Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Active turnover of DNA methylation during cell fate decisions

Abstract

DNA methylation is a key layer of epigenetic regulation. The deposition of methylation marks relies on the catalytic activity of DNA methyltransferases (DNMTs), and their active removal relies on the activity of ten–eleven translocation (TET) enzymes. Paradoxically, in important biological contexts these antagonistic factors are co-expressed and target overlapping genomic regions. The ensuing cyclic biochemistry of cytosine modifications gives rise to a continuous, out-of-thermal equilibrium transition through different methylation states. But what is the purpose of this intriguing turnover of DNA methylation? Recent evidence demonstrates that methylation turnover is enriched at gene distal regulatory elements, including enhancers, and can give rise to large-scale oscillatory dynamics. We discuss this phenomenon and propose that DNA methylation turnover might facilitate key lineage decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processing of DNA methylation.
Fig. 2: DNA methylation turnover during pluripotency exit is potentially driven by cyclical binding of machineries.
Fig. 3: DNAme turnover might facilitate symmetry breaking during differentiation.

Similar content being viewed by others

References

  1. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  2. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes. Dev. 25, 1010–1022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji, D., Lin, K., Song, J. & Wang, Y. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Mol. Biosyst. 10, 1749–1752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Valinluck, V. & Sowers, L. C. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67, 946–950 (2007).

    CAS  PubMed  Google Scholar 

  15. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schön, A. et al. Analysis of an active deformylation mechanism of 5-formyl-deoxycytidine (fdC) in stem cells. Angew. Chem. Int. Ed. 59, 5591–5594 (2020).

    Google Scholar 

  17. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rulands, S. et al. Genome-scale oscillations in DNA methylation during exit from pluripotency. Cell Syst. 7, 63–76.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, Y. et al. Dynamic enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of ESCs. Mol. Cell 75, 905–920.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Charlton, J. et al. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat. Genet. 8, 819–827 (2020).

    Google Scholar 

  24. Spada, F. et al. Active turnover of genomic methylcytosine in pluripotent cells. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-0621-y (2020).

    Article  PubMed  Google Scholar 

  25. Chen, Z. & Zhang, Y. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 89, 135–158 (2020).

    CAS  PubMed  Google Scholar 

  26. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cell 11, 805–814 (2006).

    CAS  Google Scholar 

  27. Dawlaty, M. M. et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell 29, 102–111 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  29. Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).

    PubMed  Google Scholar 

  30. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  31. Yamagata, Y. et al. Rapid turnover of DNA methylation in human cells. Epigenetics 7, 141–145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalkan, T. et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morgani, S., Nichols, J. & Hadjantonakis, A. K. The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev. Biol. 17, 7 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stelzer, Y., Shivalila, C. S., Soldner, F., Markoulaki, S. & Jaenisch, R. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163, 218–229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, H. et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 10, 645–659 (2015).

    CAS  PubMed  Google Scholar 

  38. Bochtler, M., Kolano, A. & Xu, G. L. DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13 (2017).

    CAS  PubMed  Google Scholar 

  39. Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Google Scholar 

  40. Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B. & Ott, E. Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005).

    CAS  PubMed  Google Scholar 

  41. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    CAS  PubMed  Google Scholar 

  42. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    PubMed  Google Scholar 

  43. Wang, K. Y., Chen, C. C. & Shen, C. K. J. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase? Epigenomics 6, 353–363 (2014).

    CAS  PubMed  Google Scholar 

  44. Chen, C. C., Wang, K. Y. & Shen, C. K. J. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J. Biol. Chem. 288, 9084–9091 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, C. C., Wang, K. Y. & Shen, C. K. J. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem. 287, 33116–33121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sneppen, K. & Ringrose, L. Theoretical analysis of Polycomb–Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat. Commun. 10, 2133 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Grosselin, K. et al. High-throughput single-cell ChIP–seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Google Scholar 

  49. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216.e7 (2019).

    CAS  PubMed  Google Scholar 

  50. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019).

    CAS  PubMed  Google Scholar 

  52. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Hu, L. et al. Crystal structure of TET2–DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    CAS  PubMed  Google Scholar 

  54. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, F., Liu, Y., Jiang, L., Yamaguchi, S. & Zhang, Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes. Dev. 28, 2103–2119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes. Dev. 30, 733–750 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakagawa, T. et al. CRL4VprBP E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol. Cell 57, 247–260 (2015).

    CAS  PubMed  Google Scholar 

  62. Zhang, Y. W. et al. Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress. Mol. Cell 65, 323–335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Okashita, N. et al. PRDM14 promotes active DNA demethylation through the ten–eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 141, 269–280 (2014).

    CAS  PubMed  Google Scholar 

  64. Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rebeiz, M. & Tsiantis, M. Enhancer evolution and the origins of morphological novelty. Curr. Opin. Genet. Dev. 45, 115–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramos, A. I. & Barolo, S. Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130018 (2013).

    Google Scholar 

  67. Farley, E. K. et al. Suboptimization of developmental enhancers. Science 350, 325–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gu, T. et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 88 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ooi, S. K. T. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rush, M. et al. Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation. Epigenetics 4, 404–414 (2009).

    CAS  PubMed  Google Scholar 

  72. Li, H. et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J. Biol. Chem. 281, 19489–19500 (2006).

    CAS  PubMed  Google Scholar 

  73. Hervouet, E., Peixoto, P., Delage-Mourroux, R., Boyer-Guittaut, M. & Cartron, P. F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin. Epigenetics 10, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    CAS  PubMed  Google Scholar 

  75. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Szulwach, K. E. et al. 5-hmC-Mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607–1616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rudenko, A. et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79, 1109–1122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hahn, M. A. et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3, 291–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Izzo, F. et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 52, 378–387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Apostolou, E. & Hochedlinger, K. Chromatin dynamics during cellular reprogramming. Nature 502, 462–471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  82. Pawlak, M. & Jaenisch, R. De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev. 25, 1035–1040 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    CAS  PubMed  Google Scholar 

  86. Sardina, J. L. et al. Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell 23, 727–741.e9 (2018).

    CAS  PubMed  Google Scholar 

  87. Ostrander, E. L. et al. Divergent effects of Dnmt3a and Tet2 mutations on hematopoietic progenitor cell fitness. Stem Cell Rep. 14, 551–560 (2020).

    CAS  Google Scholar 

  88. Clark, S. J. et al. ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Bachman, M. et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bachman, M. et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 1049–1055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Iurlaro, M. et al. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol. 17, 141 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    CAS  PubMed  Google Scholar 

  93. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    CAS  PubMed  Google Scholar 

  96. Field, A. & Adelman, K. Evaluating enhancer function and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

    CAS  PubMed  Google Scholar 

  97. Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Reik and Rulands laboratories, in particular B. Kiani, for helpful discussions. A.P. is supported by a Sir Henry Wellcome Fellowship (215912/Z/19/Z). Research in the Reik laboratory is supported by the Biotechnology and Biological Sciences Research Council (BB/K010867/1) and the Wellcome Trust (095645/Z/11/Z).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Aled Parry or Wolf Reik.

Ethics declarations

Competing interests

W.R. is a consultant and shareholder of Cambridge Epigenetix. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks Y. Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parry, A., Rulands, S. & Reik, W. Active turnover of DNA methylation during cell fate decisions. Nat Rev Genet 22, 59–66 (2021). https://doi.org/10.1038/s41576-020-00287-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00287-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing