Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

tRNA therapeutics for genetic diseases

Abstract

Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases — primarily those associated with a mutation altering mRNA translation — has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of some key milestones fostering the development of tRNA therapeutics.
Fig. 2: tRNA-based therapeutic modalities.
Fig. 3: Frequency of nonsense mutations in the human population associated with various genetic diseases.
Fig. 4: Therapeutic tRNA delivery approaches.

Similar content being viewed by others

References

  1. Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16, 98–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Polte, C. et al. Assessing cell-specific effects of genetic variations using tRNA microarrays. BMC Genom. 20, 549 (2019).

    Article  Google Scholar 

  8. Thornlow, B. P. et al. Predicting transfer RNA gene activity from sequence and genome context. Genome Res. 30, 85–94 (2020). This study shows that a broader sequence from the tRNA loci affects tRNA expression that could instruct the selection of tissue-specific tRNA promoters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Rak, R., Dahan, O. & Pilpel, Y. Repertoires of tRNAs: the couplers of genomics and proteomics. Annu. Rev. Cell Dev. Biol. 34, 239–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eeat6409 (2018).

    Article  Google Scholar 

  12. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Floquet, C., Hatin, I., Rousset, J. P. & Bidou, L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 8, e1002608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keeling, K. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based on stop codon readthrough. Annu. Rev. Genom. Hum. Genet. 15, 371–394 (2014).

    Article  CAS  Google Scholar 

  15. Spelier, S., van Doorn, E. P. M., van der Ent, C. K., Beekman, J. M. & Koppens, M. A. J. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol. Med. 29, 297–314 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Ryan, N. J. Ataluren: first global approval. Drugs 74, 1709–1714 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Capecchi, M. R. & Gussin, G. N. Suppression in vitro: identification of a serine-sRNA as a “nonsense” suppressor. Science 149, 417–422 (1965).

    Article  CAS  PubMed  Google Scholar 

  18. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Temple, G. F., Dozy, A. M., Roy, K. L. & Kan, Y. W. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for β-thalassaemia. Nature 296, 537–540 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Davyt, M., Bharti, N. & Ignatova, Z. Effect of mRNA/tRNA mutations on translation speed: implications for human diseases. J. Biol. Chem. 299, 105089 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khorkova, O., Stahl, J., Joji, A., Volmar, C. H. & Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 22, 539–561 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anastassiadis, T. & Kohrer, C. Ushering in the era of tRNA medicines. J. Biol. Chem. 299, 105246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dolgin, E. tRNA therapeutics burst onto startup scene. Nat. Biotechnol. 40, 283–286 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Capecchi, M. R., Haar, R. A., Capecchi, N. E. & Sveda, M. M. The isolation of a suppressible nonsense mutant in mammalian cells. Cell 12, 371–381 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, J. C., Temple, G. F., Trecartin, R. F. & Kan, Y. W. Suppression of the nonsense mutation in homozygous beta 0 thalassaemia. Nature 281, 602–603 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Bordeira-Carrico, R. et al. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur. J. Hum. Genet. 22, 1085–1092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buvoli, M., Buvoli, A. & Leinwand, L. A. Suppression of nonsense mutations in cell culture and mice by multimerized suppressor tRNA genes. Mol. Cell Biol. 20, 3116–3124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiselev, A. V. et al. [Suppression of nonsense mutations in the dystrophin gene by a suppressor tRNA gene]. Mol. Biol. 36, 43–47 (2002).

    Article  CAS  Google Scholar 

  30. Laski, F. A., Belagaje, R., RajBhandary, U. L. & Sharp, P. A. An amber suppressor tRNA gene derived by site-specific mutagenesis: cloning and function in mammalian cells. Proc. Natl Acad. Sci. USA 79, 5813–5817 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lueck, J. D. et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 10, 822 (2019). The study determines that the systematic alterations of the anticodon of different human tRNA isoacceptor families results in sup-tRNAs with diferent efficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panchal, R. G., Wang, S., McDermott, J. & Link, C. J. Jr. Partial functional correction of xeroderma pigmentosum group A cells by suppressor tRNA. Hum. Gene Ther. 10, 2209–2219 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022). The study shows the first in vivo administration of sup-tRNAs as AAV formulations for episomal expression and presents the efficacy in different mouse tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Albers, S. et al. Repurposing tRNAs for nonsense suppression. Nat. Commun. 12, 3850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023). This publication presents improved sup-tRNA designs for in vivo LNP administrations to target liver and lung and demonstrates a clinical benefit for a sup-tRNAArg.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sako, Y., Usuki, F. & Suga, H. A novel therapeutic approach for genetic diseases by introduction of suppressor tRNA. Nucleic Acids Symp. Ser. 50, 239–240 (2006).

    Article  Google Scholar 

  37. Cervettini, D. et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nat. Biotechnol. 38, 989–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan, C., Xiong, H., Reynolds, N. M. & Soll, D. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res. 43, e156 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jewel, D. et al. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. Nat. Methods 20, 95–103 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Katoh, T., Iwane, Y. & Suga, H. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res. 45, 12601–12610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prabhakar, A. et al. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Res. 50, 10201–10211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, L. & Schultz, P. G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Giege, R. & Eriani, G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51, 1528–1570 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burgess, R. W. & Storkebaum, E. tRNA dysregulation in neurodevelopmental and neurodegenerative diseases. Annu. Rev. Cell Dev. Biol. 39, 223–252 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Spaulding, E. L. et al. The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy. Science 373, 1156–1161 (2021). The study shows that ribosome stalling owing to shortage of the cognate tRNA activates the integrated stress response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zuko, A. et al. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 373, 1161–1166 (2021). This study, published in the same issue of the journal as ref. 47, reports that tRNA sequestration by the cognate AARS results in ribosome stalling and selects tRNA supplementation as a therapeutic modality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Masvidal, L. et al. Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis. Eur. J. Hum. Genet. 22, 784–791 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. McCague, A. F. et al. Correlating cystic fibrosis transmembrane conductance regulator function with clinical features to inform precision treatment of cystic fibrosis. Am. J. Respir. Crit. Care Med. 199, 1116–1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan, K., Stupack, D. G. & Wilkinson, M. F. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat. Rev. Cancer 22, 437–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Rice, A. M. & McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8, 14366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sandweiss, A. J., Brandt, V. L. & Zoghbi, H. Y. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol. 19, 689–698 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Grosjean, H. & Westhof, E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Westhof, E., Thornlow, B., Chan, P. P. & Lowe, T. M. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res. 50, 4100–4112 (2022). The study presents evidence for tRNA sequence motifs that are anticodon-specific and conserved across tRNAs and, thus, could be instructive on sup-tRNA designs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Y. M. et al. Comprehensive genetic diagnosis of patients with Duchenne/Becker muscular dystrophy (DMD/BMD) and pathogenicity analysis of splice site variants in the DMD gene. J. Zhejiang Univ. Sci. B 20, 753–765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duan, D., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Prim. 7, 13 (2021).

    Article  PubMed  Google Scholar 

  59. Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xue, X. et al. Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Hum. Mol. Genet. 26, 3116–3129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaher, A., ElSaygh, J., Elsori, D., ElSaygh, H. & Sanni, A. A review of Trikafta: triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Cureus 13, e16144 (2021).

    PubMed  PubMed Central  Google Scholar 

  62. Pareyson, D., Scaioli, V. & Laura, M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromol. Med. 8, 3–22 (2006).

    Article  CAS  Google Scholar 

  63. Niehues, S. et al. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat. Commun. 6, 7520 (2015).

    Article  PubMed  Google Scholar 

  64. Nangle, L. A., Zhang, W., Xie, W., Yang, X. L. & Schimmel, P. Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc. Natl Acad. Sci. USA 104, 11239–11244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Ma, H. et al. Pol III promoters to express small RNAs: delineation of transcription initiation. Mol. Ther. Nucleic Acids 3, e161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao, Z., Herrera-Carrillo, E. & Berkhout, B. RNA polymerase II activity of type 3 pol III promoters. Mol. Ther. Nucleic Acids 12, 135–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Traboni, C., Ciliberto, G. & Cortese, R. Mutations in box B of the promoter of a eucaryotic tRNAPro gene affect rate of transcription, processing, and stability of the transcripts. Cell 36, 179–187 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Johnson, P. F. & Abelson, J. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature 302, 681–687 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Tol, H. & Beier, H. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon. Nucleic Acids Res. 16, 1951–1966 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ogawa, A., Doi, Y. & Matsushita, N. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract. Org. Biomol. Chem. 9, 8495–8503 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Walker, S. E. & Fredrick, K. Preparation and evaluation of acylated tRNAs. Methods 44, 81–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Achsel, T. & Gross, H. J. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. EMBO J. 12, 3333–3338 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Breitschopf, K., Achsel, T., Busch, K. & Gross, H. J. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Nucleic Acids Res. 23, 3633–3637 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsunoda, M. et al. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms. Nucleic Acids Res. 35, 4289–4300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen, N., Guo, L., Yang, B., Jin, Y. & Ding, J. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res. 34, 3246–3258 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manickam, N., Joshi, K., Bhatt, M. J. & Farabaugh, P. J. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Nucleic Acids Res. 44, 1871–1881 (2016).

    Article  PubMed  Google Scholar 

  82. Nguyen, H. A., Hoffer, E. D. & Dunham, C. M. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding. J. Biol. Chem. 294, 5281–5291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giege, R. Toward a more complete view of tRNA biology. Nat. Struct. Mol. Biol. 15, 1007–1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Ledoux, S. & Uhlenbeck, O. C. Different aa-tRNAs are selected uniformly on the ribosome. Mol. Cell 31, 114–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. LaRiviere, F. J., Wolfson, A. D. & Uhlenbeck, O. C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294, 165–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen, H. A., Sunita, S. & Dunham, C. M. Disruption of evolutionarily correlated tRNA elements impairs accurate decoding. Proc. Natl Acad. Sci. USA 117, 16333–16338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schrader, J. M., Chapman, S. J. & Uhlenbeck, O. C. Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding. Proc. Natl Acad. Sci. USA 108, 5215–5220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yarus, M., Cline, S., Raftery, L., Wier, P. & Bradley, D. The translational efficiency of tRNA is a property of the anticodon arm. J. Biol. Chem. 261, 10496–10505 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. Uhlenbeck, O. C. & Schrader, J. M. Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes. Curr. Opin. Chem. Biol. 46, 138–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wangen, J. R. & Green, R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. eLife 9, e52611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kachale, A. et al. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613, 751–758 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Hilal, T. et al. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. Science 376, 1338–1343 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Serrao, V. H. B. et al. The unique tRNA(Sec) and its role in selenocysteine biosynthesis. Amino Acids 50, 1145–1167 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Ogawa, A., Hayami, M., Sando, S. & Aoyama, Y. A concept for selection of codon-suppressor tRNAs based on read-through ribosome display in an in vitro compartmentalized cell-free translation system. J. Nucleic Acids 2012, 538129 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Keeling, K. M. et al. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10, 691–703 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Agris, P. F. The importance of being modified: an unrealized code to RNA structure and function. RNA 21, 552–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kierzek, E. & Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31, 4472–4480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vare, V. Y., Eruysal, E. R., Narendran, A., Sarachan, K. L. & Agris, P. F. Chemical and conformational diversity of modified nucleosides affects tRNA structure and function. Biomolecules 7, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jockel, S. et al. The 2′-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J. Exp. Med. 209, 235–241 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rimbach, K., Kaiser, S., Helm, M., Dalpke, A. H. & Eigenbrod, T. 2′-O-Methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells. J. Innate Immun. 7, 482–493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Godbout, K. & Tremblay, J. P. Delivery of RNAs to specific organs by lipid nanoparticles for gene therapy. Pharmaceutics 14, 2129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806 (2023). The paper reviews the state-of-the-art of engineered AAV delivery systems with optimized safety and efficacy to treat neurological disorders that are applicable to tRNA medicines.

    Article  CAS  PubMed  Google Scholar 

  113. Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022). The review presents the state-of-the-art of non-viral delivery systems for RNA therapeutics, many of which are applicable to tRNA therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pupo, A. et al. AAV vectors: the Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515–3541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, J., Shrivastava, S., Cleveland, R. O. & Rabbitts, T. H. Lipid-mRNA nanoparticle designed to enhance intracellular delivery mediated by shock waves. ACS Appl. Mater. Interfaces 11, 10481–10491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, Y. et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J. Nanobiotechnol. 20, 279 (2022).

    Article  CAS  Google Scholar 

  119. Gaudet, D. et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 20, 361–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Frohlich, D. et al. Dual-function AAV gene therapy reverses late-stage Canavan disease pathology in mice. Front. Mol. Neurosci. 15, 1061257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sumner, C. J. & Crawford, T. O. Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J. Clin. Invest. 128, 3219–3227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nieuwenhuis, B. et al. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther. 30, 503–519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meyer-Berg, H. et al. Identification of AAV serotypes for lung gene therapy in human embryonic stem cell-derived lung organoids. Stem Cell Res. Ther. 11, 448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palaschak, B., Herzog, R. W. & Markusic, D. M. AAV-mediated gene delivery to the liver: overview of current technologies and methods. Methods Mol. Biol. 1950, 333–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Gernoux, G. et al. Muscle-directed delivery of an AAV1 vector leads to capsid-specific T cell exhaustion in nonhuman primates and humans. Mol. Ther. 28, 747–757 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valdmanis, P. N. & Kay, M. A. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum. Gene Ther. 28, 361–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. George, L. A. et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N. Engl. J. Med. 385, 1961–1973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gonzalez-Sandoval, A. et al. The AAV capsid can influence the epigenetic marking of rAAV delivered episomal genomes in a species dependent manner. Nat. Commun. 14, 2448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dobrowolski, C., Paunovska, K., Hatit, M. Z. C., Lokugamage, M. P. & Dahlman, J. E. Therapeutic RNA delivery for COVID and other diseases. Adv. Healthc. Mater. 10, e2002022 (2021).

    Article  PubMed  Google Scholar 

  132. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Kauffman, K. J., Webber, M. J. & Anderson, D. G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 240, 227–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Xia, Y., Tian, J. & Chen, X. Effect of surface properties on liposomal siRNA delivery. Biomaterials 79, 56–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021). This review summarizes the developments of delivery systems for clinical translation of antisense oligonucleotide-based therapy, which owing to the similar cargo size would be applicable to tRNA medicines.

    Article  CAS  PubMed  Google Scholar 

  136. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang, L. et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 24, 1899–1909 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36gamma, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Kulkarni, J. A., Cullis, P. R. & van der Meel, R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 28, 146–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eygeris, Y., Patel, S., Jozic, A. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Pardridge, W. M. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol. Med. 29, 343–353 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, eaba1028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, H., Leal, J., Soto, M. R., Smyth, H. D. C. & Ghosh, D. Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments. Pharmaceutics 12, 1042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Devoldere, J. et al. Non-viral delivery of chemically modified mRNA to the retina: subretinal versus intravitreal administration. J. Control. Release 307, 315–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Nabhan, J. F. et al. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci. Rep. 6, 20019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Turnbull, I. C. et al. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol. Ther. 24, 66–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sheridan, C. Why gene therapies must go virus-free. Nat. Biotechnol. 41, 737–739 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi, N., Zhang, Y., Zhu, C., Boado, R. J. & Pardridge, W. M. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl Acad. Sci. USA 98, 12754–12759 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, Y., Schlachetzki, F. & Pardridge, W. M. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7, 11–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, Y. F., Boado, R. J. & Pardridge, W. M. Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm. Res. 20, 1779–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muthu, S., Bapat, A., Jain, R., Jeyaraman, N. & Jeyaraman, M. Exosomal therapy — a new frontier in regenerative medicine. Stem Cell Investig. 8, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 24, 454–476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20, 145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yang, Y., Hong, Y., Cho, E., Kim, G. B. & Kim, I. S. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J. Extracell. Vesicles 7, 1440131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bunggulawa, E. J. et al. Recent advancements in the use of exosomes as drug delivery systems. J. Nanobiotechnol. 16, 81 (2018).

    Article  CAS  Google Scholar 

  164. Jeyaraman, M. et al. Mesenchymal stem cell-derived exosomes: a potential therapeutic avenue in knee osteoarthritis. Cartilage 13, 1572S–1585S (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Cho, E. et al. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J. Control. Release 279, 326–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Kamerkar, S. et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci. Adv. 8, eabj7002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Katakowski, M. et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 335, 201–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang, T. et al. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 19, 475–486 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3, e99263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6, 1324730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 9, 1305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Liu, C. & Su, C. Design strategies and application progress of therapeutic exosomes. Theranostics 9, 1015–1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Guan, S. et al. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat. Nanotechnol. 14, 287–297 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Cooney, A. L., Singh, B. K. & Sinn, P. L. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery. Mol. Ther. 23, 667–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arribere, J. A. et al. Translation readthrough mitigation. Nature 534, 719–723 (2016). The publication presents evidence for spontaneous readthrough at natural termination codons and activation of surveillance mechanisms to clear readthrough proteins, which should be considered in the context of safe tRNA therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Muller, M. B. D., Kasturi, P., Jayaraj, G. G. & Hartl, F. U. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 186, 3227–3244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sitron, C. S. & Brandman, O. Detection and degradation of stalled nascent chains via ribosome-associated quality control. Annu. Rev. Biochem. 89, 417–442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Loughran, G. et al. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res. 42, 8928–8938 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pavon-Eternod, M., Gomes, S., Rosner, M. R. & Pan, T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19, 461–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hughes, L. A. et al. Copy number variation in tRNA isodecoder genes impairs mammalian development and balanced translation. Nat. Commun. 14, 2210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Food and Drug Administration (FDA) Cellular, Tissue, and Gene Therapies Advisory Committee. Toxicity risks of adeno-associated virus (AAV) vectors for gene therapy (GT). https://www.fda.gov/media/151599/download (2021).

  187. Ertl, H. C. J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 13, 975803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  PubMed  Google Scholar 

  190. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Meliani, A. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 9, 4098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Jordan, S. C. et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N. Engl. J. Med. 377, 442–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Smith, R. H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Nault, J. C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Berns, K. I. & Muzyczka, N. AAV: an overview of unanswered questions. Hum. Gene Ther. 28, 308–313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154155, 163–175 (2020).

    Article  PubMed  Google Scholar 

  200. Mingozzi, F. & High, K. A. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4, 511–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Pei, D. & Buyanova, M. Overcoming endosomal entrapment in drug delivery. Bioconjug. Chem. 30, 273–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Choe, B. K. & Taylor, M. W. Kinetics of synthesis and characterization of transfer RNA precursors in mammalian cells. Biochim. Biophys. Acta 272, 275–287 (1972).

    Article  CAS  Google Scholar 

  203. Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Linde, L. et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J. Clin. Invest. 117, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23, 424–436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Honda, S., Shigematsu, M., Morichika, K., Telonis, A. G. & Kirino, Y. Four-leaf clover qRT-PCR: a convenient method for selective quantification of mature tRNA. RNA Biol. 12, 501–508 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Erber, L. et al. LOTTE-seq (long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3′-CCA end for high-throughput sequencing. RNA Biol. 17, 23–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Nagai, A., Mori, K., Shiomi, Y. & Yoshihisa, T. OTTER, a new method quantifying absolute amounts of tRNAs. RNA 27, 628–640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tsukamoto, Y., Nakamura, Y., Hirata, M., Sakate, R. & Kimura, T. i-tRAP (individual tRNA acylation PCR): a convenient method for selective quantification of tRNA charging. RNA 29, 111–122 (2022).

    Article  PubMed  Google Scholar 

  216. Thomas, N. K. et al. Direct nanopore sequencing of individual full length tRNA strands. ACS Nano 15, 16642–16653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lucas, M. C. et al. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat. Biotechnol. (in the press). The publication presents a nanopore-based tRNA sequencing method to determine tRNA abundance and modification pattern in a single sequencing run.

  218. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Tricot, T., Verfaillie, C. M. & Kumar, M. Current status and challenges of human induced pluripotent stem cell-derived liver models in drug discovery. Cells 11, 442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Han, S. T. et al. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 3, e121159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Silva, I. A. L., Laselva, O. & Lopes-Pacheco, M. Advances in preclinical in vitro models for the translation of precision medicine for cystic fibrosis. J. Pers. Med. 12, 1321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Piga, D. et al. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther. Adv. Neurol. Disord. 12, 1756286419833478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Uchimura, T., Asano, T., Nakata, T., Hotta, A. & Sakurai, H. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Rep. Med. 2, 100298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wadman, M. FDA no longer has to require animal testing for new drugs. Science 379, 127–128 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Crooke, S. T. Meeting the needs of patients with ultrarare diseases. Trends Mol. Med. 28, 87–96 (2022).

    Article  PubMed  Google Scholar 

  227. May, M. Rare-disease researchers pioneer a unique approach to clinical trials. Nat. Med. 29, 1884–1886 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Ornes, S. Core concept: basket trial approach capitalizes on the molecular mechanisms of tumors. Proc. Natl Acad. Sci. USA 113, 7007–7008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Park, J. J. H., Hsu, G., Siden, E. G., Thorlund, K. & Mills, E. J. An overview of precision oncology basket and umbrella trials for clinicians. CA Cancer J. Clin. 70, 125–137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ko, W., Porter, J. J., Sipple, M. T., Edwards, K. M. & Lueck, J. D. Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs. Mol. Ther. Nucleic Acids 28, 685–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231, 241–257 (1958).

    Article  CAS  PubMed  Google Scholar 

  232. Person, S. & Osborn, M. The conversion of amber suppressors to ochre suppressors. Proc. Natl Acad. Sci. USA 60, 1030–1037 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  PubMed  Google Scholar 

  234. Lee, B. J., Worland, P. J., Davis, J. N., Stadtman, T. C. & Hatfield, D. L. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 9724–9727 (1989).

    Article  CAS  PubMed  Google Scholar 

  235. Roehr, B. Fomivirsen approved for CMV retinitis. J. Int. Assoc. Physicians AIDS Care 4, 14–16 (1998).

    CAS  PubMed  Google Scholar 

  236. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Biela, A. et al. The diverse structural modes of tRNA binding and recognition. J. Biol. Chem. 299, 104966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the helpful discussions with H.-Q. Mao (Institute for NanoBioTechnology, Johns Hopkins University), and P. Kaplan and P. Eimon (Tevard Biosciences). Work in the Coller Lab is supported by NIH grant (R35GM144114), Bloomberg Philanthropies and the Syngap Research Fund, and the research of Z.I. is supported by grants of the Deutsche Forschungsgemeinschaft DFG (IG 73/21-1), NIH (1R01HL136414-05) and Cystic Fibrosis Foundation (IGNATO2010).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding authors

Correspondence to Jeff Coller or Zoya Ignatova.

Ethics declarations

Competing interests

Z.I. is co-inventor on several licensed and non-licensed patents related to the use of tRNAs as therapeutics and sup-tRNA design and is a member of the scientific advisory board of Tevard Biosciences. J.C. is scientific co-founder of Tevard Biosciences and a member of their scientific advisory board.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adeno-associated virus

(AAV). Non-pathogenic, small single-stranded DNA virus, whose genome (4.7 kb) encodes four non-structural rep proteins, three capsid (cap) proteins and assembly-activating protein, flanked by two AAV-specific palindromic ITRs (145 bp).

Aminoacyl-tRNA synthetase

(AARS). A universal enzyme family that aminoacylates tRNAs with their cognate amino acid.

Basket trials

Also known as bucket trials; a type of clinical trial for patients with different diseases with the same mutation or biomarker.

Episomal expression

A non-integrated extrachromosomal circular DNA from a viral genome that replicates and is transcribed independently in the eukaryotic nucleus.

Missense mutation

A genetic alteration within the protein-coding sequence leading to a change of the encoded amino acid which may alter the function of a protein.

Natural suppressor tRNAs

Native suppressors of nonsense mutations (mostly in bacteria and yeast) arise from mutation in sense codon decoding tRNA genes enabling the mutant tRNA to translate a stop codon.

Nonsense-mediated mRNA decay

(NMD). A pathway that rapidly degrades mRNA in response to nonsense mutations, which can arise owing to errors in transcription or failure to remove intronic regions, altering the natural reading frame.

Nonsense mutation

A genetic alteration within the protein-coding sequence exchanging a sense codon (that is, encoding an amino acid) to a termination or stop codon, resulting in a loss of protein function.

Recombinant AAV

(rAAV). Engineered AAV, in which the DNA of interest replaces the viral sequences encoding for rep and cap genes, whereas both cis-packaging ITR signals are retained.

Termination codons

Also known as stop codons. Three codons, named amber (UAG), ochre (UAA) and opal (UGA), terminate mRNA translation and, through pairing with the release factor (eRF1 in eukaryotes), release the newly synthesized protein.

Therapeutic threshold

The therapeutic threshold, which is established for each disease based on calculations, descriptive methods and clinical practice, describes the probability of disease at which the condition between treatment and no treatment is the same.

Toll-like receptors

Mediators of inflammatory pathways mediating the immune response towards a variety of pathogen-derived ligands, including DNA, double-stranded RNA, single-stranded RNA and oligonucleotides.

tRNA isoacceptor family

A group of all tRNA isoacceptors carrying the same amino acid.

tRNA isoacceptors

Different tRNA species, which are aminoacylated with the same amino acid, but differ in their anticodon sequences.

tRNA isodecoders

tRNA species that are aminoacylated with the same amino acids and bear the same anticodon, but differ elsewhere in their sequences.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coller, J., Ignatova, Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 23, 108–125 (2024). https://doi.org/10.1038/s41573-023-00829-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00829-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing