Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Drug targeting in psychiatric disorders — how to overcome the loss in translation?

Abstract

In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of cellular subtypes in the human brain and psychiatric disorders.
Fig. 2: An updated concept for psychiatric drug target discovery — from human to model and back.
Fig. 3: Comparison of gene expression patterns for past and potential future drug targets between human and mouse brain cell types.
Fig. 4: Assessment of target availability.

Similar content being viewed by others

References

  1. Howes, O. D. & Baxter, L. The drug treatment deadlock in psychiatry and the route forward. World Psychiatry 22, 2–3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marder, S. R., Laughren, T. & Romano, S. J. Why are innovative drugs failing in phase III? Am. J. Psychiatry 174, 829–831 (2017).

    Article  PubMed  Google Scholar 

  3. Spark, D. L., Fornito, A., Langmead, C. J. & Stewart, G. D. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl. Psychiatry 12, 147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tricklebank, M. D., Robbins, T. W., Simmons, C. & Wong, E. H. F. Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology. Psychopharmacology 238, 1417–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Correll, C. U. et al. The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 22, 48–74 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krystal, A. D. et al. The first implementation of the NIMH FAST-FAIL approach to psychiatric drug development. Nat. Rev. Drug. Discov. 18, 82–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sarter, M. & Tricklebank, M. Revitalizing psychiatric drug discovery. Nat. Rev. Drug. Discov. 11, 423–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albert, P. R. & Le François, B. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front. Neurosci. 4, 35 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Negi, S. K. & Guda, C. Global gene expression profiling of healthy human brain and its application in studying neurological disorders. Sci. Rep. 7, 897 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

    Article  PubMed  Google Scholar 

  17. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Sinkeviciute, I. et al. Efficacy of different types of cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ Schizophr. 4, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature 599, 640–644 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Defelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Franjic, D. et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110, 452–469.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 4182 (2020).

    Article  ADS  Google Scholar 

  26. Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat. Commun. 10, 2748 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Batiuk, M. Y. et al. Upper cortical layer-driven network impairment in schizophrenia. Sci. Adv. 8, eabn8367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haney, J. R. et al. Broad transcriptomic dysregulation across the cerebral cortex in ASD. Nature 611, 532–539 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Howes, O. D., Thase, M. E. & Pillinger, T. Treatment resistance in psychiatry: state of the art and new directions. Mol. Psychiatry 27, 58–72 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Planert, H. et al. Cellular and synaptic diversity of layer 2-3 pyramidal neurons in human individuals. Preprint at https://doi.org/10.1101/2021.11.08.467668 (2023).

  35. Johansen, N. et al. Interindividual variation in human cortical cell type abundance and expression. Science 382, eadf2359 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 42, 1900221 (2020).

    Article  Google Scholar 

  37. Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 5038 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petukhov, V. et al. Case-control analysis of single-cell RNA-seq studies. Preprint at https://doi.org/10.1101/2022.03.15.484475 (2022).

  40. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Artigas, F. et al. Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nat. Rev. Drug. Discov. 16, 1–2 (2016).

    Article  MathSciNet  PubMed  Google Scholar 

  46. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Perkel, J. M. Single-cell analysis enters the multiomics age. Nature 595, 614–616 (2021).

    Article  ADS  CAS  Google Scholar 

  49. Kharchenko, P. V. The triumphs and limitations of computational methods for scRNA-seq. Nat. Methods 18, 723–732 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. No authors listed.Method of the Year 2019: single-cell multimodal omics. Nat. Methods 17, 1 (2020).

    Article  Google Scholar 

  51. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  CAS  Google Scholar 

  54. Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhong, S. et al. Decoding the development of the human hippocampus. Nature 577, 531–536 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e28 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–136 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article  ADS  PubMed  Google Scholar 

  67. Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lui, J. H. et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 184, 489–506.e26 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Malwade, S. et al. Identification of vulnerable interneuron subtypes in 15q13.3 microdeletion syndrome using single-cell transcriptomics. Biol. Psychiatry 91, 727–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 463 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 601, 404–409 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife 10, e64875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41, 222–231 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Yu, Y. et al. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci. 24, 1745–1756 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Shi, Y. et al. Mouse and human share conserved transcriptional programs for interneuron development. Science 374, eabj6641 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Close, J. L. et al. Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation. Neuron 93, 1035–1048 e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry 27, 3939–3950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370, eabd2109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hao, Z.-Z. et al. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nat. Neurosci. 25, 805–817 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Lei, Y. et al. Spatially resolved gene regulatory and disease-related vulnerability map of the adult macaque cortex. Nat. Commun. 13, 1–20 (2022).

    Article  ADS  Google Scholar 

  89. Khodosevich, K. & Sellgren, C. M. Neurodevelopmental disorders—high-resolution rethinking of disease modeling. Mol. Psychiatry 28, 34–43 (2023).

    Article  PubMed  Google Scholar 

  90. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Huffman, R. G. et al. Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics. Nat. Methods 20, 714–722 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mohan, H. et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cereb. Cortex 25, 4839–4853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science 377, eabo0924 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Zhu, F., Nair, R. R., Fisher, E. M. C. & Cunningham, T. J. Humanising the mouse genome piece by piece. Nat. Commun. 10, 1845 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Normand, R. et al. Found in translation: a machine learning model for mouse-to-human inference. Nat. Methods 15, 1067–1073 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699–715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oyama, K. & Sakatani, K. Machine learning-based assessment of cognitive impairment using time-resolved near-infrared spectroscopy and basic blood test. Front. Neurol. 12, 2641 (2022).

    Article  Google Scholar 

  101. Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, J. et al. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat. Neurosci. 26, 1352–1364 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).

    Article  PubMed  Google Scholar 

  107. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vasistha, N. A. & Khodosevich, K. The impact of (ab)normal maternal environment on cortical development. Prog. Neurobiol. 202, 102054 (2021).

    Article  PubMed  Google Scholar 

  110. Wang, Y. Y. et al. CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res. 50, D1164–D1171 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karlsson, M. et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  115. Ball, G. et al. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol. 18, e3000976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dachet, F. et al. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci. Rep. 11, 6078 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaar, S. J., Natesan, S., McCutcheon, R. & Howes, O. D. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172, 107704 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Lobo, M. C., Whitehurst, T. S., Kaar, S. J. & Howes, O. D. New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neurosci. Biobehav. Rev. 132, 324–361 (2022).

    Article  PubMed  Google Scholar 

  119. Mizuno, Y., McCutcheon, R. A., Brugger, S. P. & Howes, O. D. Heterogeneity and efficacy of antipsychotic treatment for schizophrenia with or without treatment resistance: a meta-analysis. Neuropsychopharmacology 45, 622–631 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lee, B. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Molnár, G. et al. Complex events initiated by individual spikes in the human cerebral cortex. PLOS Biol. 6, e222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e0209648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Changeux, J. P. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem. 287, 40207–40215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Broide, R. S., Winzer-Serhan, U. H., Chen, Y. & Leslie, F. M. Distribution of α7 nicotinic acetylcholine receptor subunit mRNA in the developing mouse. Front. Neuroanat. 13, 76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, J. et al. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol. Sci. 37, 562–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dineley, K. T., Pandya, A. A. & Yakel, J. L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci. 36, 96–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Leonard, S. et al. Association of promoter variants in the α7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch. Gen. Psychiatry 59, 1085–1096 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Stephens, S. H. et al. Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr. Res. 109, 102–112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Terry, A. V. & Callahan, P. M. α7 Nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: update on animal and clinical studies and strategies for the future. Neuropharmacology 170, 108053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tregellas, J. R. & Wylie, K. P. Alpha7 nicotinic receptors as therapeutic targets in schizophrenia. Nicotine Tob. Res. 21, 349–356 (2019).

    Article  PubMed  Google Scholar 

  138. Nichols, D. E. & Nichols, C. D. Serotonin receptors. Chem. Rev. 108, 1614–1641 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Meltzer, H. Y. & Massey, B. W. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr. Opin. Pharmacol. 11, 59–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, G. & Stackman, R. W. The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 6, 225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Miyamoto, S., Miyake, N., Jarskog, L. F., Fleischhacker, W. W. & Lieberman, J. A. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol. Psychiatry 17, 1206–1227 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Ebdrup, B. H., Rasmussen, H., Arnt, J. & Glenthøj, B. Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opin. Investig. Drugs 20, 1211–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Pinard, E., Borroni, E., Koerner, A., Umbricht, D. & Alberati, D. Glycine transporter type I (GlyT1) inhibitor, bitopertin: a journey from lab to patient. Chimia 72, 477 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Bugarski-Kirola, D. et al. Bitopertin in negative symptoms of schizophrenia—results from the phase III flashlyte and daylyte studies. Biol. Psychiatry 82, 8–16 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Khodosevich lab is supported by Novo Nordisk Foundation Hallas-Møller Investigator grants (NNF16OC0019920 and NNF21OC0067146) and Lundbeck Foundation Ascending Investigator grant (2020-1025). Work in the Howes lab is funded by Medical Research Council UK (no. MC_A656_5QD30_2135), Maudsley Charity (no. 666) and Wellcome Trust (no. 094849/Z/10/Z). The authors thank S. Hopkins (Sunovion Pharmaceuticals) for comments on the initial version of the manuscript. We are grateful to O. Kharchenko for their work on figure illustrations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Konstantin Khodosevich or Oliver Howes.

Ethics declarations

Competing interests

K.K. and K.D. have no potential conflicts of interest. O.H. is a part-time employee of Lundbeck A/s and has received investigator-initiated research funding from and/or participated in advisory or speaker meetings organized by Angellini, Autifony, Biogen, Boehringer-Ingelheim, Eli Lilly, Heptares, Global Medical Education, Invicro, Jansen, Lundbeck, Neurocrine, Otsuka, Sunovion, Rand, Recordati, Roche, Rovi and Viatris/Mylan. O.H. has a patent for the use of dopaminergic imaging.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Wayne Drevets, Brisa Fernandes and Christopher Langmead for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Diffusion tensor imaging

(DTI). A structural MRI technique that estimates axonal tract organization based on anisotropic diffusion.

Functional MRI

(fMRI). An imaging technique that measures brain activity using changes in blood flow.

Induced pluripotent stem cell

(iPSC). Pluripotent cell that was reprogrammed from a somatic cell.

Modality

In single-cell research, refers to the type of molecule that is being analysed, for example, RNA, DNA, methylation, open chromatin, protein and so forth.

Positron emission tomography

(PET). An imaging technique that uses radioactive tracers to visualize and estimate distribution of specific molecules in the brain; in relation to psychiatric disorders, it can detect distinct receptor distribution, distribution of metabolic molecules and other parameters.

Uniform manifold approximation and projection

(UMAP). A technique for dimensionality reduction to visualize single-cell omics data, where dimensionality is reduced from multiple to 2D.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodosevich, K., Dragicevic, K. & Howes, O. Drug targeting in psychiatric disorders — how to overcome the loss in translation?. Nat Rev Drug Discov 23, 218–231 (2024). https://doi.org/10.1038/s41573-023-00847-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00847-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing