The genetics of human ageing

Abstract

The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genetic overlap between age-related chronic diseases and parental longevity, based on correlations between whole-genome association results.
Fig. 2: Selected loci with correlated variants associated with three or more age-related diseases or lifespan.
Fig. 3: Disease-associated genetic variants in the 9p21.3 locus by effect size of association with parental lifespan.
Fig. 4: Diagram of the major influences and mechanisms of human ageing.

References

  1. 1.

    Partridge, L. & Mangel, M. Messages from mortality: the evolution of death rates in the old. Trends Ecol. Evol. 14, 438–442 (1999).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This paper reviews the evidence for nine key mechanisms that are characteristic of mammalian ageing.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014). This paper provides an overview of geroscience, which argues that many chronic diseases share underlying ageing mechanisms that should be targeted to improve overall health in later life.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Tam, V. et al. Benefits and limitations of genome- wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). This study found that development of drugs supported by genetic evidence of mechanism could double the success rate.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Declerck, K. & Vanden Berghe, W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech. Ageing Dev. 174, 18–29 (2018).

    PubMed  Article  Google Scholar 

  8. 8.

    Harries, L. W. et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10, 868–878 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Carnes, B. A. What is lifespan regulation and why does it exist? Biogerontology 12, 367–374 (2011).

    PubMed  Article  Google Scholar 

  10. 10.

    Tenesa, A. & Haley, C. S. The heritability of human disease: estimation, uses and abuses. Nat. Rev. Genet. 14, 139–149 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Herskind, A. M. et al. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Sebastiani, P. & Perls, T. T. The genetics of extreme longevity: lessons from the New England centenarian study. Front. Genet. 3, 277 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kaplanis, J. et al. Quantitative analysis of population-scale family trees with millions of relatives. Science 360, 171–175 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ruby, J. G. et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics 210, 1109–1124 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Skousgaard, S. G. et al. Probability and heritability estimates on primary osteoarthritis of the hip leading to total hip arthroplasty: a nationwide population based follow-up study in Danish twins. Arthritis Res. Ther. 17, 336 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Willemsen, G. et al. The concordance and heritability of type 2 diabetes in 34,166 twin pairs from international twin registers: the discordant twin (discotwin) consortium. Twin Res. Hum. Genet. 18, 762–771 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006).

    PubMed  Article  Google Scholar 

  18. 18.

    Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J. Intern. Med. 252, 247–254 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Pilling, L. C. et al. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants. Aging 8, 547–560 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Vinkhuyzen, A. A., Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu. Rev. Genet. 47, 75–95 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Barsh, G. S., Copenhaver, G. P., Gibson, G. & Williams, S. M. Guidelines for genome-wide association studies. PLOS Genet. 8, e1002812 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Dutta, A. et al. Longer lived parents: protective associations with cancer incidence and overall mortality. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1409–1418 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Dutta, A. et al. Aging children of long-lived parents experience slower cognitive decline. Alzheimers Dement. 10 (5 Suppl), 315–322 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Atkins, J. L. et al. Longer-lived parents and cardiovascular outcomes: 8-year follow-up in 186,000 U.K. Biobank participants. J. Am. Coll. Cardiol. 68, 874–875 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Pilling, L. C. et al. Human longevity: 25 genetic loci associated in 389,166 UK Biobank participants. Aging 9, 2504–2520 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Joshi, P. K. et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nat. Commun. 8, 910 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife https://doi.org/10.7554/eLife.39856 (2019). This LifeGen study is a GWAS meta-analysis of parental lifespan using UK Biobank plus 25 independent cohorts, and including data on 1 million parents’ lifespans.

  32. 32.

    Wright, K. M. et al. A prospective analysis of genetic variants associated with human lifespan. G3 9, 2863–2878 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Keskitalo, K. et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum. Mol. Genet. 18, 4007–4012 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Deelen, J. et al. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10, 686–698 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Deelen, J. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 4420–4432 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Broer, L. et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J. Gerontol. A. Biol. Sci. Med. Sci. 70, 110–118 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Deelen, J. et al. A meta-analysis of genome-wide association studies identifies novel longevity genes. Nat. Commun. 10, 3669 (2019). This is the largest GWAS directly studying long-lived participants (aged ≥90 years) compared with shorter-lived (<65) controls to date.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Nikpay, M. et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Belloy, M. E., Napolioni, V. & Greicius, M. D. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 101, 820–838 (2019).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Sebastiani, P. et al. APOE alleles and extreme human longevity. J. Gerontol. A Biol. Sci. Med. Sci. 74, 44–51 (2019).

    PubMed  Article  Google Scholar 

  42. 42.

    Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    van den Berg, N. et al. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat. Commun. 10, 35 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Yashin, A. I. et al. Genetics of human longevity from incomplete data: new findings from the long life family study. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1472–1481 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Martins, R., Lithgow, G. J. & Link, W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15, 196–207 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Bae, H. et al. Effects of FOXO3 polymorphisms on survival to extreme longevity in four centenarian studies. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1439–1447 (2018).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Revelas, M. et al. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mechanisms Ageing Dev. 175, 24–34 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Giuliani, C., Garagnani, P. & Franceschi, C. Genetics of human longevity within an eco-evolutionary nature-nurture framework. Circ. Res. 123, 745–772 (2018).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 47, 1294–1303 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ruth, K. & Murray, A. Lessons from genome-wide association studies in reproductive medicine: menopause. Semin. Reprod. Med. 34, 215–223 (2016).

    PubMed  Article  Google Scholar 

  52. 52.

    Cooper, R., Kuh, D. & Hardy, R., Mortality Review Group; FALCon and HALCyon Study Teams. Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341, c4467 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Willems, S. M. et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 8, 16015 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Jones, G. et al. Sarcopenia and variation in the human leukocyte antigen complex. J. Gerontol. A. Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glz042 (2019).

  55. 55.

    Morley, J. E. et al. Brain health: the importance of recognizing cognitive impairment: an IAGG consensus conference. J. Am. Med. Dir. Assoc. 16, 731–739 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Ritchie, S. J. et al. Polygenic predictors of age-related decline in cognitive ability. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0372-x (2019).

  58. 58.

    Logue, M. W. et al. Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Mol. Psychiatry 24, 421–430 (2019).

    PubMed  Article  Google Scholar 

  59. 59.

    Corley, J., Cox, S. R. & Deary, I. J. Healthy cognitive ageing in the Lothian Birth Cohort studies: marginal gains not magic bullet. Psychol. Med. 48, 187–207 (2018).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Black, J. R. & Clark, S. J. Age-related macular degeneration: genome-wide association studies to translation. Genet. Med. 18, 283–289 (2016).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun. Biol. 2, 41 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Barrett, J. H. et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 43, 1108–1013 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Guy, G. P., Machlin, S. R., Ekwueme, D. U. & Yabroff, K. R. Prevalence and costs of skin cancer treatment in the U.S., 2002−2006 and 2007−2011. Am. J. Prev. Med. 48, 183–187 (2015).

    PubMed  Article  Google Scholar 

  65. 65.

    American Cancer Society. Cancer Facts & Figures 2019. Cancer https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html (2019).

  66. 66.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019). This review defines genetic correlations, summarizes methods, and discusses their interpretation and uses with respect to human health and disease.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Dixon, J. B., Egger, G. J., Finkelstein, E. A., Kral, J. G. & Lambert, G. W. ‘Obesity paradox’ misunderstands the biology of optimal weight throughout the life cycle. Int. J. Obes. 39, 82–84 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Bowman, K., Thambisetty, M., Kuchel, G. A., Ferrucci, L. & Melzer, D. Obesity and longer term risks of dementia in 65-74 year olds. Age Ageing 48, 367–373 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Bowman, K. et al. Obesity in older people with and without conditions associated with weight loss: follow-up of 955,000 primary care patients. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 203–209 (2017).

    PubMed  Article  Google Scholar 

  73. 73.

    Pignolo, R. J. Exceptional human longevity. Mayo Clin. Proc. 94, 110–124 (2019).

    PubMed  Article  Google Scholar 

  74. 74.

    Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278–1292 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Rahmioglu, N. et al. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 20, 702–716 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Springelkamp, H. et al. Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology. Genet. Epidemiol. 39, 207–216 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429.e19 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). This study of a transgenic mouse model was the first to show that removal of senescent cells from an adult animal extended lifespan and improved some aspects of health.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Tchkonia, T. & Kirkland, J. L. Aging, cell senescence, and chronic disease emerging therapeutic strategies. JAMA 320, 1319–1320 (2018). This manuscript provides an overview of cell senescence, links to ageing and future therapeutics.

    Article  Google Scholar 

  83. 83.

    Schmit, S. L. et al. Novel common genetic susceptibility loci for colorectal cancer. J. Natl. Cancer Inst. 111, 146–157 (2019).

    PubMed  Article  Google Scholar 

  84. 84.

    Xiang, J. F., Yang, L. & Chen, L. L. The long noncoding RNA regulation at the MYC locus. Curr. Opin. Genet. Dev. 33, 41–48 (2015).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Broer, L. et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Telomeres Mendelian Randomization Collaboration et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 3, 636–651 (2017). This study found that genetic predisposition to longer telomeres increased risk of multiple cancers but reduced risk for some other diseases, including cardiovascular disease.

    Article  Google Scholar 

  88. 88.

    Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Kuo, C.-L., Pilling, L. C., Kuchel, G. A., Ferrucci, L. & Melzer, D. Telomere length and aging-related outcomes in humans: a Mendelian randomization study in 261,000 older participants. Aging Cell 24, e13017 (2019).

    Google Scholar 

  90. 90.

    Maslah, N., Cassinat, B., Verger, E., Kiladjian, J. J. & Velazquez, L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia 31, 1661–1670 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Fortney, K. et al. Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. PLOS Genet. 11, e1005728 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Laroumanie, F. et al. LNK deficiency promotes acute aortic dissection and rupture. JCI Insight 3, e122558 (2018).

    PubMed Central  Article  Google Scholar 

  94. 94.

    Hung, R. J. et al. Cross cancer genomic investigation of inflammation pathway for five common cancers: lung, ovary, prostate, breast, and colorectal cancer. J. Natl Cancer Inst. 107, djv246 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Kuo, C.-L. et al. The longevity associated sh2b3 (lnk) genetic variant: selected aging phenotypes in 379,758 subjects. J. Gerontol. A. Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glz191 (2019).

  96. 96.

    Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Schlesinger, M. & Bendas, G. Vascular cell adhesion molecule-1 (VCAM-1) — an increasing insight into its role in tumorigenicity and metastasis. Int. J. Cancer 136, 2504–2514 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Slack, C. et al. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLOS Genet. 6, e1000881 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Junnila, R. K., List, E. O., Berryman, D. E., Murrey, J. W. & Kopchick, J. J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 9, 366–376 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Desbuquois, B., Carré, N. & Burnol, A. F. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J. 280, 794–816 (2013).

    CAS  PubMed  Google Scholar 

  102. 102.

    Shiina, T., Hosomichi, K., Inoko, H. & Kulski, J. K. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54, 15–39 (2009).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Ligthart, S. et al. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am. J. Hum. Genet. 103, 691–706 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Franchini, M. & Bonfanti, C. Evolutionary aspects of ABO blood group in humans. Clin. Chim. Acta 444, 66–71 (2015).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Jin, T. Current understanding on role of the wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr. Rev. 37, 254–277 (2016).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Stone, T. W., McPherson, M. & Gail Darlington, L. Obesity and cancer: existing and new hypotheses for a causal connection. eBioMedicine 30, 14–28 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Martin, G. M. & Oshima, J. Lessons from human progeroid syndromes. Nature 408, 263–266 (2000).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Oshima, J., Sidorova, J. M. & Monnat, R. J. Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 33, 105–114 (2017).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Pignolo, R. J. et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7, 23–31 (2008).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Ahmed, M. S., Ikram, S., Bibi, N. & Mir, A. Hutchinson–Gilford progeria syndrome: a premature aging disease. Mol. Neurobiol. 55, 4417–4427 (2018).

    CAS  PubMed  Google Scholar 

  112. 112.

    Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68–84 (1992).

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Burla, R., La Torre, M., Merigliano, C., Vernì, F. & Saggio, I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 9, 368–379 (2018).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Gonzalo, S., Kreienkamp, R. & Askjaer, P. Hutchinson–Gilford progeria syndrome: a premature aging disease caused by lmna gene mutations. Ageing Res. Rev. 33, 18–29 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Jiang, Y. & Ji, J. Y. Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sci. 212, 20–29 (2018).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Scheibye-Knudsen, M. et al. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proc. Natl Acad. Sci. USA 113, 12502–12507 (2016).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Yun, S. & Vincelette, N. D. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis. Crit. Rev. Oncol. Hematol. 95, 12–25 (2015).

    PubMed  Article  Google Scholar 

  121. 121.

    Pilling, L. C. et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ 364, k5222 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Tamosauskaite, J. et al. Hereditary hemochromatosis associations with frailty, sarcopenia and chronic pain: evidence from 200,975 older UK biobank participants. J. Gerontol. A. Biol. Sci. Med. Sci. 74, 337–342 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Telenti, A., Perkins, B. A. & Venter, J. C. Dynamics of an aging genome. Cell Metab. 23, 949–950 (2016).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Zhang, L. & Vijg, J. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet. 52, 397–419 (2018). This paper reviews the literature on low-abundance somatic DNA mutations in cells, in human and animal tissues and new technology that allows their assessment, with a focus on their possible functional consequences.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Risques, R. A. & Kennedy, S. R. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLOS Genet. 14, e1007108 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Zhang, L. et al. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc. Natl Acad. Sci. USA 116, 9014–9019 (2019).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Franco, I. et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat. Commun. 9, 800 (2018). This study investigated somatic mutations in human B lymphocytes. Results indicate that spontaneous somatic mutations that accumulate with age may contribute to both the increased risk for leukemia and the functional decline of B lymphocytes in the elderly.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Fuster, J. J. & Walsh, K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ. Res. 122, 523–532 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    van den Akker, E. B. et al. Uncompromised 10-year survival of oldest old carrying somatic mutations in DNMT3A and TET2. Blood 127, 1512–1515 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Hutchison, C. A., Newbold, J. E., Potter, S. S. & Edgell, M. H. Maternal inheritance of mammalian mitochondrial DNA. Nature 251, 536–538 (1974).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Scheibye-Knudsen, M., Scheibye-Alsing, K., Canugovi, C., Croteau, D. L. & Bohr, V. A. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging 5, 192–208 (2013). This paper describes a novel classification algorithm based on qualitative and quantitative characteristics assessing whether a disorder can be characterized as mitochondrial. Using this tool, the authors find that many of the features of normal ageing may be linked to mitochondrial dysfunction.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Wallace, D. C. et al. Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr. Genet. 12, 81–90 (1987).

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Bua, E. et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79, 469–480 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Greaves, L. C. et al. Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLOS Genet. 10, e1004620 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Picard, M., Wallace, D. C. & Burelle, Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004). This manuscript describes the phenotype of a homozygous knock-in mice that expresses a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. The PolgA mouse accumulates point mutations in mitochondrial DNA much faster than wild-type and shows reduced lifespan and premature onset of ageing-related phenotypes.

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Franco-Iborra, S., Vila, M. & Perier, C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci. 12, 342 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Ferrucci, L., Levine, M. E., Kuo, P. & Simonsick, E. M. Time and the metrics of aging. Circ. Res. 123, 740–744 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    McKay, J. P., Raizen, D. M., Gottschalk, A., Schafer, W. R. & Avery, L. eat-2 and eat-18 are required for nicotinic neurotransmission in the Caenorhabditis elegans pharynx. Genetics 166, 161–169 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Gingras, A.-C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Lakowski, B. & Hekimi, S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010–1013 (1996).

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424–2434 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Bansal, A., Zhu, L. J., Yen, K. & Tissenbaum, H. A. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl Acad. Sci. USA 112, E277–E286 (2015).

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Mitchell, S. J. et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Kraus, W. E. et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 673–683 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Belsky, D. W., Huffman, K. M., Pieper, C. F., Shalev, I. & Kraus, W. E. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 73, 4–10 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Leclerc, E. et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. https://doi.org/10.1017/S1092852918001566 (2019).

  160. 160.

    Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl Med. 10, eaaq1564 (2018).

    PubMed  Article  CAS  Google Scholar 

  165. 165.

    Dowling, R. J., Topisirovic, I., Fonseca, B. D. & Sonenberg, N. Dissecting the role of mtor: lessons from mtor inhibitors. Biochim. Biophys. Acta 1804, 433–439 (2010).

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Evert, J., Lawler, E., Bogan, H. & Perls, T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J. Gerontol. A Biol. Sci. Med. Sci. 58, 232 (2003).

    PubMed  Article  Google Scholar 

  168. 168.

    Sebastiani, P. et al. Four genome-wide association studies identify new extreme longevity variants. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1453–1464 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A Biol. Sci. Med. Sci. 68, 667–674 (2013).

    PubMed  Article  Google Scholar 

  170. 170.

    Liu, Z. et al. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: a cohort study. PLOS Med. 15, e1002718 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  171. 171.

    Matteini, A. M. et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 15, 792–800 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Gow, A. J. et al. Stability and change in intelligence from age 11 to ages 70, 79, and 87: the Lothian Birth Cohorts of 1921 and 1936. Psychol. Aging 26, 232–240 (2011).

    PubMed  Article  Google Scholar 

  173. 173.

    Ben-Avraham, D. et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging 9, 209–246 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A. & Reynolds, D. J. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 141–151 (2013).

    Article  Google Scholar 

  176. 176.

    Weismann, A., Poulton Sir, E. B., Schönland, S. & Shipley Sir, A. E. Essays upon heredity and kindred biological problems (Arthur, E.) v.1 (Clarendon Press, 1891).

  177. 177.

    Fabian, D. & Flatt, T. The evolution of aging. Nat. Educ. Knowl. 3, 9 (2011).

    Google Scholar 

  178. 178.

    Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, London, 1952).

    Google Scholar 

  179. 179.

    Partridge, L. & Barton, N. H. Optimally, mutation and the evolution of ageing. Nature 362, 305–311 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180.

    Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  181. 181.

    Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Pride, H. et al. Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem. Biophys. Res. Commun. 457, 669–675 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. 185.

    Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

D.M. and L.C.P. are supported by the University of Exeter Medical School and additionally by the University of Connecticut School of Medicine. This work is supported in part by the UK Medical Research Council (grants MR/M023095/1 and MRS009892/1). This work was supported in part by the Intramural Research Program at the National Institute on Aging.

Author information

Affiliations

Authors

Contributions

All authors researched the literature, provided substantial contributions to discussions of the content, and reviewed and/or edited the manuscript before submission. D.M. and L.F. wrote the article.

Corresponding author

Correspondence to David Melzer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks P. K. Joshi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Circos Table Viewer: http://mkweb.bcgsc.ca/tableviewer/visualize/

GWAS Catalog: https://www.ebi.ac.uk/gwas/

Online Mendelian Inheritance of Man (OMIM): https://www.omim.org

Supplementary information

Glossary

Genome-wide association studies

(GWAS). A study that involves genotyping large numbers of participants to identify statistical associations between genetic variants and traits of interest.

Somatic mutations

Changes to the genetic code arising from errors during DNA damage repair, DNA replication or mitosis, occurring in somatic (non-germline) tissues.

Heritability

The proportion of variance in a phenotype that can be attributed to genetic differences among individuals in a given population. Narrow-sense heritability estimates additive genetic effects. Broad-sense heritability includes both additive and dominance effects.

Polygenic risk score

Individual-level scores that summarize genetic risk (or protection) for a given phenotype. For each person, a score is computed by counting the number of effect alleles (genetic variants, weighted by their effect) that the person carries. A polygenic score is computed by summing scores from a large number, potentially all, of the variants in the genome.

Linkage disequilibrium

(LD). Non-random associations between alleles at different loci.

Mendelian randomization

A method that uses single-nucleotide polymorphisms associated with an exposure as instruments to probe the causal nature of the relationship between this exposure and an outcome of interest.

Antagonistic pleiotropy

Theory arguing that some mutations are selected because they are beneficial to early-life fitness but become harmful later in life, thus causing ageing.

Clonal expansion

The production of daughter cells from a single parent cell, all sharing a particular characteristic or trait.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melzer, D., Pilling, L.C. & Ferrucci, L. The genetics of human ageing. Nat Rev Genet 21, 88–101 (2020). https://doi.org/10.1038/s41576-019-0183-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing