Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trends in the approval of cancer therapies by the FDA in the twenty-first century

Abstract

The cancer treatment landscape has changed dramatically since the turn of the century, resulting in substantial improvements in outcomes for patients. This Review summarizes trends in the approval of oncology therapeutic products by the United States Food and Drug Administration (FDA) from January 2000 to October 2022, based on a categorization of these products by their mechanism of action and primary target. Notably, the rate of oncology indication approvals has increased in this time, driven by approvals for targeted therapies, as has the rate of introduction of new therapeutic approaches. Kinase inhibitors are the dominant product class by number of approved products and indications, yet immune checkpoint inhibitors have the second most approvals despite not entering the market until 2011. Other trends include a slight increase in the share of approvals for biomarker-defined populations and the emergence of tumour-site-agnostic approvals. Finally, we consider the implications of the trends for the future of oncology therapeutic product development, including the impact of novel therapeutic approaches and technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of oncology therapeutic products approved by the FDA since 2000 by mechanism of action.
Fig. 2: Trends in oncology therapeutic indication approvals since 2000.
Fig. 3: Trends in approvals across product classes.
Fig. 4: Trends in approvals for biomarker-defined populations.
Fig. 5: Trends for single-agent and combination approvals.
Fig. 6: Trends in regulatory pathways for oncology approvals.

Similar content being viewed by others

References

  1. DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. FDA. Drugs@FDA: NDA006695 (mechlorethamine hydrochloride). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=006695 (2022).

  3. Doroshow, D. B. & Doroshow, J. H. Genomics and the history of precision oncology. Surg. Oncol. Clin. N. Am. 29, 35–49 (2020).

    Article  PubMed  Google Scholar 

  4. FDA. Drugs@FDA: BLA 103792 (trastuzumab) ORIG-1 label. https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/trasgen092598lb.pdf (1998).

  5. FDA. Drugs@FDA: NDA 021335 (imatinib mesylate) ORIG-1 label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2001/21335lbl.pdf (2001).

  6. Ries, L. et al. SEER Cancer Statistics Review 1973–1999 (National Cancer Institute, 2002).

  7. Howlader, N. et al. SEER Cancer Statistics Review 1975–2018 (National Cancer Institute 2021).

  8. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  9. Unger, J. M., Xiao, H., LeBlanc, M., Hershman, D. L. & Blanke, C. D. Cancer clinical trial participation at the 1-year anniversary of the outbreak of the COVID-19 pandemic. JAMA Netw. Open 4, e2118433 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. FDA. Selumetinib multi-discipline review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/213756Orig1s000MultidisciplineR.pdf (2020).

  11. FDA. FDA grants accelerated approval to Darzalex Faspro for newly diagnosed light chain amyloidosis. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-darzalex-faspro-newly-diagnosed-light-chain-amyloidosis (2021).

  12. FDA. FDA approves crizotinib for ALK-positive inflammatory myofibroblastic tumor. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-alk-positive-inflammatory-myofibroblastic-tumor (2022).

  13. Lemery, S., Keegan, P. & Pazdur, R. First FDA approval agnostic of cancer site - when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    Article  PubMed  Google Scholar 

  14. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  15. Thomas, P. D. et al. PANTHER: making genome‐scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Mi, H. & Thomas, P. in Protein Networks and Pathway Analysis (eds Nikolsky, Y. & Bryant, J.) 123–140 (Springer, 2009).

  17. Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. FDA. In Vitro Companion Diagnostic Devices: Guidance for Industry and Food and Drug Administration Staff. https://www.fda.gov/media/81309/download (2014).

  20. Beaver, J. A. et al. A 25-year experience of US Food and Drug Administration accelerated approval of malignant hematology and oncology drugs and biologics: a review. JAMA Oncol. 4, 849–856 (2018).

    Article  PubMed  Google Scholar 

  21. FDA. FDA Oncology Center of Excellence Project Confirm - withdrawn cancer accelerated approvals. https://www.fda.gov/drugs/resources-information-approved-drugs/withdrawn-cancer-accelerated-approvals (2022).

  22. FDA. FDA Oncology Center of Excellence Scientific Collaborative. https://www.fda.gov/about-fda/oncology-center-excellence/oce-scientific-collaborative (2022).

  23. Beaver, J. A. & Pazdur, R. The wild west of checkpoint inhibitor development. N. Engl. J. Med. 386, 1297–1301 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, J. X., Upadhaya, S., Tatake, R., Barkalow, F. & Hubbard-Lucey, V. M. Cancer cell therapies: the clinical trial landscape. Nat. Rev. Drug Discov. 19, 583–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2, 487–497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, X., Pan, X., Wang, Y. & Zhang, Y. Targeting neoantigens for cancer immunotherapy. Biomark. Res. 9, 61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duffy, M. J. & Crown, J. Drugging “undruggable” genes for cancer treatment: are we making progress? Int. J. Cancer 148, 8–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Rudolph, J., Settleman, J. & Malek, S. Emerging trends in cancer drug discovery-from drugging the “Undruggable” to overcoming resistance. Cancer Discov. 11, 815–821 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  31. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. FDA. Tissue Agnostic Drug Development in Oncology Guidance for Industry: Draft Guidance. https://www.fda.gov/media/162346/download (2022).

  34. FDA–NIH Biomarker Working Group. BEST (Biomarkers, endpoints, and other tools) resource [Internet] (Food and Drug Administration, 2016).

  35. Pugh, T. J. et al. AACR Project GENIE: 100,000 cases and beyond. Cancer Discov. 12, 2044–2057 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gupta, R. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 25, 1315–1360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, B. et al. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS ONE 15, e0233112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Awada, H. et al. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia. Blood 138, 1885–1895 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sammut, S. J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Moses, C., Garcia-Bloj, B., Harvey, A. R. & Blancafort, P. Hallmarks of cancer: the CRISPR generation. Eur. J. Cancer 93, 10–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. FDA. Use of Circulating Tumor DNA for Early-Stage Solid Tumor Drug Development Guidance for Industry: Draft guidance. https://www.fda.gov/media/158072/download (2022).

  46. Shu, Y. et al. Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types. Sci. Rep. 7, 583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. FDA. FDA Approves First Liquid Biopsy Next-Generation Sequencing Companion Diagnostic Test. https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test (2020).

  48. Tie, J. et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann. Oncol. 26, 1715–1722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profilingearly detection of lung cancer MRD by ctDNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. FDA. FDA news release: Project Orbis: Strengthening International Collaboration for Oncology Product Reviews, Faster Patient Access to Innovative Therapies. https://www.fda.gov/news-events/fda-voices/project-orbis-strengthening-international-collaboration-oncology-product-reviews-faster-patient (2020).

  51. de Claro, R. A. et al. Project Orbis: global collaborative review program: year one experience. Clin. Cancer Res. 26, 6412–6416 (2020).

    Article  PubMed  Google Scholar 

  52. Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12, 385 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. FDA. Drugs@FDA: FDA-approved drugs. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (2022).

  55. FDA. FDA Center for Biologics Evaluation and Research - Approved cellular and gene therapy products. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (2022).

  56. FDA. FDA Oncology (cancer) / hematologic malignancies approval notifications. https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications (2022).

  57. FDA. FDA Oncology Center of Excellence Project Confirm. https://www.fda.gov/about-fda/oncology-center-excellence/project-confirm (2022).

  58. WHO. WHO-ATC index 2022. https://www.whocc.no/atc_ddd_index/ (2022).

  59. NCI. NCI thesaurus. https://ncithesaurus.nci.nih.gov/ncitbrowser/ (2022).

  60. FDA. Center for Drug Evaluation and Research Manual of Policies and Procedures 5018.2. https://www.fda.gov/media/94381/download (2022).

Download references

Acknowledgements

This work was funded in part by appointments to the Research Participation Program at the Office of Oncologic Diseases, Center for Drug Evaluation and Research at the FDA administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the FDA. The authors thank S. Balasubramaniam and G. Kim for helpful discussions during early stages of study design.

Author information

Authors and Affiliations

Authors

Contributions

E.C.S., A.C.B., Y.G., R.M., G.E.P., H.S., A.S., M.D.T., W.X. and J.A.B. researched data for the article. E.C.S., R.P., V.A.R., J.S. and J.A.B. contributed substantially to discussion of content. E.C.S. and J.A.B. contributed to writing the manuscript. All authors except Y.G. and A.S. reviewed and edited the manuscript.

Corresponding author

Correspondence to Emma C. Scott.

Ethics declarations

Competing interests

Y.G., A.S. and J.A.B. completed work on this publication while employees at the FDA. At the time of publishing, Y.G. is an employee and shareholder at BeiGene, A.S. is an employee at the U.S. Department of Health and Human Services, and J.A.B. is an employee and shareholder at Treeline Biosciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Melissa Junttila, Joachim Rudolph and Doriano Fabbro for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Cytotoxic drugs

Small-molecule drugs with the primary mode of action of inducing cellular toxicity, generally by interacting with DNA or components of the cell cycle. They affect rapidly dividing cells and are usually genotoxic.

Indication

The approved indication for a given product. This includes the use (for example, for treatment) and disease or condition for which the product is approved, as well as additional information, when applicable, such as use in conjunction with a primary mode of therapy (for example, in combination with another product(s)), the indicated population (for example, by age or biomarkers), and use in specific situations (for example, for use in previously treated patients).

Targeted biologics

Biological products, including monoclonal antibodies, other antibody constructs and conjugates, cellular therapies, enzymes, fusion proteins and viral therapies. They typically recognize specific peptide sequences in proteins present on the surface of cancer cells and have high target specificity.

Targeted drugs

Drugs that inhibit or interfere with defined molecular targets in cancer cells (such as kinases, receptors and other molecules) that are involved in intercellular or intracellular signalling pathways. They are primarily small-molecule drugs, but also include short peptides and radioactive agents without an antibody moiety.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, E.C., Baines, A.C., Gong, Y. et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat Rev Drug Discov 22, 625–640 (2023). https://doi.org/10.1038/s41573-023-00723-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00723-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research