Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Industrializing engineered autologous T cells as medicines for solid tumours

Abstract

Cell therapy is one of the fastest growing areas in the pharmaceutical industry, with considerable therapeutic potential. However, substantial challenges regarding the utility of these therapies will need to be addressed before they can become mainstream medicines with applicability similar to that of small molecules or monoclonal antibodies. Engineered T cells have achieved success in the treatment of blood cancers, with four chimeric antigen receptor (CAR)-T cell therapies now approved for the treatment of B cell malignancies based on their unprecedented efficacy in clinical trials. However, similar results have not yet been achieved in the treatment of the much larger patient population with solid tumours. For cell therapies to become mainstream medicines, they may need to offer transformational clinical effects for patients and be applicable in disease settings that remain unaddressed by simpler approaches. This Perspective provides an industry perspective on the progress achieved by engineered T cell therapies to date and the opportunities and current barriers for accessing broader patient populations, and discusses the solutions and new development strategies required to fully industrialize the therapeutic potential of engineered T cells as medicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Cell Therapy Utility Framework: characterizing the optimal IO therapy based on the ability of tumours to hide and protect from the immune system.
Fig. 2: Parent–child IND development strategy, an efficient model to investigate multiple related T cell-based products or manufacturing process changes.
Fig. 3: Patient journey and focused areas of innovation to support further industrialization.

Similar content being viewed by others

References

  1. Hoos, A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 15, 235–247 (2016).

    CAS  PubMed  Google Scholar 

  2. Tang, J., Pearce, L., O’Donnell-Tormey, J. & Hubbard-Lucey, V. M. Trends in the global immuno-oncology landscape. Nat. Rev. Drug Discov. 17, 783–784 (2018).

    CAS  PubMed  Google Scholar 

  3. Xin Yu, J., Hubbard-Lucey, V. M. & Tang, J. The global pipeline of cell therapies for cancer. Nat. Rev. Drug Discov. 18, 821–822 (2019).

    PubMed  Google Scholar 

  4. Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    CAS  PubMed  Google Scholar 

  5. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    CAS  PubMed  Google Scholar 

  6. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

  7. Salmikangas, P., Kinsella, N. & Chamberlain, P. Chimeric antigen receptor T-cells (CAR T-cells) for cancer immunotherapy — moving target for industry? Pharm. Res. 35, 152 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Delhove, J. & Qasim, W. Genome-edited T cell therapies. Curr. Stem Cell Rep. 3, 124–136 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    PubMed  Google Scholar 

  11. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grupp, S. A. et al. Updated analysis of the efficacy and safety of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia. Blood 132, 895–895 (2018).

    Google Scholar 

  13. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20, 31–42 (2019).

    CAS  PubMed  Google Scholar 

  14. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  15. Liu, J., Zhou, G., Zhang, L. & Zhao, Q. Building potent chimeric antigen receptor T cells with CRISPR genome editing. Front. Immunol. 10, 456 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kazi, S. et al. Long-term follow up after third-party viral-specific cytotoxic lymphocytes for immunosuppression- and Epstein–Barr virus-associated lymphoproliferative disease. Haematologica 104, e356–e359 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Andersen, R. et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

    CAS  PubMed  Google Scholar 

  19. Stevanovic, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    CAS  PubMed  Google Scholar 

  20. Stevanovic, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356, 200–205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goff, S. L. et al. Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J. Immunother. 33, 840–847 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 569 (2017).

    CAS  PubMed  Google Scholar 

  24. Garber, K. Pursuit of tumor-infiltrating lymphocyte immunotherapy speeds up. Nat. Biotechnol. 37, 969–971 (2019).

    PubMed  Google Scholar 

  25. Mikkilineni, L. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 130, 2594–2602 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl Med. 7, 303ra139 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Locke, F. L. et al. Durability of response in ZUMA-1, the pivotal phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients (Pts) with refractory large B-cell lymphoma. J. Clin. Oncol. 36, 3003 (2018).

    Google Scholar 

  29. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  31. Abramson, J. S. et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J. Clin. Oncol. 36, 7505 (2018).

    Google Scholar 

  32. Abramson, J. S. et al. Lisocabtagene maraleucel (liso-cel) treatment of patients (pts) with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (NHL) and secondary CNS lymphoma: initial results from TRANSCEND NHL 001. J. Clin. Oncol. 37, 7515 (2019).

    Google Scholar 

  33. Jacobson, C. A. et al. Interim analysis of ZUMA-5: a phase II study of axicabtagene ciloleucel (axi-cel) in patients (pts) with relapsed/refractory indolent non-Hodgkin lymphoma (R/R iNHL). J. Clin. Oncol. 38, 8008 (2020).

    Google Scholar 

  34. Zhao, W. H. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11, 141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent. J. Clin. Oncol. 37, 2511 (2019).

    Google Scholar 

  37. TCR2 Therapeutics. TCR2 announces recist response in ovarian cancer from ongoing phase 1/2 trial of TC-210 in treatment refractory mesothelin-expressing solid tumors — press release. TCR2 Therapeutics https://investors.tcr2.com/news-releases/news-release-details/tcr2-announces-recist-response-ovarian-cancer-ongoing-phase-12 (2020).

  38. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    CAS  PubMed  Google Scholar 

  39. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    CAS  PubMed  Google Scholar 

  40. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stadtmauer, E. A. et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. 3, 2022–2034 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hong, D. S. et al. Phase I dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors. J. Clin. Oncol. 38 (Suppl. 15), 102 (2020).

    Google Scholar 

  48. Van Tine, B. A. et al. Durable responses in patients with synovial sarcoma in the phase I trials of ADP-A2M4 (MAGE-A4). CTOS https://www.eventscribe.net/2020/CTOS/agenda.asp?pfp=ON (2020).

  49. Barrett, D. M., Grupp, S. A. & June, C. H. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J. Immunol. 195, 755–761 (2015).

    CAS  PubMed  Google Scholar 

  50. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  52. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Duinkerken, C. W. et al. Sensorineural hearing loss after adoptive cell immunotherapy for melanoma using MART-1 specific T cells: a case report and its pathophysiology. Otol. Neurotol. 40, e674–e678 (2019).

    PubMed  Google Scholar 

  54. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    PubMed  Google Scholar 

  55. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    CAS  PubMed  Google Scholar 

  57. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van Zelm, M. C. et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest. 120, 1265–1274 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    CAS  PubMed  Google Scholar 

  61. Shalabi, H. et al. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica 103, e215–e218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl Med. 9, eaaa0984 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Loffek, S. Transforming of the tumor microenvironment: implications for TGF-β inhibition in the context of immune-checkpoint therapy. J. Oncol. 2018, 9732939 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Whiteside, T. L. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin. Ther. Targets 22, 353–363 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Irving, M., Vuillefroy de Silly, R., Scholten, K., Dilek, N. & Coukos, G. Engineering chimeric antigen receptor T-cells for racing in solid tumors: don’t forget the fuel. Front. Immunol. 8, 267 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).

    PubMed  Google Scholar 

  76. Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48, 1029–1045.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gazon, H., Barbeau, B., Mesnard, J. M. & Peloponese, J. M. Jr. Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 8, 2686 (2017).

    PubMed  Google Scholar 

  79. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Maus, M. V. & June, C. H. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin. Cancer Res. 22, 1875–1884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    CAS  PubMed  Google Scholar 

  83. Schneider, D. et al. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J. Immunother. Cancer 5, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Zhao, J., Song, Y. & Liu, D. Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J. Hematol. Oncol. 12, 17 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Achkova, D. & Pule, M. CAR T-cell integration of multiple input signals allows for precise targeting of cancer. Cancer Discov. 8, 918–920 (2018).

    CAS  PubMed  Google Scholar 

  86. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mardiana, S., Solomon, B. J., Darcy, P. K. & Beavis, P. A. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci. Transl Med. 11, eaaw2293 (2019).

    CAS  PubMed  Google Scholar 

  89. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Yin, Y. et al. Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol. Ther. Oncolytics 11, 20–38 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Curran, K. J. et al. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther. 23, 769–778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, Y. et al. Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy. Gene Ther. 25, 192–197 (2018).

    CAS  PubMed  Google Scholar 

  94. Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S. & Brentjens, R. J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Chmielewski, M., Kopecky, C., Hombach, A. A. & Abken, H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 71, 5697–5706 (2011).

    CAS  PubMed  Google Scholar 

  96. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    CAS  PubMed  Google Scholar 

  98. Barrett, J. A. et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 25, 106–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, C. et al. Development of an inducible caspase-9 safety switch for pluripotent stem cell-based therapies. Mol. Ther. Methods Clin. Dev. 1, 14053 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Stavrou, M. et al. A rapamycin-activated caspase 9-based suicide gene. Mol. Ther. 26, 1266–1276 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Greco, R. et al. Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 6, 95 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    CAS  PubMed  Google Scholar 

  104. Borghaei, H. et al. 24-month overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J. Thorac. Oncol. 14, 124–129 (2019).

    CAS  PubMed  Google Scholar 

  105. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    CAS  PubMed  Google Scholar 

  106. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    CAS  PubMed  Google Scholar 

  107. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    CAS  PubMed  Google Scholar 

  108. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Al-Hadidi, S. A., Chuang, H. H., Miranda, R. N. & Lee, H. J. Programmed cell death-one inhibition therapy in classical Hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk. 21, e105–e111 (2021).

    PubMed  Google Scholar 

  110. Nagpal, P., Descalzi-Montoya, D. B. & Lodhi, N. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes. Cancer Rep. https://doi.org/10.1002/cnr2.1311 (2020).

    Article  Google Scholar 

  111. Ferrarini, I., Rigo, A., Visco, C., Krampera, M. & Vinante, F. The evolving knowledge on T and NK cells in classic Hodgkin lymphoma: insights into novel subsets populating the immune microenvironment. Cancers 12, 3757 (2020).

    CAS  PubMed Central  Google Scholar 

  112. Lees, C., Keane, C., Gandhi, M. K. & Gunawardana, J. Biology and therapy of primary mediastinal B-cell lymphoma: current status and future directions. Br. J. Haematol. 185, 25–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Richman, S. Deficient mismatch repair: read all about it (Review). Int. J. Oncol. 47, 1189–1202 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hargadon, J. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018).

    CAS  PubMed  Google Scholar 

  116. Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36, 1658–1667 (2018).

    CAS  PubMed  Google Scholar 

  117. Conry, R. M., Westbrook, B., McKee, S. & Norwood, T. G. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum. Vaccin. Immunother. 14, 839–846 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Andre, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    CAS  PubMed  Google Scholar 

  120. Merck. Keytruda (pembrolizumab) prescribing information. Merck https://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf (2020).

  121. Bristol Myers Squibb. Opdivo (nivolumab) prescribing information. BMS https://packageinserts.bms.com/pi/pi_opdivo.pdf (2020).

  122. Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet. Oncol. 15, 700–712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, M. et al. Safety and preliminary efficacy in patients (pts) with relapsed/refractory (R/R) mantle cell lymphoma (MCL) receiving lisocabtagene maraleucel (Liso-cel) in TRANSCEND NHL 001. J. Clin. Oncol. 37, 7516 (2019).

    Google Scholar 

  125. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  Google Scholar 

  126. Cortes, J. et al. KEYNOTE-355: randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J. Clin. Oncol. 38, 1000 (2020).

    Google Scholar 

  127. US Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for locally recurrent unresectable or metastatic triple negative breast cancer (FDA, 2020).

  128. Meister, A., Hentrich, M., Wyen, C. & Hubel, K. Malignant lymphoma in the HIV-positive patient. Eur. J. Haematol. 101, 119–126 (2018).

    PubMed  Google Scholar 

  129. Goncalves, P. H., Ziegelbauer, J., Uldrick, T. S. & Yarchoan, R. Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr. Opin. HIV AIDS 12, 47–56 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Engels, E. A. et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 306, 1891–1901 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  132. Salles, G. et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34, 2232–2273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Demichelis-Gomez, R., Perez-Samano, D. & Bourlon, C. Bispecific antibodies in hematologic malignancies: when, to whom, and how should be best used? Curr. Oncol. Rep. 21, 17 (2019).

    PubMed  Google Scholar 

  134. Trudel, S. et al. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial. Lancet Oncol. 19, 1641–1653 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Trudel, S. et al. Antibody–drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: an update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 9, 37 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. OK, C. Y. & Young, K. H. Checkpoint inhibitors in hematological malignancies. J. Hematol. Oncol. 10, 103 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps177 (2013).

    Google Scholar 

  138. Martinez, M. & Moon, E. K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 10, 128 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu, J. X., Upadhaya, S., Tatake, R., Barkalow, F. & Hubbard-Lucey, V. M. Cancer cell therapies: the clinical trial landscape. Nat. Rev. Drug Discov. 19, 583–584 (2020).

    CAS  PubMed  Google Scholar 

  140. US Food and Drug Administration. Statement from FDA commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies (FDA, 2019).

  141. Seitz, K. & Zhou, H. Pharmacokinetic drug–drug interaction potentials for therapeutic monoclonal antibodies: reality check. J. Clin. Pharmacol. 47, 1104–1118 (2007).

    CAS  PubMed  Google Scholar 

  142. Baruch, E. N., Berg, A. L., Besser, M. J., Schachter, J. & Markel, G. Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer 123, 2154–2162 (2017).

    PubMed  Google Scholar 

  143. Morrow, T. & Felcone, L. H. Defining the difference: what makes biologics unique. Biotechnol. Healthc. 1, 24–29 (2004).

    PubMed  PubMed Central  Google Scholar 

  144. Ramachandran, I. et al. Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. J. Immunother. Cancer 7, 276 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. US Food and Drug Administration. Exploratory IND studies. Guidance for industry, investigators, and reviewers (FDA, 2006).

  147. Friends of Cancer Research & Parker Institute for Cancer Immunotherapy. Designing the future of cell therapies. Friends of Cancer Research https://www.focr.org/sites/default/files/pdf/Friends_Cellular_Therapies_White_Paper.pdf (2019).

  148. Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    CAS  PubMed  Google Scholar 

  149. Gottlieb, S. Remarks to the Alliance for Regenerative Medicine’s annual board meeting (FDA, 2018).

  150. Moutsatsou, P., Ochs, J., Schmitt, R. H., Hewitt, C. J. & Hanga, M. P. Automation in cell and gene therapy manufacturing: from past to future. Biotechnol. Lett. 41, 1245–1253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. US Food and Drug Administration. Current good manufacturing practice for phase I investigational drugs (FDA, 2008).

  152. Stewart, M. D. et al. Accelerating the development of innovative cellular therapy products for the treatment of cancer. Cytotherapy 22, 239–246 (2020).

    PubMed  Google Scholar 

  153. McCarron, A., Donnelley, M., McIntyre, C. & Parsons, D. Challenges of up-scaling lentivirus production and processing. J. Biotechnol. 240, 23–30 (2016).

    CAS  PubMed  Google Scholar 

  154. Papathanasiou, M. M. et al. Autologous CAR T-cell therapies supply chain: challenges and opportunities? Cancer Gene Ther. 27, 799–809 (2020).

    CAS  PubMed  Google Scholar 

  155. Wang, X. & Riviere, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. O’Connor, R. S. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    PubMed  Google Scholar 

  157. McGuirk, J. et al. Building blocks for institutional preparation of CTL019 delivery. Cytotherapy 19, 1015–1024 (2017).

    CAS  PubMed  Google Scholar 

  158. Perica, K., Curran, K. J., Brentjens, R. J. & Giralt, S. A. Building a CAR garage: preparing for the delivery of commercial CAR T cell products at Memorial Sloan Kettering Cancer Center. Biol. Blood Marrow Transpl. 24, 1135–1141 (2018).

    Google Scholar 

  159. Iyer, R. K., Bowles, P. A., Kim, H. & Dulgar-Tulloch, A. Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front. Med. 5, 150 (2018).

    Google Scholar 

  160. Kaiser, A. D. et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 22, 72–78 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Buhl, T. et al. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy. Cancer Immunol. Immunother. 61, 2021–2031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Massie, I. et al. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods 20, 693–702 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Priesner, C. et al. Automated enrichment, transduction, and expansion of clinical-scale CD62L+ T cells for manufacturing of gene therapy medicinal products. Hum. Gene Ther. 27, 860–869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mock, U. et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy 18, 1002–1011 (2016).

    CAS  PubMed  Google Scholar 

  165. US Food and Drug Administration. Chemistry, manufacturing and control (CMC) information for human gene therapy investigational new drug applications (INDs) (FDA, 2020).

  166. European Commission. Guidelines on good manufacturing practice specific to advanced therapy medicinal products (EC, 2017).

  167. Cauchon, N. S., Oghamian, S., Hassanpour, S. & Abernathy, M. Innovation in chemistry, manufacturing, and controls — a regulatory perspective from industry. J. Pharm. Sci. 108, 2207–2504 (2019).

    CAS  PubMed  Google Scholar 

  168. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuwana, Y. et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 149, 960–968 (1987).

    CAS  PubMed  Google Scholar 

  170. Maher, J., Brentjens, R. J., Gunset, G., Riviere, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    CAS  PubMed  Google Scholar 

  171. Anderson, V. E. et al. Abstract 2313: enhanced activity of second-generation MAGE-A4 SPEAR T-cells through co-expression of a CD8α homodimer. Cancer Res. 79, 2313–2313 (2019).

    Google Scholar 

  172. Yu, S., Yi, M., Qin, S. & Wu, K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol. Cancer 18, 125 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Aftab, B. T. et al. Toward “off-the-shelf” allogeneic CAR T cells. Adv. Cell Gene Ther. 3, e86 (2020).

    Google Scholar 

  174. Zhao, J., Lin, Q., Song, Y. & Liu, D. Universal CARs, universal T cells, and universal CAR T cells. J. Hematol. Oncol. 11, 132–132 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by GlaxoSmithKline (GSK). Editorial support was provided by F. Woodward and G. Corr of Fishawack Indicia Ltd, UK, and was funded by GSK.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Axel Hoos.

Ethics declarations

Competing interests

A.S. is an employee of GlaxoSmithKline (GSK) and owns stocks/shares. C.M.B. was an employee of GSK and owns stocks/shares; he recently moved to Immatics Biotechnologies GmbH. A.H. is an employee of GSK and holds stocks/shares, and is a non-executive director and shareholder of Imugene and TCR2 Therapeutics.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks Piotr Pierog, David Gilham and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alliance for Regenerative Medicine: https://alliancerm.org/

American Society for Transplantation and Cellular Therapy: https://www.astct.org/home

American Society of Gene and Cell Therapy: https://www.asgct.org/

European Society for Blood and Marrow Transplantation: https://www.ebmt.org/

Friends of Cancer Research: https://friendsofcancerresearch.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britten, C.M., Shalabi, A. & Hoos, A. Industrializing engineered autologous T cells as medicines for solid tumours. Nat Rev Drug Discov 20, 476–488 (2021). https://doi.org/10.1038/s41573-021-00175-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00175-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing