Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The quest to slow ageing through drug discovery

Abstract

Although death is inevitable, individuals have long sought to alter the course of the ageing process. Indeed, ageing has proved to be modifiable; by intervening in biological systems, such as nutrient sensing, cellular senescence, the systemic environment and the gut microbiome, phenotypes of ageing can be slowed sufficiently to mitigate age-related functional decline. These interventions can also delay the onset of many disabling, chronic diseases, including cancer, cardiovascular disease and neurodegeneration, in animal models. Here, we examine the most promising interventions to slow ageing and group them into two tiers based on the robustness of the preclinical, and some clinical, results, in which the top tier includes rapamycin, senolytics, metformin, acarbose, spermidine, NAD+ enhancers and lithium. We then focus on the potential of the interventions and the feasibility of conducting clinical trials with these agents, with the overall aim of maintaining health for longer before the end of life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age composition of the global population and incidence of major age-related diseases.
Fig. 2: Agents and their influence on different hallmarks of ageing.
Fig. 3: Effects of rapamycin and inhibition of mTORC1.
Fig. 4: Some of the modes of action for senolytics.

Similar content being viewed by others

References

  1. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    CAS  PubMed  Google Scholar 

  2. Niccoli, T., Partridge, L. & Isaacs, A. M. Ageing as a risk factor for ALS/FTD. Hum. Mol. Genet. 26, R105–R113 (2017).

    CAS  PubMed  Google Scholar 

  3. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    CAS  PubMed  Google Scholar 

  4. Hurst, J. R. et al. Global Alliance for Chronic Disease researchers’ statement on multimorbidity. Lancet Glob. Health 6, e1270–e1271 (2018).

    PubMed  Google Scholar 

  5. Evangelista, L., Steinhubl, S. R. & Topol, E. J. Digital health care for older adults. Lancet 393, 1493 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Hardy, J. & De Strooper, B. Alzheimer’s disease: where next for anti-amyloid therapies? Brain 140, 853–855 (2017).

    PubMed  Google Scholar 

  7. Tarakad, A. & Jankovic, J. Diagnosis and management of Parkinson’s disease. Semin. Neurol. 37, 118–126 (2017).

    PubMed  Google Scholar 

  8. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  9. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span-from yeast to humans. Science 328, 321–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Longo, V. D. et al. Interventions to slow aging in humans: are we ready? Aging Cell 14, 497–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife 5, e16351 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).

    CAS  PubMed  Google Scholar 

  16. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldman, D. The economic promise of delayed aging. Cold Spring Harb. Perspect. Med. 6, a025072 (2015).

    PubMed  Google Scholar 

  19. Olshansky, S. J. Articulating the case for the longevity dividend. Cold Spring Harb. Perspect. Med. 6, a025940 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de Magalhaes, J. P., Stevens, M. & Thornton, D. The business of anti-aging science. Trends Biotechnol. 35, 1062–1073 (2017).

    PubMed  Google Scholar 

  22. Brown, A. S. & Patel, C. J. A standard database for drug repositioning. Sci. Data 4, 170029 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6, e26726 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Schubert, D. et al. Geroneuroprotectors: effective geroprotectors for the brain. Trends Pharmacol. Sci. 39, 1004–1007 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Figueira, I. et al. Interventions for age-related diseases: shifting the paradigm. Mech. Ageing Dev. 160, 69–92 (2016).

    PubMed  Google Scholar 

  26. Moskalev, A. et al. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15, 407–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moskalev, A., Chernyagina, E., Kudryavtseva, A. & Shaposhnikov, M. Geroprotectors: a unified concept and screening approaches. Aging Dis. 8, 354–363 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Trendelenburg, A. U., Scheuren, A. C., Potter, P., Muller, R. & Bellantuono, I. Geroprotectors: a role in the treatment of frailty. Mech. Ageing Dev. 180, 11–20 (2019).

    CAS  PubMed  Google Scholar 

  29. Moskalev, A. et al. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging 7, 616–628 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, S. & Lombard, D. B. Finding Ponce de Leon’s Pill: challenges in screening for anti-aging molecules. F1000Res 5, 406 (2016).

    Google Scholar 

  31. Vaiserman, A. M., Lushchak, O. V. & Koliada, A. K. Anti-aging pharmacology: promises and pitfalls. Ageing Res. Rev. 31, 9–35 (2016).

    PubMed  Google Scholar 

  32. de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Mallikarjun, V. & Swift, J. Therapeutic manipulation of ageing: repurposing old dogs and discovering new tricks. EBioMedicine 14, 24–31 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J. Gerontol. A Biol. Sci. Med. Sci. 71, 841–849 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    CAS  PubMed  Google Scholar 

  39. Powers, R. W. 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ha, C. W. & Huh, W. K. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res. 39, 1336–1350 (2011).

    CAS  PubMed  Google Scholar 

  41. Jia, K., Chen, D. & Riddle, D. L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906 (2004).

    CAS  PubMed  Google Scholar 

  42. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).

    CAS  PubMed  Google Scholar 

  44. Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191–201 (2011).

    PubMed  Google Scholar 

  48. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Wu, J. J. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 4, 913–920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Anisimov, V. N. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236 (2011).

    CAS  PubMed  Google Scholar 

  51. Popovich, I. G. et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol. Ther. 15, 586–592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grabiner, B. C. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, J. et al. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J. Clin. Invest. 126, 3526–3540 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272–3291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    CAS  PubMed  Google Scholar 

  56. Lesniewski, L. A. et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 16, 17–26 (2017).

    CAS  PubMed  Google Scholar 

  57. Halloran, J. et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223, 102–113 (2012).

    CAS  PubMed  Google Scholar 

  58. Majumder, S. et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell 11, 326–335 (2012).

    CAS  PubMed  Google Scholar 

  59. Flynn, J. M. et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12, 851–862 (2013).

    CAS  PubMed  Google Scholar 

  60. Dai, D. F. et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. An, J. Y. et al. Rapamycin treatment attenuates age-associated periodontitis in mice. Geroscience 39, 457–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dou, X. et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 16, 825–836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Reifsnyder, P. C., Flurkey, K., Te, A. & Harrison, D. E. Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging 8, 3120–3130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Menzies, F. M. & Rubinsztein, D. C. Broadening the therapeutic scope for rapamycin treatment. Autophagy 6, 286–287 (2010).

    CAS  PubMed  Google Scholar 

  65. Bove, J., Martinez-Vicente, M. & Vila, M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci. 12, 437–452 (2011).

    CAS  PubMed  Google Scholar 

  66. Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 5, e9979 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Ozcelik, S. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8, e62459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, A. L. et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease. J. Cereb. Blood Flow. Metab. 37, 217–226 (2017).

    CAS  PubMed  Google Scholar 

  69. Richardson, A., Galvan, V., Lin, A. L. & Oddo, S. How longevity research can lead to therapies for Alzheimer’s disease: the rapamycin story. Exp. Gerontol. 68, 51–58 (2015).

    CAS  PubMed  Google Scholar 

  70. Bai, X. et al. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. Pathobiol. Aging Age Relat. Dis. 5, 28743 (2015).

    PubMed  Google Scholar 

  71. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  72. Sarkar, S. et al. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet. 17, 170–178 (2008).

    CAS  PubMed  Google Scholar 

  73. Johnson, S. C. et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front. Genet. 6, 247 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Kennedy, B. K. & Pennypacker, J. K. Mammalian target of rapamycin: a target for (lung) diseases and aging. Ann. Am. Thorac. Soc. 13 (Suppl. 5), S398–S401 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Sciarretta, S., Forte, M., Frati, G. & Sadoshima, J. New insights into the role of mTOR signaling in the cardiovascular system. Circ. Res. 122, 489–505 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Walters, H. E. & Cox, L. S. mTORC inhibitors as broad-spectrum therapeutics for age-related diseases. Int. J. Mol. Sci. 19, 2325 (2018).

    PubMed Central  Google Scholar 

  77. University of Washington. Dog Aging Project https://dogagingproject.org/ (2019).

  78. Urfer, S. R. et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience 39, 117–127 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tardif, S. et al. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. J. Gerontol. A Biol. Sci. Med. Sci. 70, 577–587 (2015).

    CAS  PubMed  Google Scholar 

  80. Ross, C. et al. Metabolic consequences of long-term rapamycin exposure on common Marmoset monkeys (Callithrix jacchus). Aging 7, 964–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lelegren, M., Liu, Y., Ross, C., Tardif, S. & Salmon, A. B. Pharmaceutical inhibition of mTOR in the common marmoset: effect of rapamycin on regulators of proteostasis in a non-human primate. Pathobiol. Aging Age Relat. Dis. 6, 31793 (2016).

    PubMed  Google Scholar 

  82. Kennedy, B. K. & Lamming, D. W. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 23, 990–1003 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Haller, S. et al. mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance. Cell Stem Cell 21, 806–818.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fan, X. et al. Rapamycin preserves gut homeostasis during Drosophila aging. Oncotarget 6, 35274–35283 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Sung, J. Y., Lee, K. Y., Kim, J. R. & Choi, H. C. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through decreased expressions of p53/p21/p16. Exp. Gerontol. 109, 51–58 (2018).

    CAS  PubMed  Google Scholar 

  88. Wang, R., Sunchu, B. & Perez, V. I. Rapamycin and the inhibition of the secretory phenotype. Exp. Gerontol. 94, 89–92 (2017).

    CAS  PubMed  Google Scholar 

  89. Hine, C. Rapamycin keeps the reproductive clock ticking. Sci. Transl Med. 9, eaan4296 (2017).

    PubMed  Google Scholar 

  90. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Augustine, J. J., Bodziak, K. A. & Hricik, D. E. Use of sirolimus in solid organ transplantation. Drugs 67, 369–391 (2007).

    CAS  PubMed  Google Scholar 

  92. de Oliveira, M. A. et al. Clinical presentation and management of mTOR inhibitor-associated stomatitis. Oral. Oncol. 47, 998–1003 (2011).

    PubMed  Google Scholar 

  93. Schreiber, K. H. et al. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell 14, 265–273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    CAS  PubMed  Google Scholar 

  96. Zheng, Y. et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J. Immunol. 178, 2163–2170 (2007).

    CAS  PubMed  Google Scholar 

  97. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    CAS  PubMed  Google Scholar 

  98. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    CAS  PubMed  Google Scholar 

  102. Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Murphy, S. L., Jiaquan, X. & Kochnanek, K. D. Deaths: Final Data for 2010. Natl Vital Stat. Rep. 61, 1–117 (2013).

    PubMed  Google Scholar 

  105. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24, 1159–1169 (2006).

    CAS  PubMed  Google Scholar 

  106. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    PubMed  Google Scholar 

  107. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl Med. 10, eaaq1564 (2018).

    PubMed  Google Scholar 

  108. resTORbio. resTORbio announces that the phase 3 PROTECTOR 1 trial of RTB101 in clinically symptomatic respiratory illness did not meet the primary endpoint. resTORbio https://ir.restorbio.com/news-releases/news-release-details/restorbio-announces-phase-3-protector-1-trial-rtb101-clinically (2019).

  109. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    CAS  PubMed  Google Scholar 

  110. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Google Scholar 

  111. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Anestakis, D. et al. Mechanisms and applications of interleukins in cancer immunotherapy. Int. J. Mol. Sci. 16, 1691–1710 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Google Scholar 

  115. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    CAS  PubMed  Google Scholar 

  116. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Yanai, H. & Fraifeld, V. E. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res. Rev. 41, 18–33 (2018).

    PubMed  Google Scholar 

  118. Khosla, S., Farr, J. N. & Kirkland, J. L. Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J. Clin. Endocrinol. Metab. 103, 1282–1290 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jeon, O. H., David, N., Campisi, J. & Elisseeff, J. H. Senescent cells and osteoarthritis: a painful connection. J. Clin. Invest. 128, 1229–1237 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    PubMed  PubMed Central  Google Scholar 

  128. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  132. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cavalcante, M. B. et al. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging 12, 2711–2722 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Fuhrmann-Stroissnigg, H., Niedernhofer, L. J. & Robbins, P. D. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 17, 1048–1055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kashyap, D. et al. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9, 174 (2019).

    CAS  PubMed Central  Google Scholar 

  139. Triana-Martinez, F. et al. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10, 4731 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nat. Metabolism 1, 1074–1088 (2019).

    CAS  Google Scholar 

  141. NIH U.S. National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03513016 (2018).

  142. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Herranz, N. & Gil, J. Mechanisms and functions of cellular senescence. J. Clin. Invest. 128, 1238–1246 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Marshall, S. M. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia 60, 1561–1565 (2017).

    PubMed  Google Scholar 

  146. Adak, T., Samadi, A., Unal, A. Z. & Sabuncuoglu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol. 92, 324–332 (2018).

    CAS  PubMed  Google Scholar 

  147. Nathan, D. M. et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 29, 1963–1972 (2006).

    PubMed  Google Scholar 

  148. Sharma, M., Nazareth, I. & Petersen, I. Trends in incidence, prevalence and prescribing in type 2 diabetes mellitus between 2000 and 2013 in primary care: a retrospective cohort study. BMJ Open 6, e010210 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. IMS Institute for Healthcare Informatics. National prescription audit December 2012 (IMS Institute for Healthcare Informatics, 2012).

  150. Le, S. & Lee, G. C. Emerging trends in metformin prescribing in the United States from 2000 to 2015. Clin. Drug Invest. 39, 757–763 (2019).

    CAS  Google Scholar 

  151. Witters, L. A. The blooming of the French lilac. J. Clin. Invest. 108, 1105–1107 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758 (2010).

    PubMed  PubMed Central  Google Scholar 

  155. De Haes, W. et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc. Natl Acad. Sci. USA 111, E2501–E2509 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Chen, J. et al. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 6, e31268 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    CAS  PubMed  Google Scholar 

  158. Slack, C., Foley, A. & Partridge, L. Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One 7, e47699 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Anisimov, V. N. Metformin: do we finally have an anti-aging drug? Cell Cycle 12, 3483–3489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Google Scholar 

  162. Dhahbi, J. M., Mote, P. L., Fahy, G. M. & Spindler, S. R. Identification of potential caloric restriction mimetics by microarray profiling. Physiol. Genomics 23, 343–350 (2005).

    CAS  PubMed  Google Scholar 

  163. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Stein, B. D. et al. Quantitative in vivo proteomics of metformin response in liver reveals AMPK-dependent and -independent signaling networks. Cell Rep. 29, 3331–3348.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    CAS  PubMed  Google Scholar 

  166. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou, Z. Y. et al. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol. Sin. 37, 1063–1075 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cameron, A. R. et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 119, 652–665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cacicedo, J. M., Yagihashi, N., Keaney, J. F. Jr., Ruderman, N. B. & Ido, Y. AMPK inhibits fatty acid-induced increases in NF-κB transactivation in cultured human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 324, 1204–1209 (2004).

    CAS  PubMed  Google Scholar 

  171. Ibanez, L., Valls, C. & de Zegher, F. Discontinuous low-dose flutamide-metformin plus an oral or a transdermal contraceptive in patients with hyperinsulinaemic hyperandrogenism: normalizing effects on CRP, TNF-α and the neutrophil/lymphocyte ratio. Hum. Reprod. 21, 451–456 (2006).

    CAS  PubMed  Google Scholar 

  172. Hattori, Y., Suzuki, K., Hattori, S. & Kasai, K. Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47, 1183–1188 (2006).

    CAS  PubMed  Google Scholar 

  173. Ren, T. et al. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-alpha or isoproterenol. J. Mol. Endocrinol. 37, 175–183 (2006).

    CAS  PubMed  Google Scholar 

  174. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  175. Horiuchi, T. et al. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J. Biol. Chem. 292, 8436–8446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Cuyas, E. et al. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell 17, e12772 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Kirpichnikov, D., McFarlane, S. & Sowers, J. Metformin: an update. Ann. Intern. Med. 137, 25–33 (2002).

    CAS  PubMed  Google Scholar 

  178. Beisswenger, P., Howell, S., Touchette, A., Lal, S. & Szwergold, B. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48, 198–202 (1999).

    CAS  PubMed  Google Scholar 

  179. Kooy, A. et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch. Intern. Med. 169, 616–625 (2009).

    CAS  PubMed  Google Scholar 

  180. Wang, C. P., Lorenzo, C., Habib, S. L., Jo, B. & Espinoza, S. E. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J. Diabetes Complicat. 31, 679–686 (2017).

    CAS  Google Scholar 

  181. Currie, C., Poole, C. & Gale, E. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    CAS  PubMed  Google Scholar 

  182. Franciosi, M. et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One 8, e71583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Qiu, H., Rhoads, G., Berlin, J., Marcella, S. & Demissie, K. Initial metformin or sulphonylurea exposure and cancer occurrence among patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 15, 349–357 (2013).

    CAS  PubMed  Google Scholar 

  184. Hsieh, M. et al. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. Exp. Diabetes Res. 2012, 413782 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Bowker, S., Yasui, Y., Veugelers, P. & Johnson, J. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 53, 1631–1637 (2010).

    CAS  PubMed  Google Scholar 

  186. Ruiter, R. et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up study. Diabetes Care 35, 119–124 (2012).

    CAS  PubMed  Google Scholar 

  187. Libby, G. et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Gandini, S. et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. 7, 867–885 (2014).

    CAS  Google Scholar 

  189. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

  190. Bannister, C. et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 16, 1165–1173 (2014).

    CAS  PubMed  Google Scholar 

  191. Claesen, M. et al. Mortality in individuals treated with glucose-lowering agents: a large, controlled cohort study. J. Clin. Endocrinol. Metab. 101, 461–469 (2016).

    CAS  PubMed  Google Scholar 

  192. Campbell, J. M., Bellman, S. M., Stephenson, M. D. & Lisy, K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res. Rev. 40, 31–44 (2017).

    CAS  PubMed  Google Scholar 

  193. Palmer, S. C. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316, 313–324 (2016).

    CAS  PubMed  Google Scholar 

  194. Hayden, E. C. Anti-ageing pill pushed as bona fide drug. Nature 522, 265–266 (2015).

    Google Scholar 

  195. Justice, J. N. et al. Development of clinical trials to extend healthy lifespan. Cardiovasc. Endocrinol. Metab. 7, 80–83 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kulkarni, A. S. et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 17, e12723 (2018).

    PubMed Central  Google Scholar 

  198. Konopka, A. R. et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 18, e12880 (2019).

    PubMed  Google Scholar 

  199. Brewer, R. A., Gibbs, V. K. & Smith, D. L. Jr. Targeting glucose metabolism for healthy aging. Nutr. Healthy Aging 4, 31–46 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Balfour, J. A. & McTavish, D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 46, 1025–1054 (1993).

    CAS  PubMed  Google Scholar 

  201. Yamamoto, M. & Otsuki, M. Effect of inhibition of alpha-glucosidase on age-related glucose intolerance and pancreatic atrophy in rats. Metabolism 55, 533–540 (2006).

    CAS  PubMed  Google Scholar 

  202. Harrison, D. E. et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273–282 (2014).

    CAS  PubMed  Google Scholar 

  203. Harrison, D. E. et al. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell 18, e12898 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. Sadagurski, M., Cady, G. & Miller, R. A. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 16, 652–660 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Garratt, M., Bower, B., Garcia, G. G. & Miller, R. A. Sex differences in lifespan extension with acarbose and 17-α estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell 16, 1256–1266 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Smith, B. J. et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 19, 130 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Rosak, C. & Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab. Syndr. Obes. 5, 357–367 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Scalabrino, G. & Ferioli, M. E. Polyamines in mammalian ageing: an oncological problem, too? A review. Mech. Ageing Dev. 26, 149–164 (1984).

    CAS  PubMed  Google Scholar 

  210. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    CAS  PubMed  Google Scholar 

  211. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Yue, F. et al. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating MAP1S-mediated autophagy. Cancer Res. 77, 2938–2951 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Tain, L. S. et al. Longevity in response to lowered insulin signaling requires glycine N-methyltransferase-dependent spermidine production. Aging Cell 19, e13043 (2020).

    CAS  PubMed  Google Scholar 

  214. Kiechl, S. et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 108, 371–380 (2018).

    PubMed  Google Scholar 

  215. Pietrocola, F. et al. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 22, 509–516 (2015).

    CAS  PubMed  Google Scholar 

  216. Marino, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    CAS  PubMed  Google Scholar 

  217. Wang, J. et al. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging 12, 650–671 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhang, H. et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76, 110–125.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Sacitharan, P. K., Gharios, G. B. & Edwards, J. R. Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300: response to correspondence by Borzi et al. Exp. Mol. Med. 51, 1–2 (2019).

    PubMed  Google Scholar 

  220. Garcia-Prat, L., Munoz-Canoves, P. & Martinez-Vicente, M. Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy 12, 612–613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Bhukel, A., Madeo, F. & Sigrist, S. J. Spermidine boosts autophagy to protect from synapse aging. Autophagy 13, 444–445 (2017).

    CAS  PubMed  Google Scholar 

  222. Noro, T. et al. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis. 6, e1720 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Maglione, M. et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci. Rep. 9, 19616 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

    PubMed  Google Scholar 

  225. Murray-Stewart, T. R., Woster, P. M. & Casero, R. A. Jr. Targeting polyamine metabolism for cancer therapy and prevention. Biochem. J. 473, 2937–2953 (2016).

    CAS  PubMed  Google Scholar 

  226. Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Hikosaka, K., Yaku, K., Okabe, K. & Nakagawa, T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr. Neurosci. https://doi.org/10.1080/1028415X.2019.1637504 (2019).

    Article  PubMed  Google Scholar 

  228. Yoshino, J., Baur, J. A. & Imai, S. I. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).

    CAS  PubMed  Google Scholar 

  229. Ramsey, K. M., Mills, K. F., Satoh, A. & Imai, S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88 (2008).

    CAS  PubMed  Google Scholar 

  230. Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7, e42357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    CAS  PubMed  Google Scholar 

  233. Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).

    CAS  PubMed  Google Scholar 

  235. Mouchiroud, L. et al. The NAD+/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    PubMed  PubMed Central  Google Scholar 

  237. Bertoldo, M. J. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 30, 1670–1681.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One 12, e0186459 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech. Dis. 3, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  241. Conze, D. B., Crespo-Barreto, J. & Kruger, C. L. Safety assessment of nicotinamide riboside, a form of vitamin B3. Hum. Exp. Toxicol. 35, 1149–1160 (2016).

    CAS  PubMed  Google Scholar 

  242. Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    PubMed  Google Scholar 

  244. Sofola-Adesakin, O. et al. Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer’s disease. Front. Aging Neurosci. 6, 190 (2014).

    PubMed  PubMed Central  Google Scholar 

  245. McColl, G. et al. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J. Biol. Chem. 283, 350–357 (2008).

    CAS  PubMed  Google Scholar 

  246. Zarse, K. et al. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur. J. Nutr. 50, 387–389 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Tam, Z. Y., Gruber, J., Ng, L. F., Halliwell, B. & Gunawan, R. Effects of lithium on age-related decline in mitochondrial turnover and function in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 69, 810–820 (2014).

    CAS  PubMed  Google Scholar 

  248. Castillo-Quan, J. I. et al. Lithium promotes longevity through GSK3/NRF2-dependent Hormesis. Cell Rep. 15, 638–650 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Martinsson, L. et al. Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl. Psychiat. 3, e261 (2013).

    CAS  Google Scholar 

  250. Schrauzer, G. N. & Shrestha, K. P. Lithium in drinking water. Br. J. Psychiatry 196, 159–160 (2010).

    PubMed  Google Scholar 

  251. Ohgami, H., Terao, T., Shiotsuki, I., Ishii, N. & Iwata, N. Lithium levels in drinking water and risk of suicide. Br. J. Psychiatry 194, 464–465 (2009).

    PubMed  Google Scholar 

  252. Brunt, K. R. et al. Role of WNT/β-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. Am. J. Pathol. 181, 2067–2078 (2012).

    CAS  PubMed  Google Scholar 

  253. Quiroz, J. A., Machado-Vieira, R., Zarate, C. A. Jr. & Manji, H. K. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 62, 50–60 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Forlenza, O. V., De-Paula, V. J. & Diniz, B. S. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 5, 443–450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Chiu, C. T. & Chuang, D. M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol. Ther. 128, 281–304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Farina, F. et al. The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington’s disease. Sci. Rep. 7, 4014 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Zhang, X. et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J. Alzheimers Dis. 24, 739–749 (2011).

    CAS  PubMed  Google Scholar 

  258. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Rome, L. H. & Lands, W. E. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc. Natl Acad. Sci. USA 72, 4863–4865 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Vane, S. J. Aspirin and other anti-inflammatory drugs. Thorax 55 (Suppl. 2), S3–S9 (2000).

    PubMed  PubMed Central  Google Scholar 

  262. Wan, Q. L., Zheng, S. Q., Wu, G. S. & Luo, H. R. Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp. Gerontol. 48, 499–506 (2013).

    CAS  PubMed  Google Scholar 

  263. Danilov, A. et al. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget 6, 19428–19444 (2015).

    PubMed  PubMed Central  Google Scholar 

  264. Song, C. et al. Metabolome analysis of effect of aspirin on Drosophila lifespan extension. Exp. Gerontol. 95, 54–62 (2017).

    CAS  PubMed  Google Scholar 

  265. Strong, R. et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7, 641–650 (2008).

    CAS  PubMed  Google Scholar 

  266. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Yin, M. J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396, 77–80 (1998).

    CAS  PubMed  Google Scholar 

  268. Bos, C. L. et al. Effect of aspirin on the Wnt/β-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25, 6447–6456 (2006).

    CAS  PubMed  Google Scholar 

  269. He, C. et al. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet. 10, e1004860 (2014).

    PubMed  PubMed Central  Google Scholar 

  270. Ching, T. T., Chiang, W. C., Chen, C. S. & Hsu, A. L. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell 10, 506–519 (2011).

    CAS  PubMed  Google Scholar 

  271. Cao, Y. et al. Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol. 2, 762–769 (2016).

    PubMed  PubMed Central  Google Scholar 

  272. Cuzick, J. Preventive therapy for cancer. Lancet Oncol. 18, e472–e482 (2017).

    PubMed  Google Scholar 

  273. Sun, D. et al. Aspirin disrupts the mTOR-Raptor complex and potentiates the anti-cancer activities of sorafenib via mTORC1 inhibition. Cancer Lett. 406, 105–115 (2017).

    CAS  PubMed  Google Scholar 

  274. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    CAS  PubMed  Google Scholar 

  275. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    CAS  PubMed  Google Scholar 

  276. Guirguis-Blake, J. M. et al. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force (Agency for Healthcare Research and Quality, 2015).

  277. Vlad, S. C., Miller, D. R., Kowall, N. W. & Felson, D. T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70, 1672–1677 (2008).

    CAS  PubMed  Google Scholar 

  278. Poly, T. N., Islam, M. M. R., Yang, H. C. & Li, Y. J. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: a meta-analysis. Eur. J. Clin. Pharmacol. 75, 99–108 (2019).

    PubMed  Google Scholar 

  279. McNeil, J. J. et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 379, 1509–1518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Group, A. S. C. et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. 379, 1529–1539 (2018).

    Google Scholar 

  281. McNeil, J. J. et al. Effect of aspirin on disability-free survival in the healthy elderly. N. Engl. J. Med. 379, 1499–1508 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. McNeil, J. J. et al. Effect of aspirin on all-cause mortality in the healthy elderly. N. Engl. J. Med. 379, 1519–1528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  284. Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Google Scholar 

  285. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

    CAS  PubMed  Google Scholar 

  286. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Iskow, R. C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Hancks, D. C. & Kazazian, H. H. Jr. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    PubMed  Google Scholar 

  291. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  292. Dai, L., Huang, Q. & Boeke, J. D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 12, 18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Jones, R. B. et al. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 3, e1547 (2008).

    PubMed  PubMed Central  Google Scholar 

  294. Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  296. Margolis, A. M., Heverling, H., Pham, P. A. & Stolbach, A. A review of the toxicity of HIV medications. J. Med. Toxicol. 10, 26–39 (2014).

    CAS  PubMed  Google Scholar 

  297. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  298. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    CAS  PubMed  Google Scholar 

  299. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Horowitz, A. M. & Villeda, S. A. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease. F1000Res 6, 1291 (2017).

    PubMed  PubMed Central  Google Scholar 

  301. Conboy, M. J., Conboy, I. M. & Rando, T. A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525–530 (2013).

    CAS  PubMed  Google Scholar 

  302. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS  PubMed  Google Scholar 

  303. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    CAS  PubMed  Google Scholar 

  304. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Huang, Q. et al. A young blood environment decreases aging of senile mice kidneys. J. Gerontol. A Biol. Sci. Med. Sci. 73, 421–428 (2018).

    PubMed  Google Scholar 

  307. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62, 2843–2848 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Baht, G. S. et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat. Commun. 6, 7131 (2015).

    CAS  PubMed  Google Scholar 

  309. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Smith, L. K. et al. 2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat. Med. 21, 932–937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Gontier, G. et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain. Cell Rep. 22, 1974–1981 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Hinken, A. C. et al. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell 15, 582–584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Egerman, M. A. et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22, 164–174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325–1333 (2016).

    PubMed  PubMed Central  Google Scholar 

  320. Sha, S. J. et al. Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol. 76, 35–40 (2019).

    PubMed  Google Scholar 

  321. Clark, R. I. et al. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).

    PubMed  PubMed Central  Google Scholar 

  323. O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).

    PubMed  Google Scholar 

  324. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    CAS  PubMed  Google Scholar 

  325. Fabbiano, S. et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 28, 907–921.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Hara, T. & Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J. 11, 1875–1884 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Dalirfardouei, R., Karimi, G. & Jamialahmadi, K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci. 152, 21–29 (2016).

    CAS  PubMed  Google Scholar 

  328. Weimer, S. et al. D-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nat. Commun. 5, 3563 (2014).

    PubMed  Google Scholar 

  329. Yang, W. & Hekimi, S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556 (2010).

    PubMed  PubMed Central  Google Scholar 

  330. Hwang, A. B. et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 111, E4458–E4467 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Banerjee, P. S., Lagerlof, O. & Hart, G. W. Roles of O-GlcNAc in chronic diseases of aging. Mol. Asp. Med. 51, 1–15 (2016).

    CAS  Google Scholar 

  332. Miller, R. A. et al. Glycine supplementation extends lifespan of male and female mice. Aging Cell 18, e12953 (2019).

    PubMed  PubMed Central  Google Scholar 

  333. Brind, J. et al. Dietary glycine supplementation mimics lifespan extension by dietary methionine restriction in Fisher 344 rats. FASEB J. 25 (Suppl. 1), 528.522–528.522 (2011).

    Google Scholar 

  334. Liu, Y. J. et al. Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. PLoS Genet. 15, e1007633 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Edwards, C. et al. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet. 16, 8 (2015).

    PubMed  PubMed Central  Google Scholar 

  336. Alarcon-Aguilar, F. J. et al. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur. J. Pharmacol. 599, 152–158 (2008).

    CAS  PubMed  Google Scholar 

  337. Wang, W. et al. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45, 463–477 (2013).

    PubMed  Google Scholar 

  338. Zhong, Z. et al. L-glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr. Opin. Clin. Nutr. Metab. Care 6, 229–240 (2003).

    CAS  PubMed  Google Scholar 

  339. Alves, A., Bassot, A., Bulteau, A. L., Pirola, L. & Morio, B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11, 1356 (2019).

    CAS  PubMed Central  Google Scholar 

  340. Stekovic, S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 30, 462–476.e6 (2019).

    CAS  PubMed  Google Scholar 

  341. Kitada, M., Ogura, Y., Monno, I. & Koya, D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine 43, 632–640 (2019).

    PubMed  PubMed Central  Google Scholar 

  342. Simpson, S. J. et al. Dietary protein, aging and nutritional geometry. Ageing Res. Rev. 39, 78–86 (2017).

    CAS  PubMed  Google Scholar 

  343. Piper, M. D. W. et al. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 1206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Parkhitko, A. A., Jouandin, P., Mohr, S. E. & Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18, e13034 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Stout, M. B. et al. 17α-estradiol alleviates age-related metabolic and inflammatory dysfunction in male mice without inducing feminization. J. Gerontol. A Biol. Sci. Med. Sci. 72, 3–15 (2017).

    CAS  PubMed  Google Scholar 

  347. Garratt, M. et al. 17-α estradiol ameliorates age-associated sarcopenia and improves late-life physical function in male mice but not in females or castrated males. Aging Cell 18, e12920 (2019).

    PubMed  PubMed Central  Google Scholar 

  348. Green, P. S., Bishop, J. & Simpkins, J. W. 17α-estradiol exerts neuroprotective effects on SK-N-SH cells. J. Neurosci. 17, 511–515 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Green, P. S., Gridley, K. E. & Simpkins, J. W. Estradiol protects against beta-amyloid (25-35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci. Lett. 218, 165–168 (1996).

    CAS  PubMed  Google Scholar 

  350. Cordey, M., Gundimeda, U., Gopalakrishna, R. & Pike, C. J. The synthetic estrogen 4-estren-3 alpha,17 beta-diol (estren) induces estrogen-like neuroprotection. Neurobiol. Dis. 19, 331–339 (2005).

    CAS  PubMed  Google Scholar 

  351. Gelinas, S. et al. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress. Neurotox. Res. 6, 141–148 (2004).

    PubMed  Google Scholar 

  352. Steyn, F. J. et al. 17alpha-estradiol acts through hypothalamic pro-opiomelanocortin expressing neurons to reduce feeding behavior. Aging Cell 17, e12703 (2018).

    Google Scholar 

  353. Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 188, 140–154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Google Scholar 

  355. Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin. Epigenetics 11, 62 (2019).

    PubMed  PubMed Central  Google Scholar 

  356. Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).

    PubMed  PubMed Central  Google Scholar 

  357. Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 25, 574–587 (2015).

    PubMed  PubMed Central  Google Scholar 

  358. Chen, D. et al. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600–1610 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Sagi, D. & Kim, S. K. An engineering approach to extending lifespan in C. elegans. PLoS Genet. 8, e1002780 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Hou, L. et al. A systems approach to reverse engineer lifespan extension by dietary restriction. Cell Metab. 23, 529–540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Dakik, P. et al. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 10, 313–338 (2019).

    PubMed  PubMed Central  Google Scholar 

  362. Admasu, T. D. et al. Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev. Cell 47, 67–79.e5 (2018).

    CAS  PubMed  Google Scholar 

  363. Castillo-Quan, J. I. et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc. Natl Acad. Sci. USA 116, 20817–20819 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  364. Petrascheck, M., Ye, X. & Buck, L. B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553–556 (2007).

    CAS  PubMed  Google Scholar 

  365. Ye, X., Linton, J. M., Schork, N. J., Buck, L. B. & Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 13, 206–215 (2014).

    CAS  PubMed  Google Scholar 

  366. Benedetti, M. G. et al. Compounds that confer thermal stress resistance and extended lifespan. Exp. Gerontol. 43, 882–891 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  367. Hoose, S. A. et al. Systematic analysis of cell cycle effects of common drugs leads to the discovery of a suppressive interaction between gemfibrozil and fluoxetine. PLoS One 7, e36503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  368. Sarnoski, E. A., Liu, P. & Acar, M. A high-throughput screen for yeast replicative lifespan identifies lifespan-extending compounds. Cell Rep. 21, 2639–2646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Zimmermann, A. et al. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res. 18, foy020 (2018).

    CAS  PubMed Central  Google Scholar 

  370. Vatolin, S., Radivoyevitch, T. & Maciejewski, J. P. New drugs for pharmacological extension of replicative life span in normal and progeroid cells. NPJ Aging Mech. Dis. 5, 2 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  371. Donertas, H. M., Fuentealba, M., Partridge, L. & Thornton, J. M. Identifying potential ageing-modulating drugs in silico. Trends Endocrinol. Metab. 30, 118–131 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Craig, T. et al. The digital ageing atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Res. 43, D873–D878 (2015).

    CAS  PubMed  Google Scholar 

  373. Digital Aging Atlas. DAA http://ageing-map.org (2015).

  374. Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018).

    CAS  PubMed  Google Scholar 

  375. Human Ageing Genomic Resources. senescence.info http://genomics.senescence.info (2018).

  376. Blankenburg, H., Pramstaller, P. P. & Domingues, F. S. A network-based meta-analysis for characterizing the genetic landscape of human aging. Biogerontology 19, 81–94 (2018).

    PubMed  Google Scholar 

  377. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016).

    CAS  PubMed  Google Scholar 

  378. National Center for Biotechnology Information. PubChem https://pubchem.ncbi.nlm.nih.gov/ (2016).

  379. Royal Society of Chemistry. ChemSpider http://www.chemspider.com (2015).

  380. Stitch Consortium. Stitch http://stitch.embl.de (2016).

  381. Liu, H. et al. Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC Syst. Biol. 10, 131 (2016).

    PubMed  PubMed Central  Google Scholar 

  382. Snell, T. W. et al. Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers. Biogerontology 19, 145–157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  383. Barardo, D. G. et al. Machine learning for predicting lifespan-extending chemical compounds. Aging 9, 1721–1737 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. Aliper, A. et al. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging 8, 2127–2152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Donertas, H. M., Fuentealba Valenzuela, M., Partridge, L. & Thornton, J. M. Gene expression-based drug repurposing to target aging. Aging Cell 17, e12819 (2018).

    PubMed  PubMed Central  Google Scholar 

  386. Janssens, G. E. et al. Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging. Cell Rep. 27, 467–480 e466 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Yang, J. et al. Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience https://doi.org/10.1007/s11357-019-00106-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  388. Fuentealba, M. et al. Using the drug-protein interactome to identify anti-ageing compounds for humans. PLoS Comput. Biol. 15, e1006639 (2019).

    PubMed  PubMed Central  Google Scholar 

  389. Broad Institute. Connectivity map (CMap). Broad Institute https://www.broadinstitute.org/connectivity-map-cmap (2018).

  390. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  391. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  392. Calvert, S. et al. A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 15, 256–266 (2016).

    CAS  PubMed  Google Scholar 

  393. National Institute on Aging. Interventions Testing Program (ITP). NIA https://www.nia.nih.gov/research/dab/interventions-testing-program-itp (2019).

Download references

Acknowledgements

L.P. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 741989), and from the Wellcome Trust (UK). M.F. has received funding from the Comisión Nacional de Investigación Científica y Tecnológica-Government of Chile (CONICYT scholarship).

Author information

Authors and Affiliations

Authors

Contributions

L.P. and B.K.K. discussed content and wrote the article, L.P. and M.F. revised the manuscript before submission, and M.F. developed Figure 1.

Corresponding authors

Correspondence to Linda Partridge or Brian K. Kennedy.

Ethics declarations

Competing interests

B.K.K. is board chair of Torcept Therapeutics, a board member and scientific adviser for PDL Pharma, a scientific adviser for AFFIRMATIVhealth, and a board member of L-Nutra. B.K.K. is named on patents held by PDL Pharma related to ageing interventions and performs corporate-sponsored research for Gero LLC. L.P. and M.F. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Burden of Disease Study 2017: http://ghdx.healthdata.org/gbd-2017

UN World Population Prospects 2019: https://population.un.org/wpp/DataQuery

Glossary terms

Healthspan

The time in a person’s life when they are in general good health.

Immunosenescence

Decline in function of the immune system with age.

Senostatics

Chemicals that prevent senescent cells from producing the senescence-associated secretory phenotype, which can damage surrounding tissue and cause systemic inflammation.

Dietary restriction

(DR). Reduced food intake from its voluntary level while avoiding malnutrition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partridge, L., Fuentealba, M. & Kennedy, B.K. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 19, 513–532 (2020). https://doi.org/10.1038/s41573-020-0067-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0067-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research