Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epigenetic basis of cellular heterogeneity

Abstract

Single-cell sequencing-based methods for profiling gene transcript levels have revealed substantial heterogeneity in expression levels among morphologically indistinguishable cells. This variability has important functional implications for tissue biology and disease states such as cancer. Mapping of epigenomic information such as chromatin accessibility, nucleosome positioning, histone tail modifications and enhancer–promoter interactions in both bulk-cell and single-cell samples has shown that these characteristics of chromatin state contribute to expression or repression of associated genes. Advances in single-cell epigenomic profiling methods are enabling high-resolution mapping of chromatin states in individual cells. Recent studies using these techniques provide evidence that variations in different aspects of chromatin organization collectively define gene expression heterogeneity among otherwise highly similar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic landscapes of transcribed and silent genes in eukaryotes.
Fig. 2: Single-cell techniques provide greater resolution than bulk-cell methods.
Fig. 3: scATAC-seq and scDNase-seq measure the dynamics of accessible chromatin sites.
Fig. 4: scMNase-seq reveals nucleosome positioning dynamics.
Fig. 5: Single-cell Hi-C-based techniques measure the variability of enhancer–promoter contacts.

Similar content being viewed by others

References

  1. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    CAS  PubMed  Google Scholar 

  2. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bumgarner, S. L. et al. Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol. Cell 45, 470–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rutledge, E. A., Benazet, J. D. & McMahon, A. P. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 144, 3177–3188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    CAS  PubMed  Google Scholar 

  7. Nguyen, Q. H. et al. Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations. Genome Res. 28, 1053–1066 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. et al. Bacterial single cell whole transcriptome amplification in microfluidic platform shows putative gene expression heterogeneity. Anal. Chem. 91, 8036–8044 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, T. Q., Xu, Z. G., Shang, G. D. & Wang, J. W. A single-cell RNA sequencing profiles the developmental landscape of arabidopsis root. Mol. Plant 12, 648–660 (2019).

    CAS  PubMed  Google Scholar 

  10. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    CAS  PubMed  Google Scholar 

  11. Tellez-Gabriel, M., Ory, B., Lamoureux, F., Heymann, M. F. & Heymann, D. Tumour heterogeneity: the key advantages of single-cell analysis. Int. J. Mol. Sci. 17, 2142 (2016).

    PubMed Central  Google Scholar 

  12. Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 78, 2370–2382 (2018).

    CAS  PubMed  Google Scholar 

  13. Wen, L. & Tang, F. Single-cell sequencing in stem cell biology. Genome Biol. 17, 71 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Walzer, K. A., Fradin, H., Emerson, L. Y., Corcoran, D. L. & Chi, J. T. Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging. PLoS Genet. 15, e1008506 (2019). This study describes an interesting example of how gene expression heterogeneity is relevant for human infectious diseases.

    PubMed  PubMed Central  Google Scholar 

  15. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018). This article reviews tumour cell heterogeneity and its implications for cancer treatments.

    CAS  PubMed  Google Scholar 

  16. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  17. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eun, K., Ham, S. W. & Kim, H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 50, 117–125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, H. et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68, 127–140 (2018).

    PubMed  Google Scholar 

  20. Prasetyanti, P. R. & Medema, J. P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Tunnacliffe, E. & Chubb, J. R. What is a transcriptional burst? Trends Genet. 36, 288–297 (2020).

    CAS  PubMed  Google Scholar 

  22. Brouwer, I. & Lenstra, T. L. Visualizing transcription: key to understanding gene expression dynamics. Curr. Opin. Chem. Biol. 51, 122–129 (2019).

    CAS  PubMed  Google Scholar 

  23. Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226.e18 (2019). This paper describes a fascinating use of live-cell imaging to dissect transcription dynamics.

    CAS  PubMed  Google Scholar 

  24. Harper, C. V. et al. Dynamic analysis of stochastic transcription cycles. PLoS Biol. 9, e1000607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).

    CAS  PubMed  Google Scholar 

  26. Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    CAS  PubMed  Google Scholar 

  28. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019). This review article illustrates the concepts of chromatin contacts and how they facilitate control of gene expression.

    CAS  PubMed  Google Scholar 

  29. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    CAS  PubMed  Google Scholar 

  30. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    CAS  PubMed  Google Scholar 

  31. Cheow, L. F. et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13, 833–836 (2016).

    CAS  PubMed  Google Scholar 

  32. Gay, L., Baker, A. M. & Graham, T. A. Tumour cell heterogeneity. F1000Research 5, 238 (2016).

    Google Scholar 

  33. Grosselin, K. et al. High-throughput single-cell ChIP–seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Google Scholar 

  34. Linker, S. M. et al. Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity. Genome Biol. 20, 30 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992). This article presents an interesting look at the origins of single-cell gene expression measurements.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002).

    CAS  PubMed  Google Scholar 

  38. Lennon, G. G. & Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7, 314–317 (1991).

    CAS  PubMed  Google Scholar 

  39. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Emrich, S. J., Barbazuk, W. B., Li, L. & Schnable, P. S. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Erickson, K. E., Otoupal, P. B. & Chatterjee, A. Gene expression variability underlies adaptive resistance in phenotypically heterogeneous bacterial populations. ACS Infect. Dis. 1, 555–567 (2015).

    CAS  PubMed  Google Scholar 

  43. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bai, Y. L., Baddoo, M., Flemington, E. K., Nakhoul, H. N. & Liu, Y. Z. Screen technical noise in single cell RNA sequencing data. Genomics 112, 346–355 (2020).

    CAS  PubMed  Google Scholar 

  45. Li, R. & Quon, G. scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data. Genome Biol. 20, 193 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643.e4 (2017).

    CAS  PubMed  Google Scholar 

  47. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).

    CAS  PubMed  Google Scholar 

  50. Liu, M. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    CAS  PubMed  Google Scholar 

  52. Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, pdb.prot5384 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R. & Elgin, S. C. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell 16, 797–806 (1979).

    CAS  PubMed  Google Scholar 

  54. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015). This study describes a pioneering example of how split-pool barcoding can be used to profile epigenetic marks in single cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    CAS  PubMed  Google Scholar 

  59. Mezger, A. et al. High-throughput chromatin accessibility profiling at single-cell resolution. Nat. Commun. 9, 3647 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reyes, M., Billman, K., Hacohen, N. & Blainey, P. C. Simultaneous profiling of gene expression and chromatin accessibility in single cells. Adv. Biosyst. 3, 1900065 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Liu, L. et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat. Commun. 10, 470 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, C. A. et al. The Encyclopedia of DNA Elements (ENCODE): data portal update. Nucleic Acids Res. 46, D794–D801 (2018).

    CAS  PubMed  Google Scholar 

  66. Crispino, J. D. & Horwitz, M. S. GATA factor mutations in hematologic disease. Blood 129, 2103–2110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lentjes, M. H. F. M. et al. The emerging role of GATA transcription factors in development and disease. Expert. Rev. Mol. Med. 18, e3 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Jia, G. et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun. 9, 4877 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Satpathy, A. T. et al. Transcript-indexed ATAC-seq for precision immune profiling. Nat. Med. 24, 580–590 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bossard, P. & Zaret, K. S. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909 (1998).

    CAS  PubMed  Google Scholar 

  71. Barozzi, I. et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844–857 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tremblay, M., Sanchez-Ferras, O. & Bouchard, M. GATA transcription factors in development and disease. Development 145, dev164384 (2018).

    PubMed  Google Scholar 

  73. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    CAS  PubMed  Google Scholar 

  74. Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Litzenburger, U. M. et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 18, 15 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  PubMed  Google Scholar 

  78. Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    CAS  PubMed  Google Scholar 

  80. Ozsolak, F., Song, J. S., Liu, X. S. & Fisher, D. E. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007).

    CAS  PubMed  Google Scholar 

  81. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hughes, A. L. & Rando, O. J. Mechanisms underlying nucleosome positioning in vivo. Annu. Rev. Biophys. 43, 41–63 (2014).

    CAS  PubMed  Google Scholar 

  83. Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, e23203 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 27, 967–988 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Boland, M. J., Nazor, K. L. & Loring, J. F. Epigenetic regulation of pluripotency and differentiation. Circ. Res. 115, 311–324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

    CAS  PubMed  Google Scholar 

  88. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  89. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Z., Schones, D. E. & Zhao, K. Characterization of human epigenomes. Curr. Opin. Genet. Dev. 19, 127–134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hyun, K., Jeon, J., Park, K. & Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49, e324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  94. Roh, T. Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl Acad. Sci. USA 103, 15782–15787 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Graff, J. & Tsai, L. H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013).

    PubMed  Google Scholar 

  97. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rotem, A. et al. Single-cell ChIP–seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015). This paper describes the early use of drop fluidics to profile histone modifications in single cells, which has formed the basis of multiple commercially available technologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat. Methods 16, 323–325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hainer, S. J., Boskovic, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Profiling of pluripotency factors in single cells and early embryos. Cell 177, 1319–1329.e11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019).

    CAS  PubMed  Google Scholar 

  103. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747–3747 (2019). This article outlines the application of split-pool barcoding to profiling histone modifications.

    PubMed  PubMed Central  Google Scholar 

  104. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216.e7 (2019).

    CAS  PubMed  Google Scholar 

  106. Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Johnson, T. B. & Coghill, R. D. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J. Am. Chem. Soc. 47, 2838–2844 (1925). This article provides an interesting historical look at the discovery of 5mC prior to our understanding of DNA’s role in genetics.

    CAS  Google Scholar 

  108. Hotchkiss, R. D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175, 315–332 (1948).

    CAS  PubMed  Google Scholar 

  109. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferreira, H. J. & Esteller, M. CpG islands in cancer: heads, tails, and sides. Methods Mol. Biol. 1766, 49–80 (2018).

    CAS  PubMed  Google Scholar 

  112. Ando, M. et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun. 10, 2188 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  114. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    CAS  PubMed  Google Scholar 

  115. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  117. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hui, T. et al. High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem Cell Rep. 11, 578–592 (2018).

    CAS  Google Scholar 

  119. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Song, Y. et al. Dynamic enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of ESCs. Mol. Cell 75, 905–920.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, D. S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Li, G. et al. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 16, 991–993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kvon, E. Z. et al. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512, 91–95 (2014).

    CAS  PubMed  Google Scholar 

  127. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  128. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer–promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

    CAS  PubMed  Google Scholar 

  130. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  132. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  134. Würtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14, 477–495 (2006).

    PubMed  Google Scholar 

  135. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    CAS  PubMed  Google Scholar 

  136. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ron, G., Globerson, Y., Moran, D. & Kaplan, T. Promoter–enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. Nat. Commun. 8, 2237–2237 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Xu, H., Zhang, S., Yi, X., Plewczynski, D. & Li, M. J. Exploring 3D chromatin contacts in gene regulation: the evolution of approaches for the identification of functional enhancer–promoter interaction. Comput. Struct. Biotechnol. J. 18, 558–570 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu, L. et al. Robust Hi-C maps of enhancer–promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell 79, 521–534.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schoenfelder, S. et al. Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages. Nat. Commun. 9, 4189 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ren, G. et al. CTCF-mediated enhancer–promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol. Cell 67, 1049–1058.e6 (2017). This study informs much of our discussion of how CTCF-mediated chromatin contacts affect gene expression heterogeneity.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fabre, P. J. et al. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc. Natl Acad. Sci. USA 112, 13964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cook, G. W. et al. Structural variation and its potential impact on genome instability: novel discoveries in the EGFR landscape by long-read sequencing. PLoS ONE 15, e0226340 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gosalia, N., Neems, D., Kerschner, J. L., Kosak, S. T. & Harris, A. Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus. Nucleic Acids Res. 42, 9612–9622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jia, Z. et al. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer–promoter selection. Genome Biol. 21, 75 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ren, G. & Zhao, K. CTCF and cellular heterogeneity. Cell Biosci. 9, 83 (2019).

    PubMed  PubMed Central  Google Scholar 

  158. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Li, Y. et al. The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472–476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  163. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).

    CAS  PubMed  Google Scholar 

  164. Nicolas, D., Phillips, N. E. & Naef, F. What shapes eukaryotic transcriptional bursting? Mol. Biosyst. 13, 1280–1290 (2017).

    CAS  PubMed  Google Scholar 

  165. Tsai, W. W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bainbridge, M. N. et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246 (2006).

    PubMed  PubMed Central  Google Scholar 

  167. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  PubMed  Google Scholar 

  169. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    CAS  PubMed  Google Scholar 

  173. Brinkman, A. B. et al. Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52, 232–236 (2010).

    CAS  PubMed  Google Scholar 

  174. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in the authors’ laboratory is supported by the Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Benjamin Carter or Keji Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks W. Reik, B. Ren and H. Stunnenberg for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chromatin

Genomic material found in the cell nucleus comprising DNA in complex with structural proteins such as histones.

Epigenetic marks

Changes in chromatin including covalent modifications of DNA and histones that are persistent and often associated with changes in gene expression.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). A commonly used method for profiling epigenetic marks or chromatin binding proteins. The method is based on the affinity of an antibody for its target antigen(s).

Heterochromatic

Pertaining to heterochromatin, which is tightly packaged chromatin that is associated with transcriptional repression and enriched for characteristic epigenetic marks such as trimethylation of lysine 9 at histone 3 (H3K9me3).

Fluorescence-activated cell sorting

A method used to separate and distribute a cellular subpopulation from a larger sample based on fluorescence, typically accomplished via expression of a fluorophore transgene or via labelling with a fluorescent antibody.

Bivalent modifications

Genomic regions exhibiting co-enrichment of epigenetic marks considered to be transcriptionally activating and transcriptionally repressive. In particular, they often refer to dual enrichment of the histone modifications trimethylation of lysine 4 at histone 3 (H3K4me3) and H3K27me3.

Tagmentation

The use of a transposase to fragment DNA and append sequence tags to the resulting fragments in a single experimental step.

Split-pool barcoding

A procedure that uses libraries of sequence tags to obtain information at a single-cell level without the need for sorting of individual cells. This is accomplished by splitting samples into small aliquots, adding a barcode and pooling them. This process is repeated two or three times to ensure that each cell is highly likely to receive a unique combination of barcodes.

Imprinted genes

Genes that exhibit allele-specific or allele-biased expression depending on the parent of origin.

CRISPR–Cas9

A method for genome engineering that is derived from the CRISPR system of antiviral defence in bacteria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, B., Zhao, K. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22, 235–250 (2021). https://doi.org/10.1038/s41576-020-00300-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00300-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing