Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets

Abstract

Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes — and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular — have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1β and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of human inflammasomes with their respective stimuli and expression profiles.
Fig. 2: Molecular mechanisms driving NLRP3 inflammasome activation.
Fig. 3: Binding pocket of CRID3 and model for NLRP3 inflammasome activation.
Fig. 4: Therapeutic targets and inhibitors of the NLRP3 inflammasome pathway.

Similar content being viewed by others

References

  1. Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4, a006049 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meissner, F., Scheltema, R. A., Mollenkopf, H. J. & Mann, M. Direct proteomic quantification of the secretome of activated immune cells. Science 340, 475–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Paerewijck, O. & Lamkanfi, M. The human inflammasomes. Mol. Asp. Med. 88, 101100 (2022).

    Article  CAS  Google Scholar 

  6. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015). This report describes the identification of GSDMD as an essential effector of pyroptosis and IL-1β release.

    Article  CAS  PubMed  Google Scholar 

  7. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). This report describes the identification of GSDMD as an essential effector of pyroptosis and IL-1β release.

    Article  CAS  PubMed  Google Scholar 

  8. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021). This paper demonstrates that pyroptotic cell lysis is a controlled event regulated by NINJ1.

    Article  CAS  PubMed  Google Scholar 

  15. Nadkarni, R. et al. Viral proteases activate the CARD8 inflammasome in the human cardiovascular system. J. Exp. Med. 219, e0212117 (2022).

    Article  Google Scholar 

  16. Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442–457 e423 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kumari, P., Russo, A. J., Shivcharan, S. & Rathinam, V. A. AIM2 in health and disease: inflammasome and beyond. Immunol. Rev. 297, 83–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, J. Y. et al. Activation of the NLRP1 inflammasome in human keratinocytes by the dsDNA mimetic poly(dA:dT). Proc. Natl Acad. Sci. USA 120, e2213777120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 e1118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross, C. J. et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45, 761–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gaidt, M. M. et al. Human monocytes engage an alternative inflammasome pathway. Immunity 44, 833–846 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. McKee, C. M. & Coll, R. C. NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J. Leukoc. Biol. 108, 937–952 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Schmid-Burgk, J. L. et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291, 103–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien, M. et al. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells. J. Immunol. methods 447, 1–13 (2017).

    Article  PubMed  Google Scholar 

  31. Santos, J. C. et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11, 3276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreeva, L. et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184, 6299–6312 e6222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dekker, C. et al. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. J. Mol. Biol. 433, 167309 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Hochheiser, I. V. et al. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604, 184–189 (2022). Report of a cryo-EM structure of full-length human NLRP3 bound to an NLRP3 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  38. Ohto, U. et al. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proc. Natl Acad. Sci. USA 119, e2121353119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao, L., Magupalli, V. G. & Wu, H. Cryo-EM structures of the active NLRP3 inflammasome disk. Nature 613, 595–600 (2022). Report of a cryo-EM structure of the active NLRP3 inflammasome complex.

    Article  PubMed  Google Scholar 

  40. Hochheiser, I. V. et al. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Sci. Adv. 8, eabn7583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brinkschulte, R. et al. ATP-binding and hydrolysis of human NLRP3. Commun. Biol. 5, 1176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, Z. et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, L. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akbal, A. et al. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell. Mol. Immunol. 19, 1201–1214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Daussy, C. F. et al. The inflammasome components NLRP3 and ASC act in concert with IRGM to rearrange the Golgi apparatus during hepatitis C virus infection. J. Virol. 95, e00826–e00920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao, W., Yang, J., Liu, W., Wang, Y. & Shao, F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, E4857–E4866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Gorp, H. et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Z. et al. Distinct changes in endosomal composition promote NLRP3 inflammasome activation. Nat. Immunol. 24, 30–41 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee, B. et al. Disruptions in endocytic traffic contribute to the activation of the NLRP3 inflammasome. Sci. Signal. 16, eabm7134 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug. Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wree, A. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. 92, 1069–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Gordon, R. et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Zeng, J. et al. Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. EBioMedicine 75, 103803 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Agostini, L. et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Van Gorp, H. & Lamkanfi, M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep. 20, e47575 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Van Gijn, M. E. et al. New workflow for classification of genetic variants’ pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J. Med. Genet. 55, 530–537 (2018).

    Article  PubMed  Google Scholar 

  64. Hamon, Y. et al. Interleukin-1beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood 90, 2911–2915 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Laliberte, R. E. et al. Glutathione S-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  67. Lamkanfi, M. et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009). This paper demonstrates inhibition of the NLRP3 inflammasome by small-molecule inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). This important paper identifies CRID3 as a potent and selective NLRP3 inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tapia-Abellan, A. et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol. 15, 560–564 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Coll, R. C. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 15, 556–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Vande Walle, L. et al. MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition. PLoS Biol. 17, e3000354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Weber, A. N. R. et al. Effective ex vivo inhibition of cryopyrin-associated periodic syndrome (CAPS)-associated mutant NLRP3 inflammasome by MCC950/CRID3. Rheumatology 61, e299–e313 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Shah, F. et al. Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol. Sci. 147, 500–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Kennedy, C. R. et al. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target. ACS Chem. Biol. 16, 982–990 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Supuran, C. T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug. Discov. 7, 168–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Parmar, D. V. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral NLRP3 inflammasome inhibitor ZYIL1: first-in-human phase 1 studies (single ascending dose and multiple ascending dose). Clin. Pharmacol. Drug. Dev. 12, 202–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Mullard, A. Roche snaps up another NLRP3 contender. Nat. Rev. Drug. Discov. 19, 744 (2020).

    PubMed  Google Scholar 

  78. Madurka, I. et al. DFV890: a new oral NLRP3 inhibitor-tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection 51, 641–654 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ventyx Biosciences, Inc. Ventyx Biosciences announces positive topline phase 1 data for its peripheral NLRP3 inhibitor VTX2735, https://ir.ventyxbio.com/node/7071/html (2022).

  80. Schwaid, A. G. & Spencer, K. B. Strategies for targeting the NLRP3 inflammasome in the clinical and preclinical space. J. Med. Chem. 64, 101–122 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. F. Hoffmann-La Roche Ltd. Roche Group product development portfolio. https://www.roche.com/solutions/pipeline/ (2023).

  82. F. Hoffmann-La Roche Ltd. Roche Group development pipeline. https://assets.cwp.roche.com/f/126832/x/8eaa872b21/irp220721-annex.pdf (2022).

  83. F. Hoffmann-La Roche Ltd. Roche HY 2022 results. https://assets.cwp.roche.com/f/126832/x/c92c6c03a9/irp220721.pdf (2022).

  84. NodThera, I. NodThera announces positive phase 1 study readouts for the NLRP3 inflammasome inhibitors NT-0796 and NT-0249. https://www.nodthera.com/news/nodthera-announces-positive-phase-1-study-readouts-for-the-nlrp3-inflammasome-inhibitors-nt-0796-and-nt-0249/ (2022).

  85. Kluck, V. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2, e270–e280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Marchetti, C. et al. OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Darakhshan, S. & Pour, A. B. Tranilast: a review of its therapeutic applications. Pharmacol. Res. 91, 15–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, Y. et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med. 10, e8689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen, Y. et al. RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell. Mol. Immunol. 18, 1425–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oronsky, B. et al. Discovery of RRx-001, a Myc and CD47 downregulating small molecule with tumor targeted cytotoxicity and healthy tissue cytoprotective properties in clinical development. J. Med. Chem. 64, 7261–7271 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Hill, J. R. et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem 12, 1449–1457 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Salla, M. et al. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med. Chem. Lett. 7, 1034–1038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hsu, P. L., Ma, J. K. & Luzzi, L. A. Interactions of sulfonylureas with plasma proteins. J. Pharm. Sci. 63, 570–573 (1974).

    Article  CAS  PubMed  Google Scholar 

  95. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Agarwal, S. et al. Discovery of N-cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett. 11, 414–418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harrison, D. et al. Discovery of a series of ester-substituted NLRP3 inflammasome inhibitors. Bioorg. Med. Chem. Lett. 30, 127560 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Harrison, D. et al. Discovery and optimization of triazolopyrimidinone derivatives as selective NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett. 13, 1321–1328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Narros-Fernandez, P. et al. Synthesis and pharmacological evaluation of new N-sulfonylureas as NLRP3 inflammasome inhibitors: identification of a hit compound to treat gout. J. Med. Chem. 65, 6250–6260 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Agarwal, S. et al. Identification of a novel orally bioavailable NLRP3 inflammasome inhibitor. Bioorg. Med. Chem. Lett. 30, 127571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fulp, J. et al. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem. 61, 5412–5423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marchetti, C. et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol. 63, 316–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yin, J. et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 1977–1987 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Guo, C. et al. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci. 8, 2194–2201 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Jiang, Y. et al. Discovery of second-generation NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem. 62, 9718–9731 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, Y. et al. Development of sulfonamide-based NLRP3 inhibitors: further modifications and optimization through structure–activity relationship studies. Eur. J. Med. Chem. 238, 114468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, X., Hu, L., Xu, S., Ye, C. & Chen, A. Erianin: a direct NLRP3 inhibitor with remarkable anti-inflammatory activity. Front. Immunol. 12, 739953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu, X., Xu, J., Zhou, J. & Shen, Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes. Dis. 8, 448–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Pang, L., Liu, H., Quan, H., Sui, H. & Jia, Y. Development of novel oridonin analogs as specifically targeted NLRP3 inflammasome inhibitors for the treatment of dextran sulfate sodium-induced colitis. Eur. J. Med. Chem. 245, 114919 (2022).

    Article  PubMed  Google Scholar 

  112. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Sheth, R. et al. First in human phase I study of BMS-986299 as monotherapy and combined with nivolumab and ipilimumab in advanced solid tumors. J. Clin. Oncol. 41, e14584 (2023).

    Article  Google Scholar 

  115. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Desu, H. L. et al. IC100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J. Neuroinflammation 17, 143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bertheloot, D. et al. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol. Med. 14, e15415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soriano-Teruel, P. M. et al. Identification of an ASC oligomerization inhibitor for the treatment of inflammatory diseases. Cell Death Dis. 12, 1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug. Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mulvihill, E. et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021). A report on a cryo-EM structure of the GSDMD pore.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, F. et al. The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome. Immunity 56, 753–767 e758 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Huang, L. S. et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52, 475–486 e475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231 e3223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. de Vasconcelos, N. M., Van Opdenbosch, N., Van Gorp, H., Parthoens, E. & Lamkanfi, M. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ. 26, 146–161 (2019).

    Article  PubMed  Google Scholar 

  127. Xiao, J. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol. 16, e3000047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kanneganti, A. et al. GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J. Exp. Med. 215, 1519–1529 (2018). This presents in vivo evidence that GSDMD blockade can be effective in a chronic autoinflammatory disease model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu, B. et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Gao, H. et al. Dysregulated microbiota-driven gasdermin D activation promotes colitis development by mediating IL-18 release. Front. Immunol. 12, 750841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, S. et al. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. J. Exp. Med. 216, 2562–2581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lu, C., Li, X., Ren, Y. & Zhang, X. Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol. 87, 159–172 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cao, R. et al. Identification of a small molecule with strong anti-inflammatory activity in experimental autoimmune encephalomyelitis and sepsis through blocking gasdermin D activation. J. Immunol. 209, 820–828 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Schiffelers, L. D. J. et al. Antagonistic nanobodies reveal mechanism of GSDMD pore formation and unexpected therapeutic potential. Preprint at https://doi.org/10.1101/2023.04.20.537718 (2023).

  140. Kopp, A. et al. Pyroptosis inhibiting nanobodies block gasdermin D pore formation. Preprint at https://doi.org/10.1101/2023.04.20.537705 (2023).

  141. Liu, Z. et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49.e44 (2019). This paper reports the crystal structure of murine and human GSDMD, demonstrating the molecular mechanism of GSDMD CT-mediated autoinhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, Z. et al. Caspase-1 engages full-length gasdermin d through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53, 106–114 e105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955 e920 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Li, Z. et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature 599, 290–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530 e1510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ma, J. et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking gasdermin D cleavage. EMBO J. 40, e108249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lei, X. et al. Enterovirus 71 inhibits pyroptosis through cleavage of gasdermin D. J. Virol. 91, e01069–e010117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chai, Q. et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science 378, eabq0132 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. de Vasconcelos, N. M. et al. An apoptotic caspase network safeguards cell death induction in pyroptotic macrophages. Cell Rep. 32, 107959 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mahib, M. R. et al. Caspase-7 mediates caspase-1-induced apoptosis independently of Bid. Microbiol. Immunol. 64, 143–152 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514 e504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Doerflinger, M. et al. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection. Immunity 53, 533–547 e537 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, C. et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 6, eabj3859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou, B. & Abbott, D. W. Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep. 35, 108998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023). This report details the structural mechanisms by which NINJ1 promotes cell lysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choi, S. et al. Ninjurin1 plays a crucial role in pulmonary fibrosis by promoting interaction between macrophages and alveolar epithelial cells. Sci. Rep. 8, 17542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ahn, B. J. et al. Ninjurin1 deficiency attenuates susceptibility of experimental autoimmune encephalomyelitis in mice. J. Biol. Chem. 289, 3328–3338 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Le, H. et al. Disruption of ninjurin1 leads to repetitive and anxiety-like behaviors in mice. Mol. Neurobiol. 54, 7353–7368 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Bruchard, M. et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat. Immunol. 16, 859–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, Y. et al. NLRP3 regulates macrophage M2 polarization through up-regulation of IL-4 in asthma. Biochem. J. 475, 1995–2008 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Zheng, J. et al. A novel function of NLRP3 independent of inflammasome as a key transcription factor of IL-33 in epithelial cells of atopic dermatitis. Cell Death Dis. 12, 871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Van Opdenbosch, N. & Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, Z. et al. Novel sulfonylurea-based NLRP3 inflammasome inhibitor for efficient treatment of nonalcoholic steatohepatitis, endotoxic shock, and colitis. J. Med. Chem. 66, 12966–12989 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Van Gorp, H., Van Opdenbosch, N. & Lamkanfi, M. Inflammasome-dependent cytokines at the crossroads of health and autoinflammatory disease. Cold Spring Harb. Perspect. Biol. 11, a028563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Voet, S., Srinivasan, S., Lamkanfi, M. & van Loo, G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med. 11, e10248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shao, S. et al. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol. Ther. 227, 107880 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Malhotra, S. et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain 143, 1414–1430 (2020).

    Article  PubMed  Google Scholar 

  171. Inoue, M., Williams, K. L., Gunn, M. D. & Shinohara, M. L. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109, 10480–10485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jha, S. et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci. 30, 15811–15820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sanchez-Fernandez, A., Skouras, D. B., Dinarello, C. A. & Lopez-Vales, R. OLT1177 (Dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis. Front. Immunol. 10, 2578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Griffin, W. S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA 86, 7611–7615 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 9, 857–865 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Dempsey, C. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav. Immun. 61, 306–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Codolo, G. et al. Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lee, E. et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 26, 213–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Huang, S. et al. A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson’s disease. J. Neuroimmunol. 354, 577543 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). This important paper describes a large-scale clinical trial demonstrating that IL-1β inhibition confers protection against atherosclerotic disease.

    Article  CAS  PubMed  Google Scholar 

  183. Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Solomon, D. H. et al. Relationship of interleukin-1beta blockade with incident gout and serum uric acid levels: exploratory analysis of a randomized controlled trial. Ann. Intern. Med. 169, 535–542 (2018).

    Article  PubMed  Google Scholar 

  185. Schieker, M. et al. Effects of interleukin-1beta inhibition on incident hip and knee replacement : exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Vallurupalli, M. et al. Effects of interleukin-1beta inhibition on incident anemia: exploratory analyses from a randomized trial. Ann. Intern. Med. 172, 523–532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work was not cited because of space constraints. This work was supported by the Fund for Scientific Research (FWO)-Flanders grant G017121N and European Research Council Grant 101101075 (PyroScreen) to M.L.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mohamed Lamkanfi.

Ethics declarations

Competing interests

M.L. serves as a scientific consultant for Ventyx Biosciences and Novo Nordisk. L.V.W. declares no conflict of interest.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Rongbin Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

clinicaltrials.gov: https://clinicaltrials.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vande Walle, L., Lamkanfi, M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov 23, 43–66 (2024). https://doi.org/10.1038/s41573-023-00822-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00822-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research