Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Paediatric hydrocephalus

Abstract

Hydrocephalus is classically considered as a failure of cerebrospinal fluid (CSF) homeostasis that results in the active expansion of the cerebral ventricles. Infants with hydrocephalus can present with progressive increases in head circumference whereas older children often present with signs and symptoms of elevated intracranial pressure. Congenital hydrocephalus is present at or near birth and some cases have been linked to gene mutations that disrupt brain morphogenesis and alter the biomechanics of the CSF–brain interface. Acquired hydrocephalus can develop at any time after birth, is often caused by central nervous system infection or haemorrhage and has been associated with blockage of CSF pathways and inflammation-dependent dysregulation of CSF secretion and clearance. Treatments for hydrocephalus mainly include surgical CSF shunting or endoscopic third ventriculostomy with or without choroid plexus cauterization. In utero treatment of fetal hydrocephalus is possible via surgical closure of associated neural tube defects. Long-term outcomes for children with hydrocephalus vary widely and depend on intrinsic (genetic) and extrinsic factors. Advances in genomics, brain imaging and other technologies are beginning to refine the definition of hydrocephalus, increase precision of prognostication and identify nonsurgical treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cerebral ventricular system and cerebrospinal fluid homeostasis.
Fig. 2: Clustering of post-infectious hydrocephalus cases in Uganda.
Fig. 3: Convergence of cellular and molecular pathogenesis in post-haemorrhagic and post-infectious hydrocephalus models.
Fig. 4: Fetal ultrasonography images.
Fig. 5: Primary signs and symptoms of paediatric hydrocephalus by age group and aetiology.

Similar content being viewed by others

References

  1. Rekate, H. L. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res. 5, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greitz, D. Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv. Syst. 23, 487–489, (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagshul, M. E., Eide, P. K. & Madsen, J. R. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8, 5 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Castle-Kirszbaum, M. & Goldschlager, T. Transmantle and transvenous pressure gradients in cerebrospinal fluid disorders. Neurosurg. Rev. 45, 305–315 (2022).

    Article  PubMed  Google Scholar 

  6. Dewan, M. C. et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J. Neurosurg. 130, 1065–1079 (2018). The annual worldwide incidence of paediatric hydrocephalus is estimated to be 383,724 and is additionally detailed by WHO region and by World Bank income level.

    Article  PubMed  Google Scholar 

  7. Haverkamp, F. et al. Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur. J. Pediatr. 158, 474–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Mei, H. F. et al. Genetic etiologies associated with infantile hydrocephalus in a Chinese infantile cohort. World J. Pediatr. 17, 305–316 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Jin, S. C. et al. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat. Med 26, 1754–1765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, I. et al. Treated hydrocephalus in individuals with myelomeningocele in the National Spina Bifida Patient Registry. J. Neurosurg. Pediatr. 22, 646–651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steinbok, P., Irvine, B., Cochrane, D. D. & Irwin, B. J. Long-term outcome and complications of children born with meningomyelocele. Childs Nerv. Syst. 8, 92–96 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Adzick, N. S. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 364, 993–1004 (2011). This study establishes the utility of prenatal MMC repair to decrease rates of MMC-related hydrocephalus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dewan, M. C. & Wellons, J. C. Fetal surgery for spina bifida. J. Neurosurg. Pediatr. 24, 105–114 (2019).

    Article  PubMed  Google Scholar 

  14. Tulipan, N. et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J. Neurosurg. Pediatr. 16, 613–620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iskandar, B. J. & Finnell, R. H. Spina bifida. N. Engl. J. Med. 387, 444–450 (2022).

    Article  PubMed  Google Scholar 

  16. De Wals, P. et al. Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 357, 135–142 (2007).

    Article  PubMed  Google Scholar 

  17. Berry, R. J. et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 341, 1485–1490 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. WHO. Accelerating efforts for preventing micronutrient deficiencies and their consequences, including spina bifida and other neural tube defects, through safe and effective food fortification. World Health Organization https://apps.who.int/gb/ebwha/pdf_files/WHA76/A76_R19-en.pdf (2023).

  19. Christian, E. A. et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000-2010. J. Neurosurg. Pediatr. 17, 260–269 (2016).

    Article  PubMed  Google Scholar 

  20. Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr. Res. 67, 28 (2010).

    Article  Google Scholar 

  21. Hug, L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob. Health 7, e710–e720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Warf, B. C. Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J. Neurosurg. 102, 1–15 (2005). This study establishes infectious hydrocephalus as the primary aetiology in Uganda and tested the efficacy of ETV in a prospective, consecutive cohort.

    PubMed  Google Scholar 

  23. Kulkarni, A. V. et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J. Neurosurg. Pediatr. 12, 334–338 (2013).

    Article  PubMed  Google Scholar 

  24. Paulson, J. N. et al. Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants. Sci. Transl. Med. 12, eaba0565 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morton, S. U. et al. Paenibacillus spp infection among infants with postinfectious hydrocephalus in Uganda: an observational case–control study. Lancet Microbe 4, e601–e611 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ericson, J. E. et al. Neonatal paenibacilliosis: paenibacillus infection as a novel cause of sepsis in term neonates with high risk of sequelae in Uganda. Clin. Infect. Dis. 77, 768–775 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Schiff, S. J., Ranjeva, S. L., Sauer, T. D. & Warf, B. C. Rainfall drives hydrocephalus in East Africa. J. Neurosurg. Pediatr. 10, 161–167 (2012).

    Article  PubMed  Google Scholar 

  28. WHO. Global Tuberculosis Report 2023. World Health Organization https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023#:~:text=The%20WHO%20Global%20Tuberculosis%20Report,TB%20commitments%2C%20strategies%20and%20targets (2023).

  29. Mezochow, A., Thakur, K. & Vinnard, C. Tuberculous meningitis in children and adults: new insights for an ancient foe. Curr. Neurol. Neurosci. Rep. 17, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bourgi, K., Fiske, C. & Sterling, T. R. Tuberculosis meningitis. Curr. Infect. Dis. Rep. 19, 39 (2017).

    Article  PubMed  Google Scholar 

  31. Yaramis, A. et al. Central nervous system tuberculosis in children: a review of 214 cases. Pediatrics 102, E49 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. van Well, G. T. et al. Twenty years of pediatric tuberculous meningitis: a retrospective cohort study in the western cape of South Africa. Pediatrics 123, e1–e8 (2009).

    Article  PubMed  Google Scholar 

  33. Rajshekhar, V. Management of hydrocephalus in patients with tuberculous meningitis. Neurol. India 57, 368–374 (2009).

    Article  PubMed  Google Scholar 

  34. Bonow, R. H. et al. Post-traumatic hydrocephalus in children: a retrospective study in 42 pediatric hospitals using the pediatric health information system. Neurosurgery 83, 732–739 (2018).

    Article  PubMed  Google Scholar 

  35. Cardoso, E. R. & Galbraith, S. Posttraumatic hydrocephalus—a retrospective review. Surg. Neurol. 23, 261–264 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Guyot, L. L. & Michael, D. B. Post-traumatic hydrocephalus. Neurol. Res. 22, 25–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, K. J. et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol. Biomark. Prev. 23, 2716–2736 (2014).

    Article  Google Scholar 

  38. Wong, T. T., Liang, M. L., Chen, H. H. & Chang, F. C. Hydrocephalus with brain tumors in children. Childs Nerv. Syst. 27, 1723–1734 (2011).

    Article  PubMed  Google Scholar 

  39. Yengo-Kahn, A. M. & Dewan, M. C. Tumor-related hydrocephalus in infants: a narrative review. Childs Nerv. Syst. 37, 3365–3373 (2021).

    Article  PubMed  Google Scholar 

  40. Muthukumar, N. Hydrocephalus associated with posterior fossa tumors: how to manage effectively. Neurol. India 69, S342–S349 (2021).

    Article  PubMed  Google Scholar 

  41. Fame, R. M., Cortes-Campos, C. & Sive, H. L. Brain ventricular system and cerebrospinal fluid development and function: light at the end of the tube: a primer with latest insights. Bioessays 42, e1900186 (2020).

    Article  PubMed  Google Scholar 

  42. Chau, K. F. et al. Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev. Cell 35, 789–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Rahilly, R. & Muller, F. Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am. J. Anat. 189, 285–302 (1990).

    Article  PubMed  Google Scholar 

  44. Netsy, M. & Shuangshoti, S. in The Choroid Plexus in Health and Disease 19–35 (John Wright & Sons, 1975).

  45. Saunders, N. R., Dziegielewska, K. M., Fame, R. M., Lehtinen, M. K. & Liddelow, S. A. The choroid plexus: a missing link in our understanding of brain development and function. Physiol. Rev. 103, 919–956 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Deng, S. et al. Roles of ependymal cells in the physiology and pathology of the central nervous system. Aging Dis. 14, 468–483 (2023).

    PubMed  PubMed Central  Google Scholar 

  47. Sarnat, H. B. Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc. Res. Tech. 41, 14–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Coletti, A. M. et al. Characterization of the ventricular-subventricular stem cell niche during human brain development. Development 145, dev170100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schrander-Stumpel, C. & Fryns, J. P. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur. J. Pediatr. 157, 355–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Rosenthal, A., Jouet, M. & Kenwrick, S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat. Genet. 2, 107–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Lintas, C. et al. Xp22.33p22.12 duplication in a patient with intellectual disability and dysmorphic facial features. Mol. Syndromol. 6, 236–241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tripolszki, K. et al. An X-linked syndrome with severe neurodevelopmental delay, hydrocephalus, and early lethality caused by a missense variation in the OTUD5 gene. Clin. Genet. 99, 303–308 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Alhousseini, A. et al. Familial hydrocephalus and dysgenesis of the corpus callosum associated with Xp22.33 duplication and stenosis of the aqueduct of sylvius with X-linked recessive inheritance pattern. Gynecol. Obstet. Invest. 84, 412–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Kousi, M. & Katsanis, N. The genetic basis of hydrocephalus. Annu. Rev. Neurosci. 39, 409–435 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Reusch, U., Bernhard, O., Koszinowski, U. & Schu, P. AP-1A and AP-3A lysosomal sorting functions. Traffic 3, 752–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ekici, A. B. et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol. Syndromol. 1, 99–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drielsma, A. et al. Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J. Med. Genet. 49, 708–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Al-Dosari, M. S. et al. Mutation in MPDZ causes severe congenital hydrocephalus. J. Med. Genet. 50, 54–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Feldner, A. et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol. Med. 9, 890–905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saugier-Veber, P. et al. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol. Commun. 5, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Marguet, F. et al. Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants. Acta Neuropathol. Commun. 9, 104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodgers, B. L., Vanner, L. V., Pai, G. S. & Sens, M. A. Walker–Warburg syndrome: report of three affected sibs. Am. J. Med. Genet. 49, 198–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J. Neurosci. Res. 91, 1117–1132 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Vieira, J. P., Lopes, P. & Silva, R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J. Child Neurol. 27, 938–941 (2012).

    Article  PubMed  Google Scholar 

  65. Mirzaa, G. M. et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am. J. Med. Genet. A 158A, 269–291 (2012).

    Article  PubMed  Google Scholar 

  66. Furey, C. G. et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 99, 302–314 e304 (2018). This study identifies four novel genetic mutations that accounted for 10% of congenital hydrocephalus cases in a large cohort of cases without a known genetic cause and implicates early alterations in neurogenesis in the development of congenital hydrocephalus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hale, A. T. et al. Multi-omic analysis elucidates the genetic basis of hydrocephalus. Cell Rep. 35, 109085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duy, P. Q. et al. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nat. Neurosci. 25, 458–473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adzick, N. S. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin. Fetal Neonatal Med. 15, 9–14 (2010).

    Article  PubMed  Google Scholar 

  70. McLone, D. G. & Knepper, P. A. The cause of Chiari II malformation: a unified theory. Pediatr. Neurosci. 15, 1–12 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Norkett, W., McLone, D. G. & Bowman, R. Current management strategies of hydrocephalus in the child with open spina bifida. Top. Spinal Cord. Inj. Rehabil. 22, 241–246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Amouee, A. et al. The effects of amniotic fluid on the histopathologic changes of exposed spinal cord in fetal sheep. Arch. Iran. Med. 12, 35–40 (2009).

    PubMed  Google Scholar 

  73. Flanders, T. M. et al. Detailed analysis of hydrocephalus and hindbrain herniation after prenatal and postnatal myelomeningocele closure: report from a single institution. Neurosurgery 86, 637–645 (2020).

    Article  PubMed  Google Scholar 

  74. Encinas, J. L. et al. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J. Pediatr. Surg. 46, 713–722 (2011).

    Article  PubMed  Google Scholar 

  75. Strahle, J. et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl. Stroke Res. 3, 25–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, Q. et al. Post-hemorrhagic hydrocephalus: recent advances and new therapeutic insights. J. Neurol. Sci. 375, 220–230 (2017).

    Article  PubMed  Google Scholar 

  77. Tully, H. M., Wenger, T. L., Kukull, W. A., Doherty, D. & Dobyns, W. B. Anatomical configurations associated with posthemorrhagic hydrocephalus among premature infants with intraventricular hemorrhage. Neurosurg. Focus 41, E5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moinuddin, S. M. & Tada, T. Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol. Res. 22, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Larroche, J. C. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol. Neonate 20, 287–299 (1972).

    Article  CAS  PubMed  Google Scholar 

  80. Whitelaw, A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin. Neonatol. 6, 135–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Karimy, J. K. et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat. Rev. Neurol. 16, 285–296 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Klebe, D. et al. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways. J. Neurosci. Res. 98, 105–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Ramagiri, S. et al. Deferoxamine prevents neonatal posthemorrhagic hydrocephalus through choroid plexus-mediated iron clearance. Transl. Stroke Res. 14, 704–722 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Toft-Bertelsen, T. L. et al. Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1. Fluids Barriers CNS 19, 69 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lolansen, S. D. et al. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 19, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lolansen, S. D. et al. Inflammatory markers in cerebrospinal fluid from patients with hydrocephalus: a systematic literature review. Dis. Markers 2021, 8834822 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Habiyaremye, G. et al. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 14, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Karimy, J. K. et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat. Med. 23, 997–1003 (2017). This study establishes CSF hypersecretion as a pathological factor in acquired hydrocephalus.

    Article  CAS  PubMed  Google Scholar 

  89. Lolansen, S. D. et al. Posthemorrhagic hydrocephalus in patients with subarachnoid hemorrhage occurs independently of CSF osmolality. Int. J. Mol. Sci. 24, 111476 (2023).

    Article  Google Scholar 

  90. Li, Q. et al. Targeting germinal matrix hemorrhage-induced overexpression of sodium-coupled bicarbonate exchanger reduces posthemorrhagic hydrocephalus formation in neonatal rats. J. Am. Heart Assoc. 7, e007192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Robert, S. M. et al. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 186, 764–785 e721 (2023). This study establishes a link between TLR4-dependent immune responses at the ChP–CSF interface in both PIH and PHH models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. MacAulay, N., Keep, R. F. & Zeuthen, T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 19, 26 (2022). This review establishes an experimental framework to explain the paradoxical secretion of CSF in the opposite direction to the bulk osmotic gradient.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Oernbo, E. K. et al. Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure. Fluids Barriers CNS 19, 65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Metayer, T. et al. Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage. Acta Neurochir. 164, 499–505 (2022).

    Article  PubMed  Google Scholar 

  95. Wang, Q. et al. Modulation of cerebrospinal fluid dysregulation via a SPAK and OSR1 targeted framework nucleic acid in hydrocephalus. Adv. Sci. https://doi.org/10.1002/advs.202306622 (2024).

    Article  Google Scholar 

  96. Mahaney, K. B. et al. Intraventricular hemorrhage clearance in human neonatal cerebrospinal fluid: associations with hydrocephalus. Stroke 51, 1712–1719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mahaney, K. B. et al. Elevated cerebrospinal fluid iron and ferritin associated with early severe ventriculomegaly in preterm posthemorrhagic hydrocephalus. J. Neurosurg. Pediatr. 30, 169–176 (2022).

    Article  PubMed  Google Scholar 

  98. Strahle, J. M. et al. Longitudinal CSF iron pathway proteins in posthemorrhagic hydrocephalus: associations with ventricle size and neurodevelopmental outcomes. Ann. Neurol. 90, 217–226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Strahle, J. M. et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 75, 696–705 (2014).

    Article  PubMed  Google Scholar 

  100. Bian, C. et al. Iron-induced hydrocephalus: the role of choroid plexus stromal macrophages. Transl. Stroke Res. 14, 238–249 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Del Bigio, M. R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55–73 (2010).

    Article  PubMed  Google Scholar 

  102. Banizs, B. et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132, 5329–5339 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Hijikata, M., Okahashi, A., Nagano, N. & Morioka, I. Clinical characteristics of congenital toxoplasmosis with poor outcome in Japan: a nationwide survey and literature review. Congenit. Anom. 60, 194–198 (2020).

    Article  Google Scholar 

  104. Faral-Tello, P., Pagotto, R., Bollati-Fogolin, M. & Francia, M. E. Modeling the human placental barrier to understand Toxoplasma gondii’s vertical transmission. Front. Cell. Infect. Microbiol. 13, 1130901 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Curcio, A. M., Shekhawat, P., Reynolds, A. S. & Thakur, K. T. Neurologic infections during pregnancy. Handb. Clin. Neurol. 172, 79–104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lepennetier, G. et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflammation 16, 219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dodge, P. R. & Swartz, M. N. Bacterial meningitis–a review of selected aspects. ii. special neurologic problems, postmeningitic complications and clinicopathological correlations. N. Engl. J. Med. 272, 1003–1010 (1965).

    Article  CAS  PubMed  Google Scholar 

  108. Sarnat, H. B. Ependymal reactions to injury. A review. J. Neuropathol. Exp. Neurol. 54, 1–15 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, N., Zhang, D., Sun, J., Sun, H. & Ge, M. Contribution of tumor characteristics and surgery-related factors to symptomatic hydrocephalus after posterior fossa tumor resection: a single-institution experience. J. Neurosurg. Pediatr. 31, 99–108 (2023).

    Article  PubMed  Google Scholar 

  110. Kumar, A. et al. Malignant meningitis associated with hydrocephalus. Neurol. India 69, S443–S455 (2021).

    Article  PubMed  Google Scholar 

  111. Bahar, M. et al. Choroid plexus tumors in adult and pediatric populations: the Cleveland Clinic and University Hospitals experience. J. Neurooncol. 132, 427–432 (2017).

    Article  PubMed  Google Scholar 

  112. Crawford, J. R. & Isaacs, H. Jr Perinatal (fetal and neonatal) choroid plexus tumors: a review. Childs Nerv. Syst. 35, 937–944 (2019).

    Article  PubMed  Google Scholar 

  113. Seyi-Olajide, J. O., Ma, X., Guadagno, E., Ademuyiwa, A. & Poenaru, D. Screening methods for congenital anomalies in low and lower-middle income countries: a systematic review. J. Pediatr. Surg. 58, 986–993 (2023).

    Article  PubMed  Google Scholar 

  114. Mirsky, D. M., Stence, N. V., Powers, A. M., Dingman, A. L. & Neuberger, I. Imaging of fetal ventriculomegaly. Pediatr. Radiol. 50, 1948–1958 (2020).

    Article  PubMed  Google Scholar 

  115. Hagan J. F. Bright Futures Pocket Guide: Guidelines for Health Supervision of Infants, Children, and Adolescents 4th edn (American Academy of Pediatrics, 2017).

  116. Waecker, N. J. Tuberculous meningitis in children. Curr. Treat. Options Neurol. 4, 249–257 (2002).

    Article  PubMed  Google Scholar 

  117. Figaji, A. A. & Fieggen, A. G. The neurosurgical and acute care management of tuberculous meningitis: evidence and current practice. Tuberculosis 90, 393–400 (2010).

    Article  PubMed  Google Scholar 

  118. Kerscher, S. R. et al. Transtemporal Ultrasound (US) assessment of third ventricle diameter (TVD): comparison of US and MRI TVD in pediatric patients. Neuropediatrics 51, 185–191 (2020).

    Article  PubMed  Google Scholar 

  119. Okpara, S. E. et al. Correlation of the transorbital ultrasonographic optic nerve sheath diameter with intracranial pressure measured intraoperatively in infants with hydrocephalus. J. Neurosurg. Pediatr. 33, 334–342 (2024).

    PubMed  Google Scholar 

  120. Bhandari, D., Udupi Bidkar, P., Adinarayanan, S., Narmadhalakshmi, K. & Srinivasan, S. Measurement of changes in optic nerve sheath diameter using ultrasound and computed tomography scan before and after the ventriculoperitoneal shunt surgery in patients with hydrocephalus - a prospective observational trial. Br. J. Neurosurg. 33, 125–130 (2019).

    Article  PubMed  Google Scholar 

  121. Czeizel, A. E. & Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327, 1832–1835 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Kancherla, V. et al. Prenatal folic acid use associated with decreased risk of myelomeningocele: a case-control study offers further support for folic acid fortification in Bangladesh. PLoS ONE 12, e0188726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mohamed, M. et al. Post-haemorrhagic hydrocephalus is associated with poorer surgical and neurodevelopmental sequelae than other causes of infant hydrocephalus. Childs Nerv. Syst. 37, 3385–3396 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Agajany, N. et al. The impact of neonatal posthemorrhagic hydrocephalus of prematurity on family function at preschool age. Early Hum. Dev. 137, 104827 (2019).

    Article  PubMed  Google Scholar 

  125. Whitelaw, A. et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125, e852–e858 (2010).

    Article  PubMed  Google Scholar 

  126. Mazzola, C. A. et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: management of posthemorrhagic hydrocephalus in premature infants. J. Neurosurg. Pediatr. 14, 8–23 (2014).

    Article  PubMed  Google Scholar 

  127. Luyt, K. et al. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 105, 466–473 (2020).

    Article  PubMed  Google Scholar 

  128. de Vries, L. S. et al. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 104, F70–F75 (2019).

    Article  PubMed  Google Scholar 

  129. Cizmeci, M. N. et al. Randomized controlled early versus late ventricular intervention study in posthemorrhagic ventricular dilatation: outcome at 2 years. J. Pediatr. 226, 28–35 e23 (2020).

    Article  PubMed  Google Scholar 

  130. Schulz, M., Buhrer, C., Pohl-Schickinger, A., Haberl, H. & Thomale, U. W. Neuroendoscopic lavage for the treatment of intraventricular hemorrhage and hydrocephalus in neonates. J. Neurosurg. Pediatr. 13, 626–635 (2014).

    Article  PubMed  Google Scholar 

  131. Behrens, P. et al. Neurodevelopmental outcome at 2 years after neuroendoscopic lavage in neonates with posthemorrhagic hydrocephalus. J. Neurosurg. Pediatr. 26, 495–503 (2020).

    Article  PubMed  Google Scholar 

  132. Yao, S. L., Smit, E. & Odd, D. The effectiveness of interventions to prevent intraventricular haemorrhage in premature infants: a systematic review and network meta-analysis. J. Neonatal Perinat. Med. 16, 5–20 (2023).

    Article  Google Scholar 

  133. Murosko, D., Passerella, M. & Lorch, S. Racial segregation and intraventricular hemorrhage in preterm infants. Pediatrics 145, e20191508 (2020).

    Article  PubMed  Google Scholar 

  134. Sinnar, S. A. & Schiff, S. J. The problem of microbial dark matter in neonatal sepsis. Emerg. Infect. Dis. 26, 2543–2548 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Michelow, I. C. & Obaro, S. K. Unraveling neonatal sepsis: sharper tools needed for unexpected organisms. Clin. Infect. Dis. 77, 776–778 (2023).

    Article  PubMed  Google Scholar 

  136. Kulkarni, A. V. et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infant hydrocephalus: a prospective study by the Hydrocephalus Clinical Research Network. J. Neurosurg. Pediatr. 21, 214–223 (2018). This is the first prospective, large-scale, US-based study of ETV–CPC, which established key differences in the success rate of ETV–CPC compared with previously studied African cohorts.

    Article  PubMed  Google Scholar 

  137. Del Bigio, M. R. & Di Curzio, D. L. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hochstetler, A., Raskin, J. & Blazer-Yost, B. L. Hydrocephalus: historical analysis and considerations for treatment. Eur. J. Med. Res. 27, 168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bandyopadhyay, S. Pseudotumor cerebri. Arch. Neurol. 58, 1699–1701 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Rigi, M., Almarzouqi, S. J., Morgan, M. L. & Lee, A. G. Papilledema: epidemiology, etiology, and clinical management. Eye Brain 7, 47–57 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Wellons, J. C. III et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J. Neurosurg. Pediatr. 20, 19–29 (2017).

    Article  PubMed  Google Scholar 

  142. Bock, H. C., Feldmann, J. & Ludwig, H. C. Early surgical management and long-term surgical outcome for intraventricular hemorrhage-related posthemorrhagic hydrocephalus in shunt-treated premature infants. J. Neurosurg. Pediatr. 22, 61–67 (2018).

    Article  PubMed  Google Scholar 

  143. Robinson, S., Kaufman, B. A. & Park, T. S. Outcome analysis of initial neonatal shunts: does the valve make a difference? Pediatr. Neurosurg. 37, 287–294 (2002).

    Article  PubMed  Google Scholar 

  144. Kuo, M. F. Surgical management of intraventricular hemorrhage and posthemorrhagic hydrocephalus in premature infants. Biomed. J. 43, 268–276 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ucisik, F. E., Simonetta, A. B. & Bonfante-Mejia, E. M. Magnetic resonance imaging-related programmable ventriculoperitoneal shunt valve setting changes occur often. Acta Neurochir. 164, 495–498 (2022).

    Article  PubMed  Google Scholar 

  146. Drake, J. M. et al. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43, 294–303 (1998). This is the first large-scale, randomized controlled trial to test the success rates of different shunt system valves for the treatment of hydrocephalus.

    Article  CAS  PubMed  Google Scholar 

  147. Riva-Cambrin, J. et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J. Neurosurg. Pediatr. 17, 382–390 (2016).

    Article  PubMed  Google Scholar 

  148. Kestle, J. et al. Long-term follow-up data from the Shunt Design Trial. Pediatr. Neurosurg. 33, 230–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Kraemer, M. R., Sandoval-Garcia, C., Bragg, T. & Iskandar, B. J. Shunt-dependent hydrocephalus: management style among members of the American Society of Pediatric Neurosurgeons. J. Neurosurg. Pediatr. 20, 216–224 (2017).

    Article  PubMed  Google Scholar 

  150. Sedano, S. et al. Associations of standard care, intrathecal antibiotics, and antibiotic-impregnated catheters with cerebrospinal fluid shunt infection organisms and resistance. J. Pediatr. Infect. Dis. Soc. 12, 504–512 (2023).

    Article  CAS  Google Scholar 

  151. Kestle, J. R. et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the Hydrocephalus Clinical Research Network Quality Improvement Initiative. J. Neurosurg. Pediatr. 8, 22–29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chimaliro, S., Hara, C. & Kamalo, P. Mortality and complications 1 year after treatment of hydrocephalus with endoscopic third ventriculostomy and ventriculoperitoneal shunt in children at Queen Elizabeth Central Hospital, Malawi. Acta Neurochir. 165, 61–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Tamber, M. S. et al. Shunt infection prevention practices in Hydrocephalus Clinical Research Network-Quality: a new quality improvement network for hydrocephalus management. J. Neurosurg. Pediatr. 33, 157–164 (2024).

    PubMed  Google Scholar 

  154. Chu, J. et al. The Hydrocephalus Clinical Research Network quality improvement initiative: the role of antibiotic-impregnated catheters and vancomycin wound irrigation. J. Neurosurg. Pediatr. 29, 711–718 (2022).

    Article  PubMed  Google Scholar 

  155. Simon, T. D. et al. Infection rates following initial cerebrospinal fluid shunt placement across pediatric hospitals in the United States. Clinical article. J. Neurosurg. Pediatr. 4, 156–165 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. De Angelis, L. C. et al. Brain lymphatic drainage system in fetus and newborn: birth of a new era of exploration. Lymphology 51, 140–147 (2018).

    PubMed  Google Scholar 

  157. McLone, D. G. Pediatric Neurosurgery: Surgery of the Developing Nervous System (Saunders, 2001).

  158. Lee, T. T., Uribe, J., Ragheb, J., Morrison, G. & Jagid, J. R. Unique clinical presentation of pediatric shunt malfunction. Pediatr. Neurosurg. 30, 122–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Chapman, P. H., Cosman, E. R. & Arnold, M. A. The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26, 181–189 (1990).

    Article  CAS  PubMed  Google Scholar 

  160. Ros, B. et al. Shunt overdrainage: reappraisal of the syndrome and proposal for an integrative model. J. Clin. Med. 10, 3620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fattal-Valevski, A., Beni-Adani, L. & Constantini, S. Short-term dexamethasone treatment for symptomatic slit ventricle syndrome. Childs Nerv. Syst. 21, 981–984 (2005).

    Article  PubMed  Google Scholar 

  162. Iglesias, S. et al. Functional outcome in pediatric hydrocephalus: results of applying the Spanish version of the Hydrocephalus Outcome Questionnaire. J. Neurosurg. Pediatr. 21, 224–235 (2018).

    Article  PubMed  Google Scholar 

  163. Kulkarni, A. V. & Shams, I. Quality of life in children with hydrocephalus: results from the Hospital for Sick Children, Toronto. J. Neurosurg. 107, 358–364 (2007).

    PubMed  Google Scholar 

  164. Panagopoulos, D., Stranjalis, G., Gavra, M., Boviatsis, E. & Korfias, S. Shunt over-drainage, slit ventricle syndrome, programmable valves and anti-siphon devices. a narrative review of a multifactorial and intractable problem. J. Integr. Neurosci. 21, 84 (2022).

    Article  PubMed  Google Scholar 

  165. Cohen, A. R. Images in clinical medicine. Endoscopic laser third ventriculostomy. N. Engl. J. Med. 328, 552 (1993).

    Article  CAS  PubMed  Google Scholar 

  166. Vogel, T. W., Bahuleyan, B., Robinson, S. & Cohen, A. R. The role of endoscopic third ventriculostomy in the treatment of hydrocephalus. J. Neurosurg. Pediatr. 12, 54–61 (2013).

    Article  PubMed  Google Scholar 

  167. Kulkarni, A. V. et al. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J. Pediatr. 155, 254–259 e251 (2009).

    Article  PubMed  Google Scholar 

  168. Warf, B. C., Mugamba, J. & Kulkarni, A. V. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus in Uganda: report of a scoring system that predicts success. J. Neurosurg. Pediatr. 5, 143–148 (2010).

    Article  PubMed  Google Scholar 

  169. Warf, B. C. & Kulkarni, A. V. Intraoperative assessment of cerebral aqueduct patency and cisternal scarring: impact on success of endoscopic third ventriculostomy in 403 African children. J. Neurosurg. Pediatr. 5, 204–209 (2010).

    Article  PubMed  Google Scholar 

  170. Kulkarni, A. V. et al. Predicting who will benefit from endoscopic third ventriculostomy compared with shunt insertion in childhood hydrocephalus using the ETV Success Score. J. Neurosurg. Pediatr. 6, 310–315 (2010). This study establishes the ETV Success Score as a validated measure to direct treatment decisions in paediatric hydrocephalus.

    Article  PubMed  Google Scholar 

  171. Riva-Cambrin, J. et al. Impact of ventricle size on neuropsychological outcomes in treated pediatric hydrocephalus: an HCRN prospective cohort study. J. Neurosurg. Pediatr. 29, 245–256 (2021).

    Article  PubMed  Google Scholar 

  172. Stovell, M. G. et al. Long-term follow-up of endoscopic third ventriculostomy performed in the pediatric population. J. Neurosurg. Pediatr. 17, 734–738 (2016).

    Article  PubMed  Google Scholar 

  173. Riva-Cambrin, J. et al. Predictors of success for combined endoscopic third ventriculostomy and choroid plexus cauterization in a North American setting: a Hydrocephalus Clinical Research Network study. J. Neurosurg. Pediatr. 24, 128–138 (2019).

    Article  PubMed  Google Scholar 

  174. Albalkhi, I. et al. Morbidity and etiology-based success rate of combined endoscopic ventriculostomy and choroid plexus cauterization: a systematic review and meta-analysis of 1918 infants. Neurosurg. Rev. 46, 180 (2023).

    Article  PubMed  Google Scholar 

  175. Kulkarni, A. V. et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N. Engl. J. Med. 377, 2456–2464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04177914?term=NCT04177914&rank=1 (2023).

  177. Schiff, S. J. et al. Brain growth after surgical treatment for infant postinfectious hydrocephalus in sub-Saharan Africa: 2-year results of a randomized trial. J. Neurosurg. Pediatr. 28, 326–334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zimmerman, K. et al. Hydrocephalus-related quality of life as assessed by children and their caregivers. J. Neurosurg. Pediatr. 26, 353–363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bogaczyk, V. et al. Long-term quality of life after ETV or ETV with consecutive VP shunt placement in hydrocephalic pediatric patients. Childs Nerv. Syst. 38, 1885–1894 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Komori, Y. et al. The effect of shunt removal on the quality of life in patients with congenital hydrocephalus. Childs Nerv. Syst. 39, 1261–1266 (2023).

    Article  PubMed  Google Scholar 

  181. Gigi, M., Roth, J., Eshel, R., Constantini, S. & Bassan, H. Health-related quality of life after post-haemorrhagic hydrocephalus in children born preterm. Dev. Med. Child. Neurol. 61, 343–349 (2019).

    Article  PubMed  Google Scholar 

  182. Peters, N. J., Mahajan, J. K., Bawa, M., Sahu, P. K. & Rao, K. L. Factors affecting quality of life in early childhood in patients with congenital hydrocephalus. Childs Nerv. Syst. 30, 867–871 (2014).

    Article  PubMed  Google Scholar 

  183. Topczewska-Lach, E., Lenkiewicz, T., Olanski, W. & Zaborska, A. Quality of life and psychomotor development after surgical treatment of hydrocephalus. Eur. J. Pediatr. Surg. 15, 2–5 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Wall, V. L., Kestle, J. R. W., Fulton, J. B. & Gale, S. D. Social-emotional functioning in pediatric hydrocephalus: comparison of the Hydrocephalus Outcome Questionnaire to the Behavior Assessment System for Children. J. Neurosurg. Pediatr. 28, 572–578 (2021).

    Article  PubMed  Google Scholar 

  185. Kulkarni, A. V., Cochrane, D. D., McNeely, P. D. & Shams, I. Medical, social, and economic factors associated with health-related quality of life in Canadian children with hydrocephalus. J. Pediatr. 153, 689–695 (2008).

    Article  PubMed  Google Scholar 

  186. Kulkarni, A. V., Shams, I., Cochrane, D. D. & McNeely, P. D. Quality of life after endoscopic third ventriculostomy and cerebrospinal fluid shunting: an adjusted multivariable analysis in a large cohort. J. Neurosurg. Pediatr. 6, 11–16 (2010).

    Article  PubMed  Google Scholar 

  187. Sumpter, R., Dorris, L., Brannan, G. & Carachi, R. Quality of life and behavioural adjustment in childhood hydrocephalus. Scott. Med. J. 57, 18–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Kulkarni, A. V., Rabin, D. & Drake, J. M. An instrument to measure the health status in children with hydrocephalus: the Hydrocephalus Outcome Questionnaire. J. Neurosurg. 101, 134–140 (2004). The Hydrocephalus Outcome Questionnaire is the only validated QoL measure for people with paediatric hydrocephalus.

    PubMed  Google Scholar 

  189. Soleman, J. & Guzman, R. Neurocognitive complications after ventricular neuroendoscopy: a systematic review. Behav. Neurol. 2020, 2536319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bawa, M., Sundaram, J., Dash, V., Peters, N. J. & Rao, K. L. N. Health-related quality of life in children with congenital hydrocephalus and the parental concern: an analysis in a developing nation. J. Pediatr. Neurosci. 12, 255–258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Paulsen, A. H., Lundar, T. & Lindegaard, K. F. Twenty-year outcome in young adults with childhood hydrocephalus: assessment of surgical outcome, work participation, and health-related quality of life. J. Neurosurg. Pediatr. 6, 527–535 (2010).

    Article  PubMed  Google Scholar 

  192. Paulsen, A. H., Lundar, T. & Lindegaard, K. F. Pediatric hydrocephalus: 40-year outcomes in 128 hydrocephalic patients treated with shunts during childhood. Assessment of surgical outcome, work participation, and health-related quality of life. J. Neurosurg. Pediatr. 16, 633–641 (2015). This is the longest-term follow-up study quantifying QoL in people treated as children for hydrocephalus.

    Article  PubMed  Google Scholar 

  193. Rekate, H. L. & Kranz, D. Headaches in patients with shunts. Semin. Pediatr. Neurol. 16, 27–30 (2009).

    Article  PubMed  Google Scholar 

  194. Gupta, N. et al. Long-term outcomes in patients with treated childhood hydrocephalus. J. Neurosurg. 106, 334–339 (2007).

    PubMed  Google Scholar 

  195. Muir, R. T., Wang, S. & Warf, B. C. Global surgery for pediatric hydrocephalus in the developing world: a review of the history, challenges, and future directions. Neurosurg. Focus 41, E11 (2016).

    Article  PubMed  Google Scholar 

  196. Duy, P. Q. et al. Brain ventricles as windows into brain development and disease. Neuron 110, 12–15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, D. & Eisen, H. J. Mechanistic target of rapamycin (mTOR) inhibitors. Handb. Exp. Pharmacol. 272, 53–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Kimberly, W. T. et al. Brain imaging with portable low-field MRI. Nat. Rev. Bioeng. 1, 617–630 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lylyk, P. et al. First-in-human endovascular treatment of hydrocephalus with a miniature biomimetic transdural shunt. J. Neurointerv. Surg. 14, 495–499 (2022).

    Article  PubMed  Google Scholar 

  200. Williams, M. A. et al. Improving health care transition and longitudinal care for adolescents and young adults with hydrocephalus: report from the Hydrocephalus Association Transition Summit. J. Neurosurg. 131, 1037–1045 (2018).

    Article  Google Scholar 

  201. Sugiyama, S., Prochiantz, A. & Hensch, T. K. From brain formation to plasticity: insights on Otx2 homeoprotein. Dev. Growth Differ. 51, 369–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Zhu, L. et al. Klotho controls the brain-immune system interface in the choroid plexus. Proc. Natl Acad. Sci. USA 115, E11388–E11396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dreha-Kulaczewski, S. et al. Identification of the upward movement of human CSF in vivo and its relation to the brain venous system. J. Neurosci. 37, 2395–2402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Worthington, W. C. Jr. & Cathcart, R. S. III Ependymal cilia: distribution and activity in the adult human brain. Science 139, 221–222 (1963).

    Article  PubMed  Google Scholar 

  205. Olstad, E. W. et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 29, 229–241.e226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bruni, J. E. Ependymal development, proliferation, and functions: a review. Microsc. Res. Tech. 41, 2–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. Abdi, K. et al. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat. Commun. 9, 1655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science 370, 50–56 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Izen, R. M., Yamazaki, T., Nishinaka-Arai, Y., Hong, Y. K. & Mukouyama, Y. S. Postnatal development of lymphatic vasculature in the brain meninges. Dev. Dyn. 247, 741–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Oi, S. & Di Rocco, C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv. Syst. 22, 662–669 (2006).

    Article  PubMed  Google Scholar 

  213. Wichmann, T. O., Damkier, H. H. & Pedersen, M. A brief overview of the cerebrospinal fluid system and its implications for brain and spinal cord diseases. Front. Hum. Neurosci. 15, 737217 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Naseri Kouzehgarani, G. et al. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 173, 20–59 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Hydrocephalus Association, Rudi Schulte Research Institute, NIH and patients with hydrocephalus and their families who have participated in research efforts. A.V.K. is supported by NIH 5U01NS107486-04 and NIH 5R01HD085853-10. K.T.K. is supported by the Rudi Schulte Research Institute, NIH 7R01NS109358-05 and NIH 5R01NS111029-04. J.M.S. is supported by the Rudi Schulte Research Institute and NIH 5R01NS110793-05. N.M. is supported by Novo Nordisk Foundation Tandem grant NNF17OC0024718. S.J.S. is supported by NIH Director’s Transformative Award R01AI145057, NIH 5R01HD085853-07, NIH 1U01NS107486, the NeuroKids foundation and the Ruddy Lifesaving Fund. S.R. is supported by the Rudi Schulte Research Institute, NIH 5R01HD104673-02 and DOD HT94252310296.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all sections of the Primer.

Corresponding author

Correspondence to Kristopher T. Kahle.

Ethics declarations

Competing interests

J.E.K. is an independent contractor for Rhaeos, Inc., a start-up company that is developing a noninvasive, wireless and wearable shunt flow sensor, currently in clinical trials. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. Del Bigio, C. Deopujari and M. Schuhmann for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahle, K.T., Klinge, P.M., Koschnitzky, J.E. et al. Paediatric hydrocephalus. Nat Rev Dis Primers 10, 35 (2024). https://doi.org/10.1038/s41572-024-00519-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00519-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing