Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models

Abstract

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Various chemical insults can lead to diverse clinical manifestations of DILI.
Fig. 2: Roadmap for the development of ‘fit-for-purpose’ predictive models of human DILI.
Fig. 3: Hepatocyte couplet illustrating the basolateral and canalicular location of transport proteins.
Fig. 4: Role of the adaptive immune system in DILI.

References

  1. 1.

    Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 137, 947–954 (2002).

    PubMed  Google Scholar 

  2. 2.

    Atienzar, F. A. et al. Key challenges and opportunities associated with the use of in vitro models to detect human DILI: integrated risk assessment and mitigation plans. Biomed. Res. Int. 2016, 9737920 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Fung, M. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf. J. 35, 293–317 (2001).

    Google Scholar 

  4. 4.

    Chen, M. et al. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov. Today 16, 697–703 (2011).

    PubMed  Google Scholar 

  5. 5.

    Thakkar, S. et al. The liver toxicity knowledge base (LKTB) and drug-induced liver injury (DILI) classification for assessment of human liver injury. Expert Rev. Gastroenterol. Hepatol. 12, 31–38 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Fontana, R. J. et al. Drug-Induced Liver Injury Network (DILIN) prospective study: rationale, design and conduct. Drug Saf. 32, 55–68 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dragovic, S. et al. Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch. Toxicol. 90, 2979–3003 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Burbank, M. G. et al. From the cover: mechanistic insights in cytotoxic and cholestatic potential of the endothelial receptor antagonists using HepaRG cells. Toxicol. Sci. 157, 451–464 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Thompson, R. A. et al. Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development. Chem. Biol. Interact. 192, 65–71 (2011).

    CAS  PubMed  Google Scholar 

  10. 10.

    Chen, M. et al. A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Arch. Toxicol. 88, 1439–1449 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tolosa, L. et al. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch. Toxicol. 92, 383–399 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Zhu, X. W., Sedykh, A. & Liu, S. S. Hybrid in silico models for drug-induced liver injury using chemical descriptors and in vitro cell-imaging information. J. Appl. Toxicol. 34, 281–288 (2014).

    PubMed  Google Scholar 

  13. 13.

    McKim, J. M. Jr. Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb. Chem. High Throughput Screen 13, 188–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dambach, D. M., Andrews, B. A. & Moulin, F. New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol. Pathol. 33, 17–26 (2005).

    CAS  PubMed  Google Scholar 

  15. 15.

    Schadt, S. et al. Minimizing DILI risk in drug discovery—a screening tool for drug candidates. Toxicol. In Vitro 30, 429–437 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Persson, M., Loye, A. F., Mow, T. & Hornberg, J. J. A high content screening assay to predict human drug-induced liver injury during drug discovery. J. Pharmacol. Toxicol. Methods 68, 302–313 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Tolosa, L., Gomez-Lechon, M. J. & Donato, M. T. High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch. Toxicol. 89, 1007–1022 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Bell, C. C. et al. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol. Sci. 162, 655–666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kamalian, L. et al. Acute metabolic switch assay using glucose/galactose medium in HepaRG cells to detect mitochondrial toxicity. Curr. Protoc. Toxicol. 80, e76 (2019).

    PubMed  Google Scholar 

  20. 20.

    Burbank, M. G. et al. Early alterations of bile canaliculi dynamics and the Rho kinase/myosin light chain kinase pathway are characteristics of drug-induced intrahepatic cholestasis. Drug Metab. Dispos. 44, 1780–1793 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Bell, C. C. et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 6, 25187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Vorrink, S. U. et al. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J. 31, 2696–2708 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Vorrink, S. U., Zhou, Y., Ingelman-Sundberg, M. & Lauschke, V. M. Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol. Sci. 163, 655–665 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kozyra, M. et al. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci. Rep. 8, 14297 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lauschke, V. M., Hendriks, D. F., Bell, C. C., Andersson, T. B. & Ingelman-Sundberg, M. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 29, 1936–1955 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Beckwitt, C. H. et al. Liver ‘organ on a chip’. Exp. Cell. Res. 363, 15–25 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Ewart, L. et al. Navigating tissue chips from development to dissemination: a pharmaceutical industry perspective. Exp. Biol. Med. 242, 1579–1585 (2017).

    CAS  Google Scholar 

  29. 29.

    Jeong, C. G., Dal Negro, G., Getsios, S. & Ekert, J. E. in Microfluidic Cell Culture Systems (eds Borenstein, J. T., Tandon, V., Tao, S. L. & Charest, J. L.) 121–158 (Elsevier, 2019).

  30. 30.

    Weaver, R. J. & Valentin, J. P. Today’s challenges to de-risk and predict drug safety in human ‘‘mind-the-gap’’. Toxicol. Sci. 167, 307–321 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Weaver, R. J. et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 13, 767–782 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Horvath, P. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15, 751–769 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Jiang, J., Wolters, J. E., van Breda, S. G., Kleinjans, J. C. & de Kok, T. M. Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 11, 1523–1537 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Uetrecht, J. P. New concepts in immunology relevant to idiosyncratic drug reactions: the ‘‘danger hypothesis’’ and innate immune system. Chem. Res. Toxicol. 12, 387–395 (1999).

    CAS  PubMed  Google Scholar 

  35. 35.

    Walgren, J. L., Mitchell, M. D. & Thompson, D. C. Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit. Rev. Toxicol. 35, 325–361 (2005).

    CAS  PubMed  Google Scholar 

  36. 36.

    Bayliss, M. K. et al. Quality guidelines for oral drug candidates: dose, solubility and lipophilicity. Drug Discov. Today 21, 1719–1727 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Stepan, A. F. et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol. 24, 1345–1410 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Smith, D. A. & Obach, R. S. Seeing through the mist: abundance versus percentage. Commentary on metabolites in safety testing. Drug Metab. Dispos. 33, 1409–1417 (2005).

    CAS  PubMed  Google Scholar 

  39. 39.

    Kirchmair, J. et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J. Chem. Inf. Model. 52, 617–648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wenlock, M. C. & Barton, P. In silico physicochemical parameter predictions. Mol. Pharm. 10, 1224–1235 (2013).

    CAS  PubMed  Google Scholar 

  41. 41.

    Bhattacharya, S. et al. Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front. Physiol. 3, 462 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Long, A. Drug metabolism in silico — the knowledge-based expert system approach. Historical perspectives and current strategies. Drug Discov. Today Technol. 10, e147–e153 (2013).

    PubMed  Google Scholar 

  43. 43.

    Blomme, E. A. & Will, Y. Toxicology strategies for drug discovery: present and future. Chem. Res. Toxicol. 29, 473–504 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Bomhard, E. M. & Herbold, B. A. Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit. Rev. Toxicol. 35, 783–835 (2005).

    CAS  PubMed  Google Scholar 

  45. 45.

    Singh, P. K., Negi, A., Gupta, P. K., Chauhan, M. & Kumar, R. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations. Arch. Toxicol. 90, 1785–1802 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    Howell, B. A. et al. In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym: a mechanistic, mathematical model of DILI. J. Pharmacokinet. Pharmacodyn. 39, 527–541 (2012).

    PubMed  Google Scholar 

  47. 47.

    Liu, Z. et al. Translating clinical findings into knowledge in drug safety evaluation—drug induced liver injury prediction system (DILIps). PLOS Comput. Biol. 7, e1002310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Porceddu, M. et al. Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol. Sci. 129, 332–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Aleo, M. D. et al. Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60, 1015–1022 (2014).

    CAS  PubMed  Google Scholar 

  50. 50.

    Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D. & Will, Y. Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci. 97, 539–547 (2007).

    CAS  PubMed  Google Scholar 

  51. 51.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hynes, J. et al. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicol. In Vitro 27, 560–569 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kamalian, L. et al. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol. In Vitro 29, 732–740 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Swiss, R., Niles, A., Cali, J. J., Nadanaciva, S. & Will, Y. Validation of a HTS-amenable assay to detect drug-induced mitochondrial toxicity in the absence and presence of cell death. Toxicol. In Vitro 27, 1789–1797 (2013).

    CAS  PubMed  Google Scholar 

  55. 55.

    Eakins, J. et al. A combined in vitro approach to improve the prediction of mitochondrial toxicants. Toxicol. In Vitro 34, 161–170 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099–1105 (1995).

    CAS  PubMed  Google Scholar 

  58. 58.

    Lewis, W. et al. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc. Natl Acad. Sci. USA 93, 3592–3597 (1996).

    CAS  PubMed  Google Scholar 

  59. 59.

    Lee, E. W., Lai, Y., Zhang, H. & Unadkat, J. D. Identification of the mitochondrial targeting signal of the human equilibrative nucleoside transporter 1 (hENT1): implications for interspecies differences in mitochondrial toxicity of fialuridine. J. Biol. Chem. 281, 16700–16706 (2006).

    CAS  PubMed  Google Scholar 

  60. 60.

    Kamalian, L. et al. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol. In Vitro 53, 136–147 (2018).

    CAS  PubMed  Google Scholar 

  61. 61.

    Le Guillou, D. et al. Drug-induced alterations of mitochondrial DNA homeostasis in steatotic and nonsteatotic HepaRG cells. J. Pharmacol. Exp. Ther. 365, 711–726 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Cuykx, M., Claes, L., Rodrigues, R. M., Vanhaecke, T. & Covaci, A. Metabolomics profiling of steatosis progression in HepaRG® cells using sodium valproate. Toxicol. Lett. 286, 22–30 (2018).

    CAS  PubMed  Google Scholar 

  63. 63.

    Jolly, C. E. et al. HepaRG cells as a physiologically and metabolically relevant in vitro model for the delayed toxicity of fialuridine via effects upon mitochondrial DNA. Arch. Toxicol. (under revision).

  64. 64.

    Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 87, 1315–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Pereira, C. V., Oliveira, P. J., Will, Y. & Nadanaciva, S. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms. Toxicol. Appl. Pharmacol. 264, 167–181 (2012).

    CAS  PubMed  Google Scholar 

  66. 66.

    Xu, D. et al. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing. PLOS Med. 11, e1001628 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Yang, Y. et al. MITOsym®: a mechanistic, mathematical model of hepatocellular respiration and bioenergetics. Pharm. Res. 32, 1975–1992 (2015).

    CAS  PubMed  Google Scholar 

  68. 68.

    Woodhead, J. L. et al. Application of a mechanistic model to evaluate putative mechanisms of tolvaptan drug-induced liver injury and identify patient susceptibility factors. Toxicol. Sci. 155, 61–74 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Woodhead, J. L. et al. Analyzing the mechanisms behind macrolide antibiotic-induced liver injury using quantitative systems toxicology modeling. Pharm. Res. 36, 48 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Longo, D. M. et al. Quantitative systems toxicology analysis of in vitro mechanistic assays reveals importance of bile acid accumulation and mitochondrial dysfunction in TAK-875-induced liver injury. Toxicol. Sci. 167, 458–467 (2019).

    CAS  PubMed  Google Scholar 

  71. 71.

    Simoes, I. C. M., Fontes, A., Pinton, P., Zischka, H. & Wieckowski, M. R. Mitochondria in non-alcoholic fatty liver disease. Int. J. Biochem. Cell Biol. 95, 93–99 (2018).

    CAS  PubMed  Google Scholar 

  72. 72.

    Neuschwander-Tetri, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788 (2010).

    PubMed  Google Scholar 

  73. 73.

    Padda, M. S., Sanchez, M., Akhtar, A. J. & Boyer, J. L. Drug-induced cholestasis. Hepatology 53, 1377–1387 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Bjornsson, E. & Olsson, R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 42, 481–489 (2005).

    PubMed  Google Scholar 

  75. 75.

    Sakurai, A., Kurata, A., Onishi, Y., Hirano, H. & Ishikawa, T. Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis of drugs inhibiting the human bile salt export pump. Expert. Opin. Drug Saf. 6, 71–86 (2007).

    CAS  PubMed  Google Scholar 

  76. 76.

    Dawson, S., Stahl, S., Paul, N., Barber, J. & Kenna, J. G. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab. Dispos. 40, 130–138 (2012).

    CAS  PubMed  Google Scholar 

  77. 77.

    Morgan, R. E. et al. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol. Sci. 118, 485–500 (2010).

    CAS  PubMed  Google Scholar 

  78. 78.

    Pedersen, J. M. et al. Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol. Sci. 136, 328–343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Wang, E. J., Casciano, C. N., Clement, R. P. & Johnson, W. W. Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm. Res. 20, 537–544 (2003).

    CAS  PubMed  Google Scholar 

  80. 80.

    Chan, R. & Benet, L. Z. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicol. Sci. 162, 499–508 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Marion, T. L., Perry, C. H., St Claire, R. L. 3rd, Yue, W. & Brouwer, K. L. Differential disposition of chenodeoxycholic acid versus taurocholic acid in response to acute troglitazone exposure in rat hepatocytes. Toxicol. Sci. 120, 371–380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Jemnitz, K., Veres, Z. & Vereczkey, L. Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human. Toxicol. Sci. 115, 80–88 (2010).

    CAS  PubMed  Google Scholar 

  83. 83.

    Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Brouwer, K. L. et al. In vitro methods to support transporter evaluation in drug discovery and development. Clin. Pharmacol. Ther. 94, 95–112 (2013).

    CAS  PubMed  Google Scholar 

  85. 85.

    Woolbright, B. L. et al. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol. Appl. Pharmacol. 283, 168–177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Guo, C. et al. Receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich-cultured human hepatocytes: functional evidence and mechanisms. J. Pharmacol. Exp. Ther. 365, 413–421 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Kenna, J. G. et al. Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? An International Transporter Consortium perspective. Clin. Pharmacol. Ther. 104, 916–932 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Schwarz, Layden,T. J. & Boyer, J. L. Scanning electron microscopy of the rat liver. Studies of the effect of taurolithocholate and other models of cholestasis. Gastroenterology 69, 724–738 (1975).

    PubMed  Google Scholar 

  89. 89.

    Sharanek, A. et al. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci. Rep. 6, 24709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Antherieu, S. et al. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology 57, 1518–1529 (2013).

    CAS  PubMed  Google Scholar 

  91. 91.

    Sharanek, A. et al. Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in HepaRG cells. Toxicol. Sci. 141, 244–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Burban, A., Sharanek, A., Guguen-Guillouzo, C. & Guillouzo, A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free. Radic. Biol. Med. 115, 166–178 (2018).

    CAS  PubMed  Google Scholar 

  93. 93.

    Tran, T. T., Brinker, A. D. & Munoz, M. Serious liver injury associated with macitentan: a case report. Pharmacotherapy 38, e22–e24 (2018).

    PubMed  Google Scholar 

  94. 94.

    Hofmann, A. F. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab. Rev. 36, 703–722 (2004).

    CAS  PubMed  Google Scholar 

  95. 95.

    Sharanek, A. et al. Cellular accumulation and toxic effects of bile acids in cyclosporine A-treated HepaRG hepatocytes. Toxicol. Sci. 147, 573–587 (2015).

    CAS  PubMed  Google Scholar 

  96. 96.

    Ellis, E. C. & Nilsson, L. M. The use of human hepatocytes to investigate bile acid synthesis. Methods Mol. Biol. 640, 417–430 (2010).

    CAS  PubMed  Google Scholar 

  97. 97.

    Zollner, G. et al. Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J. Hepatol. 39, 480–488 (2003).

    CAS  PubMed  Google Scholar 

  98. 98.

    Sharanek, A. et al. Progressive and preferential cellular accumulation of hydrophobic bile acids induced by cholestatic drugs is associated with inhibition of their amidation and sulfation. Drug Metab. Dispos. 45, 1292–1303 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    Oorts, M. et al. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol. In Vitro 34, 179–186 (2016).

    CAS  PubMed  Google Scholar 

  100. 100.

    Parmentier, C. et al. Inter-individual differences in the susceptibility of primary human hepatocytes towards drug-induced cholestasis are compound and time dependent. Toxicol. Lett. 295, 187–194 (2018).

    CAS  PubMed  Google Scholar 

  101. 101.

    Hendriks, D. F., Fredriksson Puigvert, L., Messner, S., Mortiz, W. & Ingelman-Sundberg, M. Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability. Sci. Rep. 6, 35434 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Guillouzo, A. & Guguen-Guillouzo, C. in Stem Cells in Toxicology and Teratology 309–339 (Wiley, 2018).

  103. 103.

    Loarca, L. et al. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Lab. Invest. 97, 1385–1396 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Swift, B., Pfeifer, N. D. & Brouwer, K. L. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab. Rev. 42, 446–471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Guguen-Guillouzo, C. & Guillouzo, A. General review on in vitro hepatocyte models and their applications. Methods Mol. Biol. 640, 1–40 (2010).

    CAS  PubMed  Google Scholar 

  106. 106.

    Ellis, L. C., Grant, M. H., Hawksworth, G. M. & Weaver, R. J. Quantification of biliary excretion and sinusoidal excretion of 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) in cultured hepatocytes isolated from Sprague Dawley, Wistar and Mrp2-deficient Wistar (TR(–)) rats. Toxicol. In Vitro 28, 1165–1175 (2014).

    CAS  PubMed  Google Scholar 

  107. 107.

    Cuperus, F. J., Claudel, T., Gautherot, J., Halilbasic, E. & Trauner, M. The role of canalicular ABC transporters in cholestasis. Drug Metab. Dispos. 42, 546–560 (2014).

    PubMed  Google Scholar 

  108. 108.

    Larson, S. P., Kovilam, O. & Agrawal, D. K. Immunological basis in the pathogenesis of intrahepatic cholestasis of pregnancy. Expert. Rev. Clin. Immunol. 12, 39–48 (2016).

    CAS  PubMed  Google Scholar 

  109. 109.

    Alakoskela, J. M., Vitovic, P. & Kinnunen, P. K. Screening for the drug–phospholipid interaction: correlation to phospholipidosis. ChemMedChem 4, 1224–1251 (2009).

    CAS  PubMed  Google Scholar 

  110. 110.

    Shayman, J. A. & Abe, A. Drug induced phospholipidosis: an acquired lysosomal storage disorder. Biochim. Biophys. Acta 1831, 602–611 (2013).

    CAS  PubMed  Google Scholar 

  111. 111.

    Schumacher, J. D. & Guo, G. L. Mechanistic review of drug-induced steatohepatitis. Toxicol. Appl. Pharmacol. 289, 40–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Satapathy, S. K., Kuwajima, V., Nadelson, J., Atiq, O. & Sanyal, A. J. Drug-induced fatty liver disease: an overview of pathogenesis and management. Ann. Hepatol. 14, 789–806 (2015).

    CAS  PubMed  Google Scholar 

  113. 113.

    Lewis, J. H. et al. Histopathologic analysis of suspected amiodarone hepatotoxicity. Hum. Pathol. 21, 59–67 (1990).

    CAS  PubMed  Google Scholar 

  114. 114.

    Anderson, N. & Borlak, J. Drug-induced phospholipidosis. FEBS Lett. 580, 5533–5540 (2006).

    CAS  PubMed  Google Scholar 

  115. 115.

    Pelletier, D. J., Gehlhaar, D., Tilloy-Ellul, A., Johnson, T. O. & Greene, N. Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential. J. Chem. Inf. Model. 47, 1196–1205 (2007).

    CAS  PubMed  Google Scholar 

  116. 116.

    Schurdak, M. E., Vernetti, L. A., Abel, S. J. & Thiffault, C. Adaptation of an in vitro phospholipidosis assay to an automated image analysis system. Toxicol. Mech. Methods 17, 77–86 (2007).

    CAS  PubMed  Google Scholar 

  117. 117.

    Obert, L. A. et al. An immunohistochemical approach to differentiate hepatic lipidosis from hepatic phospholipidosis in rats. Toxicol. Pathol. 35, 728–734 (2007).

    CAS  PubMed  Google Scholar 

  118. 118.

    Baronas, E. T., Lee, J. W., Alden, C. & Hsieh, F. Y. Biomarkers to monitor drug-induced phospholipidosis. Toxicol. Appl. Pharmacol. 218, 72–78 (2007).

    CAS  PubMed  Google Scholar 

  119. 119.

    Sakatis, M. Z. et al. Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem. Res. Toxicol. 25, 2067–2082 (2012).

    CAS  PubMed  Google Scholar 

  120. 120.

    Thompson, R. A. et al. In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem. Res. Toxicol. 25, 1616–1632 (2012).

    CAS  PubMed  Google Scholar 

  121. 121.

    Brink, A., Pahler, A., Funk, C., Schuler, F. & Schadt, S. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov. Today 22, 751–756 (2017).

    CAS  PubMed  Google Scholar 

  122. 122.

    Park, B. K. et al. Managing the challenge of chemically reactive metabolites in drug development. Nat. Rev. Drug Discov. 10, 292–306 (2011).

    CAS  PubMed  Google Scholar 

  123. 123.

    Otieno, M. A. et al. Mechanisms for hepatobiliary toxicity in rats treated with an antagonist of melanin concentrating hormone receptor 1 (MCHR1). Toxicol. Sci. 155, 379–388 (2017).

    CAS  PubMed  Google Scholar 

  124. 124.

    Stachulski, A. V. et al. The generation, detection, and effects of reactive drug metabolites. Medicinal Res. Rev. 33, 985–1080 (2013).

    CAS  Google Scholar 

  125. 125.

    Ramachandran, A. & Jaeschke, H. Oxidative stress and acute hepatic injury. Curr. Opin. Toxicol. 7, 17–21 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Zhang, J. et al. Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem. Biol. Interact. 255, 3–11 (2016).

    CAS  PubMed  Google Scholar 

  127. 127.

    Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 386, 532–543 (2006).

    CAS  PubMed  Google Scholar 

  128. 128.

    Wages, P. A., Cheng, W. Y., Gibbs-Flournoy, E. & Samet, J. M. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim. Biophys. Acta 1860, 2802–2815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Zielonka, J. et al. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J. Biol. Chem. 287, 2984–2995 (2012).

    CAS  PubMed  Google Scholar 

  130. 130.

    Zielonka, J. et al. High-throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases. J. Biol. Chem. 289, 16176–16189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Wink, S., Hiemstra, S., Herpers, B. & van de Water, B. High-content imaging-based BAC–GFP toxicity pathway reporters to assess chemical adversity liabilities. Arch. Toxicol. 91, 1367–1383 (2017).

    CAS  PubMed  Google Scholar 

  132. 132.

    Wink, S., Hiemstra, S. W., Huppelschoten, S., Klip, J. E. & van de Water, B. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch. Toxicol. 92, 1797–1814 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Ramaiahgari, S. C. et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch. Toxicol. 88, 1083–1095 (2014).

    CAS  PubMed  Google Scholar 

  134. 134.

    Oikawa, D., Akai, R., Tokuda, M. & Iwawaki, T. A transgenic mouse model for monitoring oxidative stress. Sci. Rep. 2, 229 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Forootan, S. S. et al. Real-time in vivo imaging reveals localised Nrf2 stress responses associated with direct and metabolism-dependent drug toxicity. Sci. Rep. 7, 16084 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Du, K., Ramachandran, A. & Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol. 10, 148–156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Jaeschke, H., Xie, Y. & McGill, M. R. Acetaminophen-induced liver injury: from animal models to humans. J. Clin. Transl. Hepatol. 2, 153–161 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Kim, R., Emi, M., Tanabe, K. & Murakami, S. Role of the unfolded protein response in cell death. Apoptosis 11, 5–13 (2006).

    CAS  PubMed  Google Scholar 

  139. 139.

    Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS  PubMed  Google Scholar 

  140. 140.

    Oakes, S. A. & Papa, F. R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10, 173–194 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460–3470 (2013).

    CAS  PubMed  Google Scholar 

  142. 142.

    Dara, L., Ji, C. & Kaplowitz, N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 53, 1752–1763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Mennicke, M. et al. Fulminant liver failure after vancomycin in a sulfasalazine-induced DRESS syndrome: fatal recurrence after liver transplantation. Am. J. Transplant 9, 2197–2202 (2009).

    CAS  PubMed  Google Scholar 

  144. 144.

    Maria, V. A. & Victorino, R. M. Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug induced liver injury. Gut 41, 534–540 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Warrington, R. J., Tse, K. S., Gorski, B. A., Schwenk, R. & Sehon, A. H. Evaluation of isoniazid-associated hepatitis by immunological tests. Clin. Exp. Immunol. 32, 97–104 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Usui, T. et al. From the cover: characterization of isoniazid-specific T-cell clones in patients with anti-tuberculosis drug-related liver and skin injury. Toxicol. Sci. 155, 420–431 (2017).

    CAS  PubMed  Google Scholar 

  147. 147.

    Metushi, I. G., Sanders, C., Acute Liver Study Group, Lee, W. M. & Uetrecht, J. Detection of anti-isoniazid and anti-cytochrome P450 antibodies in patients with isoniazid-induced liver failure. Hepatology 59, 1084–1093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Monshi, M. M. et al. Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 57, 727–739 (2013).

    CAS  PubMed  Google Scholar 

  149. 149.

    Kim, S. H. et al. Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate-induced liver injury. Hepatology 62, 887–899 (2015).

    CAS  PubMed  Google Scholar 

  150. 150.

    Yaseen, F. S. et al. Promiscuous T-cell responses to drugs and drug-haptens. J. Allergy Clin. Immunol. 136, 474–476.e8 (2015).

    CAS  PubMed  Google Scholar 

  151. 151.

    Wuillemin, N. et al. HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin. J. Immunol. 190, 4956–4964 (2013).

    CAS  PubMed  Google Scholar 

  152. 152.

    Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).

    CAS  PubMed  Google Scholar 

  153. 153.

    Donaldson, P. T. et al. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J. Hepatol. 53, 1049–1053 (2010).

    CAS  PubMed  Google Scholar 

  154. 154.

    Singer, J. B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    CAS  PubMed  Google Scholar 

  155. 155.

    Spraggs, C. F. et al. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J. Clin. Oncol. 29, 667–673 (2011).

    CAS  PubMed  Google Scholar 

  156. 156.

    Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8, 186–195 (2008).

    CAS  PubMed  Google Scholar 

  157. 157.

    Daly, A. K. & Day, C. P. Genetic association studies in drug-induced liver injury. Drug Metab. Rev. 44, 116–126 (2012).

    CAS  PubMed  Google Scholar 

  158. 158.

    Kaniwa, N. & Saito, Y. Pharmacogenomics of severe cutaneous adverse reactions and drug-induced liver injury. J. Hum. Genet. 58, 317–326 (2013).

    CAS  PubMed  Google Scholar 

  159. 159.

    Urban, T. J. et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B *35:02 as a risk factor. J. Hepatol. 67, 137–144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Nicoletti, P. et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology 152, 1078–1089 (2017).

    CAS  PubMed  Google Scholar 

  161. 161.

    Lu, J., Jones, A. D., Harkema, J. R., Roth, R. A. & Ganey, P. E. Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: role of tumor necrosis factor-α. Toxicol. Sci. 125, 126–133 (2012).

    CAS  PubMed  Google Scholar 

  162. 162.

    Shaw, P. J. et al. Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity. Toxicol. Sci. 111, 288–301 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Deng, X. et al. Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J. Pharmacol. Exp. Ther. 319, 1191–1199 (2006).

    CAS  PubMed  Google Scholar 

  164. 164.

    Deng, X. et al. Gene expression profiles in livers from diclofenac-treated rats reveal intestinal bacteria-dependent and -independent pathways associated with liver injury. J. Pharmacol. Exp. Ther. 327, 634–644 (2008).

    CAS  PubMed  Google Scholar 

  165. 165.

    Giustarini, G. et al. Trovafloxacin-induced liver injury: lack in regulation of inflammation by inhibition of nucleotide release and neutrophil movement. Toxicol. Sci. 167, 385–396 (2019).

    CAS  PubMed  Google Scholar 

  166. 166.

    Mak, A. & Uetrecht, J. The role of CD8 T cells in amodiaquine-induced liver injury in PD1–/– mice cotreated with anti-CTLA-4. Chem. Res. Toxicol. 28, 1567–1573 (2015).

    CAS  PubMed  Google Scholar 

  167. 167.

    Metushi, I. G. et al. Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset. J. Immunotoxicol. 12, 247–260 (2015).

    CAS  PubMed  Google Scholar 

  168. 168.

    Metushi, I. G., Hayes, M. A. & Uetrecht, J. Treatment of PD-1–/– mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology 61, 1332–1342 (2015).

    CAS  PubMed  Google Scholar 

  169. 169.

    Cardone, M. et al. A transgenic mouse model for HLA-B*57:01-linked abacavir drug tolerance and reactivity. J. Clin. Invest. 128, 2819–2832 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Kato, R. et al. Human hepatocarcinoma functional liver cell-4 cell line exhibits high expression of drug-metabolizing enzymes in three-dimensional culture. Biol. Pharm. Bull 37, 1782–1787 (2014).

    CAS  PubMed  Google Scholar 

  171. 171.

    Beggs, K. M. et al. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-α-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related. Toxicology 331, 35–46 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Fredriksson, L. et al. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis. Hepatology 53, 2027–2041 (2011).

    CAS  PubMed  Google Scholar 

  173. 173.

    Zou, W., Roth, R. A., Younis, H. S., Burgoon, L. D. & Ganey, P. E. Oxidative stress is important in the pathogenesis of liver injury induced by sulindac and lipopolysaccharide cotreatment. Toxicology 272, 32–38 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Benesic, A., Leitl, A. & Gerbes, A. L. Monocyte-derived hepatocyte-like cells for causality assessment of idiosyncratic drug-induced liver injury. Gut 65, 1555–1563 (2016).

    CAS  PubMed  Google Scholar 

  175. 175.

    Oda, S., Matsuo, K., Nakajima, A. & Yokoi, T. A novel cell-based assay for the evaluation of immune- and inflammatory-related gene expression as biomarkers for the risk assessment of drug-induced liver injury. Toxicol. Lett. 241, 60–70 (2016).

    CAS  PubMed  Google Scholar 

  176. 176.

    Ogese, M. O. et al. Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol. Sci. 158, 76–89 (2017).

    CAS  PubMed  Google Scholar 

  177. 177.

    Sutherland, J. J., Jolly, R. A., Goldstein, K. M. & Stevens, J. L. Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLOS Comput. Biol. 12, e1004847 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).

    CAS  PubMed  Google Scholar 

  179. 179.

    Heslop, J. A. et al. Donor-dependent and other nondefined factors have greater influence on the hepatic phenotype than the starting cell type in induced pluripotent stem cell derived hepatocyte-like cells. Stem Cell Transl. Med. 6, 1751 (2017).

    CAS  Google Scholar 

  180. 180.

    Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

    CAS  PubMed  Google Scholar 

  182. 182.

    Coll, M. et al. Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis. Cell Stem Cell 23, 101–113.e7 (2018).

    CAS  PubMed  Google Scholar 

  183. 183.

    Tysoe, O. C. et al. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nat. Protoc. 14, 1884–1925 (2019).

    CAS  PubMed  Google Scholar 

  184. 184.

    Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Alfirevic, A. et al. In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Med. 4, 51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Faulkner, L. et al. Detection of primary T cell responses to drugs and chemicals in HLA-typed volunteers: implications for the prediction of drug immunogenicity. Toxicol. Sci. 154, 416–429 (2016).

    CAS  PubMed  Google Scholar 

  187. 187.

    Faulkner, L. et al. The development of in vitro culture methods to characterize primary T-cell responses to drugs. Toxicol. Sci. 127, 150–158 (2012).

    CAS  PubMed  Google Scholar 

  188. 188.

    Gibson, A. et al. Negative regulation by PD-L1 during drug-specific priming of IL-22-secreting T cells and the influence of PD-1 on effector T cell function. J. Immunol. 192, 2611–2621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Gibson, A., Faulkner, L., Wood, S., Park, B. K. & Naisbitt, D. J. Identification of drug- and drug-metabolite immune responses originating from both naive and memory T cells. J. Allergy Clin. Immunol. 140, 578–581.e5 (2017).

    CAS  PubMed  Google Scholar 

  190. 190.

    Usui, T. et al. Application of in vitro T cell assay using human leukocyte antigen-typed healthy donors for the assessment of drug immunogenicity. Chem. Res. Toxicol. 31, 165–167 (2018).

    CAS  PubMed  Google Scholar 

  191. 191.

    Koui, Y. et al. An in vitro human liver model by iPSC-derived parenchymal and non-parenchymal cells. Stem Cell Rep. 9, 490–498 (2017).

    CAS  Google Scholar 

  192. 192.

    Sampaziotis, F. et al. Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Holmes, A., Bonner, F. & Jones, D. Assessing drug safety in human tissues—what are the barriers? Nat. Rev. Drug Discov. 14, 585–587 (2015).

    CAS  PubMed  Google Scholar 

  194. 194.

    Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. Altex 33, 272–321 (2016).

    PubMed  PubMed Central  Google Scholar 

  195. 195.

    Cronin, M. Non-animal approaches the way forward. Report on a European Commission Scientific conference held on 6-7 December 2016, at The Egg, Brussels, Belgium (European Commission, 2017).

  196. 196.

    Lin, C., Ballinger, K. R. & Khetani, S. R. The application of engineered liver tissues for novel drug discovery. Expert. Opin. Drug Discov. 10, 519–540 (2015).

    CAS  PubMed  Google Scholar 

  197. 197.

    Brennan, F. R. et al. Nonclinical safety testing of biopharmaceuticals—addressing current challenges of these novel and emerging therapies. Regul. Toxicol. Pharmacol. 73, 265–275 (2015).

    CAS  PubMed  Google Scholar 

  198. 198.

    Dixit, R. & Boelsterli, U. A. Healthy animals and animal models of human disease(s) in safety assessment of human pharmaceuticals, including therapeutic antibodies. Drug Discov. Today 12, 336–342 (2007).

    CAS  PubMed  Google Scholar 

  199. 199.

    Matheis, K. et al. A generic operational strategy to qualify translational safety biomarkers. Drug Discov. Today 16, 600–608 (2011).

    PubMed  Google Scholar 

  200. 200.

    Dykens, J. A. & Will, Y. The significance of mitochondrial toxicity testing in drug development. Drug Discov. Today 12, 777–785 (2007).

    CAS  PubMed  Google Scholar 

  201. 201.

    Lai, Y., Tse, C. M. & Unadkat, J. D. Mitochondrial expression of the human equilibrative nucleoside transporter 1 (hENT1) results in enhanced mitochondrial toxicity of antiviral drugs. J. Biol. Chem. 279, 4490–4497 (2004).

    CAS  PubMed  Google Scholar 

  202. 202.

    Monte, M. J., Marin, J. J., Antelo, A. & Vazquez-Tato, J. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Fischer, S., Beuers, U., Spengler, U., Zwiebel, F. M. & Koebe, H. G. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin. Chim. Acta 251, 173–186 (1996).

    CAS  PubMed  Google Scholar 

  204. 204.

    Stindt, J. et al. Bile salt export pump-reactive antibodies form a polyclonal, multi-inhibitory response in antibody-induced bile salt export pump deficiency. Hepatology 63, 524–537 (2016).

    CAS  PubMed  Google Scholar 

  205. 205.

    Aninat, C. et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34, 75–83 (2006).

    CAS  PubMed  Google Scholar 

  206. 206.

    Guillouzo, A. et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73 (2007).

    CAS  PubMed  Google Scholar 

  207. 207.

    Sison-Young, R. L. et al. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol. Sci. 147, 412–424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Fredriksson, L. et al. Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity. Toxicol. Sci. 140, 144–159 (2014).

    CAS  PubMed  Google Scholar 

  209. 209.

    Harris, A. J., Dial, S. L. & Casciano, D. A. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat. Res. 549, 79–99 (2004).

    CAS  PubMed  Google Scholar 

  210. 210.

    Hart, S. N. et al. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab. Dispos. 38, 988–994 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Olinga, P. et al. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur. J. Pharm. Sci. 33, 380–389 (2008).

    CAS  PubMed  Google Scholar 

  212. 212.

    Granitzny, A. et al. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: acetaminophen as a model compound. Toxicol. In Vitro 42, 200–213 (2017).

    CAS  PubMed  Google Scholar 

  213. 213.

    Paish, H. L. et al. A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices. Hepatology 70, 1377–1391 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community (Contract MIP-DILI-115336) under the Innovative Medicines Initiative Joint Undertaking, a contribution from the European Union's Seventh Framework Programme (FP7/20072013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies (http://www.imi.europa.eu/) and by the German Ministry of Education and Research (BMBF) within ‘Multi-Scale Modeling of Drug-Induced Liver Injury’ (MS_DILI, 031L0074A). The authors would like to thank K. Clayson for her excellent administrative role in the preparation and coordination of this article.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Richard J. Weaver or B. Kevin Park.

Ethics declarations

Competing interests

E.A.B. and M.J.L are employees of Abbvie. H.H.J.G. is an employee of UCB BioPharma SPRL. P.G.H. is an employee of Merck KGaA. K.G.J. is an employee of H Lundbeck. S.J. is an employee of Orion Pharma. G.L. is an employee of Sanofi. C.A.L. is an employee of GlaxoSmithKline. P.M. is an employee of AstraZeneca. J.S. is an employee of Janssen Research and Development.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weaver, R.J., Blomme, E.A., Chadwick, A.E. et al. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 19, 131–148 (2020). https://doi.org/10.1038/s41573-019-0048-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing