35, 683–693 (2007).

    Article  PubMed  Google Scholar 

  230. Psefteli, P. M. et al. Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biol. 38, 101816 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Warabi, E. et al. Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free. Radic. Biol. Med. 42, 260–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Poduri, A. et al. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 144, 3241–3252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhou, J. et al. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proc. Natl Acad. Sci. USA 109, 7770–7775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Vion, A. C. et al. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J. Cell Biol. 217, 1651–1665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Huang, J. et al. KLF2 mediates the suppressive effect of laminar flow on vascular calcification by inhibiting endothelial BMP/SMAD1/5 signaling. Circ. Res. 129, e87–e100 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Ahimou, F., Mok, L. P., Bardot, B. & Wesley, C. The adhesion force of Notch with Delta and the rate of Notch signaling. J. Cell Biol. 167, 1217–1229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Langridge, P. D. & Struhl, G Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396.e1312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299–1312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sprinzak, D. & Blacklow, S. C. Biophysics of Notch signaling. Annu. Rev. Biophys. 50, 157–189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and Notch signaling. Science 340, 991–994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Caolo, V. et al. Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells. eLife 9, e50684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Fang, J. S. et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat. Commun. 8, 2149 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Lee, J. et al. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J. Clin. Invest. 126, 1679–1690 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Mack, J. J. et al. NOTCH1 is a mechanosensor in adult arteries. Nat. Commun. 8, 1620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29, 2125–2131 (2009).

    Article  CAS  PubMed  Google Scholar 

  249. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. van Engeland, N. C. A. et al. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Sci. Rep. 9, 12415 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Chu, Y. S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hunter, G. L. et al. A role for actomyosin contractility in Notch signaling. BMC Biol. 17, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Liu, Z. et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. USA 107, 9944–9949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Shaya, O. et al. Cell-cell contact area affects notch signaling and notch-dependent patterning. Dev. Cell 40, 505–511 e506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997). This study demonstrates that spatial arrangement of the ECM, and not the amount of ECM ligand, can drive a complex cellular phenotype.

    Article  CAS  PubMed  Google Scholar 

  256. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978).

    Article  CAS  PubMed  Google Scholar 

  257. Moro, A. et al. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat. Cell Biol. 21, 348–358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci. Rep. 8, 10189 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Neto, F. et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife 7, e31037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. van der Stoel, M. et al. DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. J. Cell Sci. 133, jcs239947 (2020).

    Article  PubMed  Google Scholar 

  262. Wang, X. et al. YAP/TAZ Orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478 e467 (2017).

    Article  CAS  PubMed  Google Scholar 

  263. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Deng, H. et al. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc. Natl Acad. Sci. USA 118, e2105339118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nakajima, H. & Mochizuki, N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 16, 1893–1901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ishida, T., Takahashi, M., Corson, M. A. & Berk, B. C. Fluid shear stress-mediated signal transduction: how do endothelial cells transduce mechanical force into biological responses? Ann. N. Y. Acad. Sci. 811, 12–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  268. Khachigian, L. M., Resnick, N., Gimbrone, M. A. Jr. & Collins, T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J. Clin. Invest. 96, 1169–1175 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Lan, Q., Mercurius, K. O. & Davies, P. F. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem. Biophys. Res. Commun. 201, 950–956 (1994). This study is one of the earliest demonstrations of a mechanoresponsive TF.

    Article  CAS  PubMed  Google Scholar 

  270. Mohan, S. et al. Low shear stress preferentially enhances IKK activity through selective sources of ROS for persistent activation of NF-kappaB in endothelial cells. Am. J. Physiol. Cell Physiol. 292, C362–C371 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Nagel, T., Resnick, N., Dewey, C. F. Jr. & Gimbrone, M. A. Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19, 1825–1834 (1999).

    Article  CAS  PubMed  Google Scholar 

  272. Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Liu, D. et al. Atheroprotective effects of methotrexate via the inhibition of YAP/TAZ under disturbed flow. J. Transl. Med. 17, 378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Park, H. et al. Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 144, 805–822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Orr, A. W. et al. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J. Cell Biol. 169, 191–202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Drain, A. P. et al. Matrix compliance permits NF-κB activation to drive therapy resistance in breast cancer. J. Exp. Med. 218, e20191360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ishihara, S. et al. Substrate stiffness regulates temporary NF-kappaB activation via actomyosin contractions. Exp. Cell Res. 319, 2916–2927 (2013).

    Article  CAS  PubMed  Google Scholar 

  278. Liang, F. & Gardner, D. G. Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J. Clin. Invest. 104, 1603–1612 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yamamoto, K. et al. Induction of tenascin-C in cardiac myocytes by mechanical deformation. Role of reactive oxygen species. J. Biol. Chem. 274, 21840–21846 (1999).

    Article  CAS  PubMed  Google Scholar 

  280. Mochitate, K., Pawelek, P. & Grinnell, F. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp. Cell Res. 193, 198–207 (1991).

    Article  CAS  PubMed  Google Scholar 

  281. Aramaki-Hattori, N., Okabe, K., Hamada, M., Takato, T. & Kishi, K. Relationship between keloid formation and YAP/TAZ signaling. Plast. Reconstr. Surg. Glob. Open. 5, e1357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Huang, C. et al. Keloid progression: a stiffness gap hypothesis. Int. Wound J. 14, 764–771 (2017).

    Article  PubMed  Google Scholar 

  283. Chen, K. et al. Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat. Commun. 12, 5256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science https://doi.org/10.1126/science.aba2374 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327 e316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bertero, T. et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140 e110 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Li, R., Li, X., Hagood, J., Zhu, M. S. & Sun, X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J. Clin. Invest. 130, 2859–2871 (2020).

    Article  CAS  PubMed  Google Scholar 

  288. Bell, J. L. et al. Optimization of novel nipecotic bis(amide) inhibitors of the Rho/MKL1/SRF transcriptional pathway as potential anti-metastasis agents. Bioorg. Med. Chem. Lett. 23, 3826–3832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Fan, L. et al. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol. Biol. Cell 18, 1083–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Haak, A. J. et al. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J. Pharmacol. Exp. Ther. 349, 480–486 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Hutchings, K. M. et al. Pharmacokinetic optimitzation of CCG-203971: novel inhibitors of the Rho/MRTF/SRF transcriptional pathway as potential antifibrotic therapeutics for systemic scleroderma. Bioorg. Med. Chem. Lett. 27, 1744–1749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Johnson, L. A. et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm. Bowel Dis. 20, 154–165 (2014).

    Article  PubMed  Google Scholar 

  293. Luchsinger, L. L., Patenaude, C. A., Smith, B. D. & Layne, M. D. Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J. Biol. Chem. 286, 44116–44125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sandbo, N., Kregel, S., Taurin, S., Bhorade, S. & Dulin, N. O. Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. Am. J. Respir. Cell Mol. Biol. 41, 332–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Shi, Z., Ren, M. & Rockey, D. C. Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G504–G517 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Shiwen, X. et al. A role of myocardin related transcription factor-A (MRTF-A) in scleroderma related fibrosis. PLoS ONE 10, e0126015 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Sisson, T. H. et al. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am. J. Pathol. 185, 969–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Small, E. M. et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ. Res. 107, 294–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Tian, W. et al. Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. J. Hepatol. 62, 165–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  300. Velasquez, L. S. et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc. Natl Acad. Sci. USA 110, 16850–16855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Xu, H. et al. Myocardin-related transcription factor a epigenetically regulates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 26, 1648–1660 (2015).

    Article  CAS  PubMed  Google Scholar 

  302. Francisco, J. et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic. Transl. Sci. 5, 931–945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Girard, C. A. et al. A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma. Cancer Res. 80, 1927–1941 (2020).

    Article  CAS  PubMed  Google Scholar 

  305. Kim, T. et al. MRTF potentiates TEAD-YAP transcriptional activity causing metastasis. EMBO J. 36, 520–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  306. Kim, T. et al. A basal-like breast cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. Nat. Commun. 6, 10186 (2015).

    Article  CAS  PubMed  Google Scholar 

  307. Yu, O. M. et al. YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene 37, 5492–5507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Budi, E. H., Schaub, J. R., Decaris, M., Turner, S. & Derynck, R. TGF-beta as a driver of fibrosis: physiological roles and therapeutic opportunities. J. Pathol. 254, 358–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  309. Ahamed, J., Janczak, C. A., Wittkowski, K. M. & Coller, B. S. In vitro and in vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-beta1. PLoS ONE 4, e6608 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Buscemi, L. et al. The single-molecule mechanics of the latent TGF-beta1 complex. Curr. Biol. 21, 2046–2054 (2011).

    Article  CAS  PubMed  Google Scholar 

  311. Froese, A. R. et al. Stretch-induced activation of transforming growth factor-beta1 in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 194, 84–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  312. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J. Cell Biol. 207, 283–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Munger, J. S., Harpel, J. G., Giancotti, F. G. & Rifkin, D. B. Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta1. Mol. Biol. Cell 9, 2627–2638 (1998). This paper describes the discovery that paved the way to the idea of force-mediated liberation of TGFβ1 ligands from the ECM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Shi, M. et al. Latent TGF-beta structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Zhou, Y., Hagood, J. S., Lu, B., Merryman, W. D. & Murphy-Ullrich, J. E. Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J. Biol. Chem. 285, 22382–22393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Jones, D. L. et al. ZNF416 is a pivotal transcriptional regulator of fibroblast mechanoactivation. J. Cell Biol. https://doi.org/10.1083/jcb.202007152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Zhang, K. et al. Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J. Cell Sci. 129, 1989–2002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Gehler, S., Ponik, S. M., Riching, K. M. & Keely, P. J. Bi-directional signaling: extracellular matrix and integrin regulation of breast tumor progression. Crit. Rev. Eukaryot. Gene Expr. 23, 139–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  322. Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat. Med. 18, 1511–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  324. Hiemer, S. E., Szymaniak, A. D. & Varelas, X. The transcriptional regulators TAZ and YAP direct transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells. J. Biol. Chem. 289, 13461–13474 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Lamar, J. M. et al. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. J. Biol. Chem. 294, 2302–2317 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Rashidian, J. et al. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci. Signal. 8, ra14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Yang, C. S. et al. Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells. EMBO Rep. 19, e43577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Lin, C. H. et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Mol. Biol. Cell 26, 3946–3953 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Ding, X., Park, S. I., McCauley, L. K. & Wang, C. Y. Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J. Biol. Chem. 288, 10241–10253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Moes, M. et al. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS ONE 7, e35440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Northey, J. J. et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Invest. 130, 5721–5737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  338. Bui, T. et al. Functional redundancy between beta1 and beta3 Integrin in activating the IR/Akt/mTORC1 signaling axis to promote ErbB2-driven breast cancer. Cell Rep. 29, 589–602.e586 (2019).

    Article  CAS  PubMed  Google Scholar 

  339. Chan, S. W. et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 68, 2592–2598 (2008).

    Article  CAS  PubMed  Google Scholar 

  340. Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). This pioneering study shows the relevance of matrix crosslinking and ECM mechanics for breast cancer tumorigenesis in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Mooney, D. et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell Physiol. 151, 497–505 (1992).

    Article  CAS  PubMed  Google Scholar 

  343. Driskill, J. H. & Pan, D. The hippo pathway in liver homeostasis and pathophysiology. Annu. Rev. Pathol. 16, 299–322 (2021).

    Article  CAS  PubMed  Google Scholar 

  344. Ishikawa, J. et al. Mechanical homeostasis of liver sinusoid is involved in the initiation and termination of liver regeneration. Commun. Biol. 4, 409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Ye, J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J. Biol. Chem. 295, 10271–10280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Basu, H. et al. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J. Cell Biol. 220, e201912077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. De Vos, K. J., Allan, V. J., Grierson, A. J. & Sheetz, M. P. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol. 15, 678–683 (2005).

    Article  PubMed  CAS  Google Scholar 

  348. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  349. Majstrowicz, K. et al. Coordination of mitochondrial and cellular dynamics by the actin-based motor Myo19. J. Cell Sci. 134, jcs255844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4, e08828 (2015).

    Article  PubMed Central  Google Scholar 

  351. Moore, A. S. et al. Actin cables and comet tails organize mitochondrial networks in mitosis. Nature 591, 659–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Yang, H. et al. Materials stiffness-dependent redox metabolic reprogramming of mesenchymal stem cells for secretome-based therapeutic angiogenesis. Adv. Healthc. Mater. 8, e1900929 (2019).

    Article  PubMed  CAS  Google Scholar 

  354. Khacho, M. et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  355. Khacho, M. et al. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 26, 3327–3341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Y. Miroshnikova for reading the manuscript and providing thoughtful advice. They apologize to colleagues whose work they have inadvertently failed to cite. Work on nuclear mechanotransduction in the Dupont lab is supported by Worldwide Cancer Research grant no. 21-0156 and AIRC Foundation Investigator grant no. 21392, and in the Wickström lab by the Academy of Finland and Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sirio Dupont or Sara A. Wickström.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks J. Vermot, V. Weaver and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanical force

A force that is caused by contact with another object and that induces a change in state of rest or motion.

Shear

Occurs when a fluid applies a tangential force that pushes one part of the cell in one direction, and the rest of the cell is dragged in the opposite direction by adhesion to the extracellular matrix or to other cells.

Tensile stress

The action–reaction forces acting at the cell–extracellular matrix or cell–cell contact sites to stretch cells and to resist deformation. Tensile stress is the opposite of compression.

Hydrostatic pressure

A pressure exerted by a fluid onto a contact surface as a result of gravity.

Elasticity

The ability of a material to return to its original shape after a deformation-inducing force has been removed.

Viscosity

The ability of a fluid to resist gradual deformation. Most biological materials are considered viscoelastic, that is, they display properties of both elastic and viscous materials. Viscoelastic materials have a strain (deformation) rate that is dependent on time and they dissipate energy when a load is applied and removed whereas a purely elastic material does not.

Friction

A resistance that a surface encounters when it is moving over another surface, for example, in joints, tendons, eye or skin.

LINC complex

A multi-protein complex that crosses the nuclear envelope and provides a physical link between cytoplasmic and nuclear cytoskeletal structures.

Nuclear lamina

Structure between the inner nuclear membrane and peripheral chromatin, composed mainly of intermediate filament proteins, the lamins, and lamin-associated proteins.

Epidermal differentiation complex

(EDC). A gene complex of >50 genes that encode proteins involved in terminal differentiation and cornification of skin epidermal keratinocytes.

Mechanoadaptation

The process by which a cell subjected to mechanical forces reinforces its force-bearing structures.

Mediator complex

A multisubunit protein complex that bridges transcription factors and the basal RNA polymerase II transcriptional machinery.

Contact inhibition of growth

The process by which cell crowding inhibits cell proliferation through the establishment of cell–cell contacts and the reduction of cell size.

Cell competition

The active elimination of a viable but undesirable cell population by competitive interactions within a tissue.

Trophectoderm

The tissue of the pre-implantation mammalian embryo that will contribute to formation of the placenta.

Inner cell mass

The tissue of the pre-implantation mammalian embryo that will contribute to formation of the tissues of the fetus.

Granulosa

The somatic cells of the female gonad that surround oocytes and support their growth.

Branching morphogenesis

The developmental process by which a growing epithelium buds branches in the surrounding mesenchyme to form a tree-like structure.

Naive pluripotent state

Pluripotent stem cells equivalent to those found in the early inner cell mass, with largely unmethylated genome, and still able to differentiate into germ cells.

Regenerative medicine

The clinical use of stem cells to stimulate repair mechanisms and restore function in damaged body tissues or organs.

Laminar flow

When particles in a moving liquid follow linear paths without lateral mixing.

Sprouting angiogenesis

The growth of new capillary vessels out of pre-existing blood vessels.

Fibrotic response

Tissue remodelling characterized by the deposition of collagenous extracellular matrix, which can have a physiological function during wound healing (scarring) or a pathological function that can interfere with or totally inhibit the normal architecture and function of the underlying organ or tissue.

Cancer-associated fibroblasts

A population of cells, likely deriving from the fibroblast lineages, that are found in tumours and have an elongated morphology, are negative for epithelial, endothelial and leukocyte markers, and lack the mutations found in cancer cells.

Epithelial to mesenchymal transition

(EMT). The differentiation process by which cells lose epithelial identity and the ability to form stable cell–cell adhesions, and gain expression of mesenchymal markers associated with increased migratory ability.

Cholangiocellular transdifferentiation

The differentiation of hepatocytes into cells that express markers typically found in bile duct cells and in bipotent liver cell progenitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupont, S., Wickström, S.A. Mechanical regulation of chromatin and transcription. Nat Rev Genet 23, 624–643 (2022). https://doi.org/10.1038/s41576-022-00493-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00493-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing