Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Central neuropathic pain

Abstract

Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron–glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of sensory abnormalities and central neuropathic pain.
Fig. 2: From sensory-discriminative mechanisms to the clinical pain phenotype.
Fig. 3: Molecular mechanisms in spinal and supraspinal neuronal circuitry.
Fig. 4: The thermal grill illusion — a model for central neuropathic pain?
Fig. 5: Grading system for central neuropathic pain.
Fig. 6: Neuromodulatory techniques for central neuropathic pain.
Fig. 7: Progression and monitoring of central neuropathic pain.

Similar content being viewed by others

References

  1. Jensen, T. S. et al. A new definition of neuropathic pain. Pain 152, 2204–2205 (2011).

    Article  PubMed  Google Scholar 

  2. Scholz, J. et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 160, 53–59 (2019). This paper is an overview of conditions included in the International Classification of Diseases 11th Revision classification of chronic neuropathic pain, including CNP.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borsook, D. Neurological diseases and pain. Brain 135, 320–344 (2012).

    Article  PubMed  Google Scholar 

  4. Widerström-Noga, E., Loeser, J. D., Jensen, T. S. & Finnerup, N. B. AAPT diagnostic criteria for central neuropathic pain. J. Pain. 18, 1417–1426 (2017).

    Article  PubMed  Google Scholar 

  5. Widerström-Noga, E., Felix, E. R., Adcock, J. P., Escalona, M. & Tibbett, J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J. Neurotrauma 33, 482–492 (2016).

    Article  PubMed  Google Scholar 

  6. Klit, H., Finnerup, N. B., Andersen, G. & Jensen, T. S. Central poststroke pain: a population-based study. Pain 152, 818–824 (2011).

    Article  PubMed  Google Scholar 

  7. Treede, R. D., Hoheisel, U., Wang, D. & Magerl, W. Central sensitization: clinical utility of a physiological concept for the International Statistical Classification of Diseases and Related Health Problems and for nociplastic pain. Pain 163, S99–s107 (2022).

    Article  PubMed  Google Scholar 

  8. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Primers 3, 17002 (2017). This paper is an overview of neuropathic pain, including mechanisms, diagnosis and management.

    Article  PubMed  PubMed Central  Google Scholar 

  9. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article  Google Scholar 

  10. Watson, J. C. & Sandroni, P. Central neuropathic pain syndromes. Mayo Clin. Proc. 91, 372–385 (2016).

    Article  PubMed  Google Scholar 

  11. Liampas, A. et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv. Ther. 37, 3278–3291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vartiainen, N. et al. Thalamic pain: anatomical and physiological indices of prediction. Brain 139, 708–722 (2016).

    Article  PubMed  Google Scholar 

  13. Burke, D., Fullen, B. M., Stokes, D. & Lennon, O. Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur. J. Pain. 21, 29–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Robayo, L. E. et al. Multidimensional pain phenotypes after traumatic brain injury. Front. Pain. Res. 3, 947562 (2022).

    Article  Google Scholar 

  15. Ofek, H. & Defrin, R. The characteristics of chronic central pain after traumatic brain injury. Pain 131, 330–340 (2007).

    Article  PubMed  Google Scholar 

  16. Foley, P. L. et al. Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis. Pain 154, 632–642 (2013).

    Article  PubMed  Google Scholar 

  17. Seixas, D. et al. Pain in multiple sclerosis: a systematic review of neuroimaging studies. Neuroimage Clin. 5, 322–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Svendsen, K. B., Sørensen, L., Jensen, T. S., Hansen, H. J. & Bach, F. W. MRI of the central nervous system in MS patients with and without pain. Eur. J. Pain. 15, 395–401 (2011).

    Article  PubMed  Google Scholar 

  19. Asseyer, S., Cooper, G. & Paul, F. Pain in NMOSD and MOGAD: a systematic literature review of pathophysiology, symptoms, and current treatment strategies. Front. Neurol. 11, 778 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andersen, G., Vestergaard, K., Ingeman-Nielsen, M. & Jensen, T. S. Incidence of central post-stroke pain. Pain 61, 187–193 (1995).

    Article  PubMed  Google Scholar 

  21. Siddall, P. J., McClelland, J. M., Rutkowski, S. B. & Cousins, M. J. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103, 249–257 (2003).

    Article  PubMed  Google Scholar 

  22. Finnerup, N. B. et al. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J. Pain. 15, 40–48 (2014).

    Article  PubMed  Google Scholar 

  23. Rosner, J. et al. Characterization of hyperacute neuropathic pain after spinal cord injury: a prospective study. J. Pain. 23, 89–97 (2022).

    Article  PubMed  Google Scholar 

  24. Warner, F. M. et al. Progression of neuropathic pain after acute spinal cord injury: a meta-analysis and framework for clinical trials. J. Neurotrauma 36, 1461–1468 (2019).

    Article  PubMed  Google Scholar 

  25. Klit, H., Finnerup, N. B. & Jensen, T. S. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol. 8, 857–868 (2009).

    Article  PubMed  Google Scholar 

  26. Heitmann, H. et al. Prevalence of neuropathic pain in early multiple sclerosis. Mult. Scler. 22, 1224–1230 (2016).

    Article  PubMed  Google Scholar 

  27. Finnerup, N. B., Johannesen, I. L., Fuglsang-Frederiksen, A., Bach, F. W. & Jensen, T. S. Sensory function in spinal cord injury patients with and without central pain. Brain 126, 57–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Rivel, M. et al. Central neuropathic pain in multiple sclerosis is associated with impaired innocuous thermal pathways and neuronal hyperexcitability. Pain. Med. 22, 2311–2323 (2021).

    Article  PubMed  Google Scholar 

  29. Klit, H., Finnerup, N. B., Overvad, K., Andersen, G. & Jensen, T. S. Pain following stroke: a population-based follow-up study. PLoS One 6, e27607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Donnell, M. J. et al. Chronic pain syndromes after ischemic stroke: PRoFESS trial. Stroke 44, 1238–1243 (2013).

    Article  PubMed  Google Scholar 

  31. Harno, H. et al. Central poststroke pain in young ischemic stroke survivors in the Helsinki Young Stroke Registry. Neurology 83, 1147–1154 (2014).

    Article  PubMed  Google Scholar 

  32. Gruener, H. et al. Biomarkers for predicting central neuropathic pain occurrence and severity after spinal cord injury: results of a long-term longitudinal study. Pain 161, 545–556 (2020).

    Article  PubMed  Google Scholar 

  33. Scheuren, P. S. et al. Tracking changes in neuropathic pain after acute spinal cord injury. Front. Neurol. 10, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gagné, M. et al. Conditioned pain modulation decreases over time in patients with neuropathic pain following a spinal cord injury. Neurorehabil. Neural Repair 34, 997–1008 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Defrin, R. et al. From acute to long-term alterations in pain processing and modulation after spinal cord injury: mechanisms related to chronification of central neuropathic pain. Pain 163, e94–e105 (2022).

    Article  PubMed  Google Scholar 

  36. Tackley, G. et al. Chronic neuropathic pain severity is determined by lesion level in aquaporin 4-antibody-positive myelitis. J. Neurol. Neurosurg. Psychiatry 88, 165–169 (2017).

    Article  PubMed  Google Scholar 

  37. Defrin, R., Ohry, A., Blumen, N. & Urca, G. Sensory determinants of thermal pain. Brain 125, 501–510 (2002).

    Article  PubMed  Google Scholar 

  38. Klit, H., Hansen, A. P., Marcussen, N. S., Finnerup, N. B. & Jensen, T. S. Early evoked pain or dysesthesia is a predictor of central poststroke pain. Pain 155, 2699–2706 (2014).

    Article  PubMed  Google Scholar 

  39. Baron, R., Dickenson, A. H., Calvo, M., Dib-Hajj, S. D. & Bennett, D. L. Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat. Rev. Neurol. 19, 53–64 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Attal, N. & Bouhassira, D. Translational neuropathic pain research. Pain 160, S23–s28 (2019).

    Article  PubMed  Google Scholar 

  41. Themistocleous, A. C., Crombez, G., Baskozos, G. & Bennett, D. L. Using stratified medicine to understand, diagnose, and treat neuropathic pain. Pain 159, S31–s42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Gurba, K. N., Chaudhry, R. & Haroutounian, S. Central neuropathic pain syndromes: current and emerging pharmacological strategies. CNS Drugs 36, 483–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gwak, Y. S. & Hulsebosch, C. E. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr. Pain Headache Rep. 15, 215–222 (2011).

    Article  PubMed  Google Scholar 

  46. Peirs, C. & Seal, R. P. Neural circuits for pain: recent advances and current views. Science 354, 578–584 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Falci, S., Best, L., Bayles, R., Lammertse, D. & Starnes, C. Dorsal root entry zone microcoagulation for spinal cord injury-related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J. Neurosurg. 97, 193–200 (2002).

    PubMed  Google Scholar 

  48. Hirayama, T., Dostrovsky, J. O., Gorecki, J., Tasker, R. R. & Lenz, F. A. Recordings of abnormal activity in patients with deafferentation and central pain. Stereotact. Funct. Neurosurg. 52, 120–126 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Radhakrishnan, V. et al. A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients. Pain 80, 567–575 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Tasker, R. R., Gorecki, J., Lenz, F. A., Hirayama, T. & Dostrovsky, J. O. Thalamic microelectrode recording and microstimulation in central and deafferentation pain. Appl. Neurophysiol. 50, 414–417 (1987).

    CAS  PubMed  Google Scholar 

  51. Melzack, R. & Loeser, J. D. Phantom body pain in paraplegics: evidence for a central “pattern generating mechanism” for pain. Pain 4, 195–210 (1978). This is a landmark study providing neurophysiological evidence of an ectopic pain generator within the CNS after SCI.

    Article  PubMed  Google Scholar 

  52. Garcia-Larrea, L. et al. Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain 133, 2528–2539 (2010).

    Article  PubMed  Google Scholar 

  53. Greenspan, J. D. & Winfield, J. A. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 50, 29–39 (1992).

    Article  PubMed  Google Scholar 

  54. Jobst, B. C. et al. The insula and its epilepsies. Epilepsy Curr. 19, 11–21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Delboni Lemos, M. et al. Dissecting neuropathic from poststroke pain: the white matter within. Pain 163, 765–778 (2022).

    Article  PubMed  Google Scholar 

  56. Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jensen, T. S. & Finnerup, N. B. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13, 924–935 (2014).

    Article  PubMed  Google Scholar 

  58. Bennett, G. J. What is spontaneous pain and who has it? J. Pain 13, 921–929 (2012).

    Article  PubMed  Google Scholar 

  59. Haroutounian, S. et al. How central is central poststroke pain? The role of afferent input in poststroke neuropathic pain: a prospective, open-label pilot study. Pain 159, 1317–1324 (2018).

    Article  PubMed  Google Scholar 

  60. Zeilig, G., Enosh, S., Rubin-Asher, D., Lehr, B. & Defrin, R. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain. Brain 135, 418–430 (2012).

    Article  PubMed  Google Scholar 

  61. Jiang, L., Voulalas, P., Ji, Y. & Masri, R. Post-translational modification of cortical GluA receptors in rodents following spinal cord lesion. Neuroscience 316, 122–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Waxman, S. G. & Hains, B. C. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 29, 207–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Black, J. A., Newcombe, J. & Waxman, S. G. Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain 133, 835–846 (2010).

    Article  PubMed  Google Scholar 

  64. Boroujerdi, A. et al. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain 152, 649–655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bradl, M. et al. Pain in neuromyelitis optica — prevalence, pathogenesis and therapy. Nat. Rev. Neurol. 10, 529–536 (2014).

    Article  PubMed  Google Scholar 

  66. Sandkühler, J. The organization and function of endogenous antinociceptive systems. Prog. Neurobiol. 50, 49–81 (1996).

    Article  PubMed  Google Scholar 

  67. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Boyle, K. A. et al. Defining a spinal microcircuit that gates myelinated afferent input: implications for tactile allodynia. Cell Rep. 28, 526–540.e526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prescott, S. A., Ma, Q. & De Koninck, Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat. Neurosci. 17, 183–191 (2014). This paper is an overview of central somatosensory coding in physiology and related to pain pathophysiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hansen, C., Hopf, H. C. & Treede, R. D. Paradoxical heat sensation in patients with multiple sclerosis. Evidence for a supraspinal integration of temperature sensation. Brain 119, 1729–1736 (1996).

    Article  PubMed  Google Scholar 

  71. Schaldemose, E. L., Raaschou-Nielsen, L., Böhme, R. A., Finnerup, N. B. & Fardo, F. It is one or the other: no overlap between healthy individuals perceiving thermal grill illusion or paradoxical heat sensation. Neurosci. Lett. 802, 137169 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Vollert, J. et al. Paradoxical heat sensation as a manifestation of thermal hypesthesia: a study of 1090 patients with lesions of the somatosensory system. Pain https://doi.org/10.1097/j.pain.0000000000003014 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fardo, F., Beck, B., Allen, M. & Finnerup, N. B. Beyond labeled lines: a population coding account of the thermal grill illusion. Neurosci. Biobehav. Rev. 108, 472–479 (2020).

    Article  PubMed  Google Scholar 

  74. Hanisch, U. K. Microglia as a source and target of cytokines. Glia 40, 140–155 (2002).

    Article  PubMed  Google Scholar 

  75. Zhou, X., He, X. & Ren, Y. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen. Res. 9, 1787–1795, (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Scholz, J. & Woolf, C. J. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Silva, R. & Malcangio, M. Fractalkine/CX(3)CR(1) pathway in neuropathic pain: an update. Front. Pain Res. 2, 684684 (2021).

    Article  Google Scholar 

  78. Kuan, Y. H., Shih, H. C., Tang, S. C., Jeng, J. S. & Shyu, B. C. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model. Neurobiol. Dis. 78, 134–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Clark, A. K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Staniland, A. A. et al. Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J. Neurochem. 114, 1143–1157 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Baastrup, C., Maersk-Moller, C. C., Nyengaard, J. R., Jensen, T. S. & Finnerup, N. B. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior. Pain 151, 670–679 (2010).

    Article  PubMed  Google Scholar 

  82. Tappe-Theodor, A., King, T. & Morgan, M. M. Pros and cons of clinically relevant methods to assess pain in rodents. Neurosci. Biobehav. Rev. 100, 335–343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tuttle, A. H. et al. A deep neural network to assess spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bohic, M. et al. Mapping the neuroethological signatures of pain, analgesia, and recovery in mice. Neuron 111, 2811–2830.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Jones, A. K., Watabe, H., Cunningham, V. J. & Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Widerström-Noga, E. et al. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain 154, 204–212 (2013).

    Article  PubMed  Google Scholar 

  87. Widerström-Noga, E., Cruz-Almeida, Y., Felix, E. R. & Pattany, P. M. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain 156, 166–174 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gustin, S. M., Wrigley, P. J., Siddall, P. J. & Henderson, L. A. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb. Cortex 20, 1409–1419 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Gustin, S. M. et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155, 1027–1036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lütolf, R. et al. Anti- and Pro-Nociceptive mechanisms in neuropathic pain after human spinal cord injury. Eur. J. Pain 26, 2176–2187 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Albu, S., Gómez-Soriano, J., Avila-Martin, G. & Taylor, J. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures. Pain 156, 260–272 (2015).

    Article  PubMed  Google Scholar 

  92. Barbosa, L. M. et al. Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients. Neurophysiol. Clin. 53, 102845 (2023).

    Article  PubMed  Google Scholar 

  93. Mussigmann, T., Bardel, B. & Lefaucheur, J. P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 258, 119351 (2022).

    Article  PubMed  Google Scholar 

  94. Lefaucheur, J. P., Drouot, X., Ménard-Lefaucheur, I., Keravel, Y. & Nguyen, J. P. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67, 1568–1574 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Llinás, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fauchon, C. et al. A hidden Markov model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun. Biol. 5, 1000 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kim, J. A. & Davis, K. D. Neural oscillations: understanding a neural code of pain. Neuroscientist 27, 544–570 (2021).

    Article  PubMed  Google Scholar 

  98. Fauchon, C. et al. Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 163, 1291–1302 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Kisler, L. B. et al. Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component. Neuroimage Clin. 26, 102241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kim, J. A. et al. Cross-network coupling of neural oscillations in the dynamic pain connectome reflects chronic neuropathic pain in multiple sclerosis. Neuroimage Clin. 26, 102230 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim, J. A. et al. Neuropathic pain and pain interference are linked to alpha-band slowing and reduced beta-band magnetoencephalography activity within the dynamic pain connectome in patients with multiple sclerosis. Pain 160, 187–197 (2019).

    Article  PubMed  Google Scholar 

  102. Boord, P. et al. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 46, 118–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lenz, F. A., Kwan, H. C., Dostrovsky, J. O. & Tasker, R. R. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res. 496, 357–360 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Lenz, F. A. et al. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat. Med. 1, 910–913 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Lenz, F. A. et al. Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. J. Neurophysiol. 70, 200–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Davis, K. D., Kiss, Z. H., Tasker, R. R. & Dostrovsky, J. O. Thalamic stimulation-evoked sensations in chronic pain patients and in nonpain (movement disorder) patients. J. Neurophysiol. 75, 1026–1037 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Vierck, C. Mechanisms of below-level pain following spinal cord injury (SCI). J. Pain. 21, 262–280 (2020).

    Article  PubMed  Google Scholar 

  108. Davis, K. D. Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105, 1–3 (2003).

    Article  PubMed  Google Scholar 

  109. Davis, K. D. et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat. Rev. Neurol. 13, 624–638 (2017). This paper is an overview of ethical and legal issues for brain imaging pain biomarker development.

    Article  PubMed  Google Scholar 

  110. Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A. & Davis, K. D. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn. Sci. 17, 371–378 (2013).

    Article  PubMed  Google Scholar 

  111. Mazzola, L., Isnard, J., Peyron, R. & Mauguière, F. Stimulation of the human cortex and the experience of pain: wilder penfield’s observations revisited. Brain 135, 631–640 (2012).

    Article  PubMed  Google Scholar 

  112. Afif, A., Minotti, L., Kahane, P. & Hoffmann, D. Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia 51, 2305–2315 (2010).

    Article  PubMed  Google Scholar 

  113. Ducreux, D., Attal, N., Parker, F. & Bouhassira, D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129, 963–976 (2006).

    Article  PubMed  Google Scholar 

  114. Hatem, S. M. et al. Clinical, functional and structural determinants of central pain in syringomyelia. Brain 133, 3409–3422 (2010).

    Article  PubMed  Google Scholar 

  115. Kyathanahally, S. P. et al. Microstructural plasticity in nociceptive pathways after spinal cord injury. J. Neurol. Neurosurg. Psychiatry 92, 863–871 (2021).

    Article  PubMed  Google Scholar 

  116. Wrigley, P. J. et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 141, 52–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Jutzeler, C. R., Freund, P., Huber, E., Curt, A. & Kramer, J. L. K. Neuropathic pain and functional reorganization in the primary sensorimotor cortex after spinal cord injury. J. Pain 16, 1256–1267 (2015).

    Article  PubMed  Google Scholar 

  118. Kowalski, J. L. et al. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin. 38, 103414 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huynh, V. et al. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Hum. Brain Mapp. 42, 3733–3749 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kucyi, A. & Davis, K. D. The dynamic pain connectome. Trends Neurosci. 38, 86–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Kucyi, A. & Davis, K. D. The neural code for pain: from single-cell electrophysiology to the dynamic pain connectome. Neuroscientist 23, 397–414 (2017).

    Article  PubMed  Google Scholar 

  122. Cruccu, G. et al. Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology 87, 220–228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. McHenry, K. W. in Spinal Cord Injury Pain (eds. Sang, C. N. & Hulsebosch, C. E.) xxiii–xxx (Academic Press, 2022).

  124. Berić, A., Dimitrijević, M. R. & Lindblom, U. Central dysesthesia syndrome in spinal cord injury patients. Pain 34, 109–116 (1988).

    Article  PubMed  Google Scholar 

  125. Widerström-Noga, E. Neuropathic pain and spinal cord injury: management, phenotypes, and biomarkers. Drugs 83, 1001–1025 (2023).

    Article  PubMed  Google Scholar 

  126. Fitzek, S. et al. Pain and itch in Wallenberg’s syndrome: anatomical–functional correlations. Suppl. Clin. Neurophysiol. 58, 187–194 (2006).

    Article  PubMed  Google Scholar 

  127. Finnerup, N. B. et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain 157, 1599–1606 (2016). This study is an overview of a diagnostic approach towards neuropathic pain, including various stages of diagnostic certainty, which has important implications for research and clinical practice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Truini, A. et al. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur. J. Neurol. 30, 2177–2196 (2023). This paper is an overview of multimodal neuropathic pain assesssment.

    Article  PubMed  Google Scholar 

  129. Rosner, J. et al. Assessment of neuropathic pain after spinal cord injury using quantitative pain drawings. Spinal Cord. 59, 529–537 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Boivie, J., Leijon, G. & Johansson, I. Central post-stroke pain–a study of the mechanisms through analyses of the sensory abnormalities. Pain 37, 173–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  131. Bowsher, D. Central pain: clinical and physiological characteristics. J. Neurol. Neurosurg. Psychiatry 61, 62–69 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Leijon, G. & Bowsher, D. Somatosensory findings in central post-stroke pain (CPSP) and controls. Pain 41, S468 (1990).

    Article  Google Scholar 

  133. Scheuren, P. S. et al. Combined neurophysiologic and neuroimaging approach to reveal the structure-function paradox in cervical myelopathy. Neurology 97, e1512–e1522 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Lütolf, R., Rosner, J., Curt, A. & Hubli, M. Indicators of central sensitization in chronic neuropathic pain after spinal cord injury. Eur. J. Pain 26, 2162–2175 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Convers, P. et al. A hidden mesencephalic variant of central pain. Eur. J. Pain 24, 1393–1399 (2020).

    Article  PubMed  Google Scholar 

  136. Garcia-Larrea, L. & Hagiwara, K. Electrophysiology in diagnosis and management of neuropathic pain. Rev. Neurol. 175, 26–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Garcia-Larrea, L. & Peyron, R. Pain matrices and neuropathic pain matrices: a review. Pain 154, S29–s43 (2013).

    Article  PubMed  Google Scholar 

  138. Valerio, F. et al. Characterization of pain syndromes in patients with neuromyelitis optica. Eur. J. Pain 24, 1548–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Lopes, L. C. G. et al. Beyond weakness: characterization of pain, sensory profile and conditioned pain modulation in patients with motor neuron disease: a controlled study. Eur. J. Pain 22, 72–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Cury, R. G. et al. Effects of deep brain stimulation on pain and other nonmotor symptoms in Parkinson disease. Neurology 83, 1403–1409 (2014).

    Article  PubMed  Google Scholar 

  141. Finnerup, N. B. Pain in patients with spinal cord injury. Pain 154, S71–s76 (2013).

    Article  PubMed  Google Scholar 

  142. Finnerup, N. B. et al. A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 54, 816–821 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Siddall, P. J. & Middleton, J. W. Spinal cord injury-induced pain: mechanisms and treatments. Pain Manag. 5, 493–507 (2015).

    Article  PubMed  Google Scholar 

  144. Bouhassira, D. & Attal, N. Diagnosis and assessment of neuropathic pain: the saga of clinical tools. Pain 152, S74–s83 (2011).

    Article  PubMed  Google Scholar 

  145. Jensen, M. P., Friedman, M., Bonzo, D. & Richards, P. The validity of the neuropathic pain scale for assessing diabetic neuropathic pain in a clinical trial. Clin. J. Pain 22, 97–103 (2006).

    Article  PubMed  Google Scholar 

  146. Bouhassira, D. et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 114, 29–36 (2005).

    Article  PubMed  Google Scholar 

  147. Bennett, M. I., Smith, B. H., Torrance, N. & Potter, J. The S-LANSS score for identifying pain of predominantly neuropathic origin: validation for use in clinical and postal research. J. Pain 6, 149–158 (2005).

    Article  PubMed  Google Scholar 

  148. Attal, N., Bouhassira, D. & Baron, R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 17, 456–466 (2018).

    Article  PubMed  Google Scholar 

  149. Hallström, H. & Norrbrink, C. Screening tools for neuropathic pain: can they be of use in individuals with spinal cord injury? Pain 152, 772–779 (2011).

    Article  PubMed  Google Scholar 

  150. Georgieva, M. et al. Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 160, 2724–2742 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Lampl, C., Yazdi, K. & Röper, C. Amitriptyline in the prophylaxis of central poststroke pain. Preliminary results of 39 patients in a placebo-controlled, long-term study. Stroke 33, 3030–3032 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Salinas, F. A., Lugo, L. H. & García, H. I. Efficacy of early treatment with carbamazepine in prevention of neuropathic pain in patients with spinal cord injury. Am. J. Phys. Med. Rehabil. 91, 1020–1027 (2012).

    Article  PubMed  Google Scholar 

  153. Norrbrink, C., Sörling, K., Hultling, C., von Kieseritzky, F. & Wahman, K. Challenges and facilitators-navigating in the landscape of spinal cord injury neuropathic pain”-a qualitative study on the use of prescribed drugs. Spinal Cord 59, 215–224 (2021).

    Article  PubMed  Google Scholar 

  154. Henwood, P. & Ellis, J. A. Chronic neuropathic pain in spinal cord injury: the patient’s perspective. Pain Res. Manag. 9, 39–45 (2004).

    Article  PubMed  Google Scholar 

  155. Williams, A. C. C., Fisher, E., Hearn, L. & Eccleston, C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst. Rev. 8, CD007407 (2020).

    PubMed  Google Scholar 

  156. Fordham, B. et al. The evidence for cognitive behavioural therapy in any condition, population or context: a meta-review of systematic reviews and panoramic meta-analysis. Psychol. Med. 51, 21–29 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kannan, P., Bello, U. M. & Winser, S. J. Physiotherapy interventions may relieve pain in individuals with central neuropathic pain: a systematic review and meta-analysis of randomised controlled trials. Ther. Adv. Chronic Dis. 13, 20406223221078672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ma, X., Chen, R., Li, W. & Huang, P. A systematic review and meta-analysis of pain neuroscience education for chronic low back pain: short-term outcomes of pain and disability. Physiother. Theory Pract. https://doi.org/10.1080/09593985.2023.2232003 (2023).

    Article  PubMed  Google Scholar 

  159. Bülow, K., Lindberg, K., Vaegter, H. B. & Juhl, C. B. Effectiveness of pain neurophysiology education on musculoskeletal pain: a systematic review and meta-analysis. Pain Med. 22, 891–904 (2021).

    Article  PubMed  Google Scholar 

  160. Ju, Z. Y. et al. Acupuncture for neuropathic pain in adults. Cochrane Database Syst. Rev. 12, CD012057 (2017).

    PubMed  Google Scholar 

  161. McKittrick, M. L., Connors, E. L. & McKernan, L. C. Hypnosis for chronic neuropathic pain: a scoping review. Pain Med. 23, 1015–1026 (2022).

    Article  PubMed  Google Scholar 

  162. Hesam-Shariati, N. et al. The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: a systematic review and meta-analysis. Eur. J. Neurol. 29, 921–936 (2022).

    Article  PubMed  Google Scholar 

  163. Austin, P. D. & Siddall, P. J. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: a scoping review. J. Spinal Cord Med. 44, 8–18 (2021).

    Article  PubMed  Google Scholar 

  164. Trost, Z. et al. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a preliminary investigation of feasibility and clinical efficacy. Pain 163, 350–361 (2022).

    Article  PubMed  Google Scholar 

  165. Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14, 162–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Finnerup, N. B. et al. Neuropathic pain clinical trials: factors associated with decreases in estimated drug efficacy. Pain 159, 2339–2346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Siddall, P. J. et al. Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology 67, 1792–1800 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Cardenas, D. D. et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology 80, 533–539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ushida, T. et al. Mirogabalin for central neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled, phase 3 study in Asia. Neurology 100, e1193–e1206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kremer, M., Salvat, E., Muller, A., Yalcin, I. & Barrot, M. Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience 338, 183–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Vranken, J. H. et al. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain 136, 150–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Leijon, G. & Boivie, J. Central post-stroke pain–a controlled trial of amitriptyline and carbamazepine. Pain 36, 27–36 (1989).

    Article  CAS  PubMed  Google Scholar 

  173. Rintala, D. H. et al. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 88, 1547–1560 (2007).

    Article  PubMed  Google Scholar 

  174. Brown, T. R. & Slee, A. A randomized placebo-controlled trial of duloxetine for central pain in multiple sclerosis. Int. J. MS Care 17, 83–89 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Vollmer, T. L., Robinson, M. J., Risser, R. C. & Malcolm, S. K. A randomized, double-blind, placebo-controlled trial of duloxetine for the treatment of pain in patients with multiple sclerosis. Pain Pract. 14, 732–744 (2014).

    Article  PubMed  Google Scholar 

  176. Mahesh, B. et al. Efficacy of duloxetine in patients with central post-stroke pain: a randomized double blind placebo controlled trial. Pain Med. 24, 610–617 (2023).

    Article  PubMed  Google Scholar 

  177. Vranken, J. H. et al. Duloxetine in patients with central neuropathic pain caused by spinal cord injury or stroke: a randomized, double-blind, placebo-controlled trial. Pain 152, 267–273 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Vestergaard, K., Andersen, G., Gottrup, H., Kristensen, B. T. & Jensen, T. S. Lamotrigine for central poststroke pain: a randomized controlled trial. Neurology 56, 184–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Finnerup, N. B., Sindrup, S. H., Bach, F. W., Johannesen, I. L. & Jensen, T. S. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain 96, 375–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Norrbrink, C. & Lundeberg, T. Tramadol in neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled trial. Clin. J. Pain 25, 177–184 (2009).

    Article  PubMed  Google Scholar 

  181. Hansen, J. S. et al. Cannabis-based medicine for neuropathic pain and spasticity-a multicenter, randomized, double-blinded, placebo-controlled trial. Pharmaceuticals 16, 1079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mikkelsen, N., Damkier, P. & Pedersen, S. A. Serotonin syndrome-a focused review. Basic Clin. Pharmacol. Toxicol. 133, 124–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Moisset, X., de Andrade, D. C. & Bouhassira, D. From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur. J. Pain 20, 689–700 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Maarrawi, J. et al. Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154, 2563–2568 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. García-Larrea, D. C. D. A. A. L. Beyond trial-and-error: individualizing therapeutic transcranial neuromodulation for chronic pain. Eur. J. Pain 27, 1065–1083 (2023).

    Article  PubMed  Google Scholar 

  186. Gordon, E. M. et al. A somato-cognitive action network alternates with effector regions in motor cortex. Nature 617, 351–359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fonoff, E. T. et al. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system. Behav. Brain Res. 196, 63–70 (2009).

    Article  PubMed  Google Scholar 

  188. Maarrawi, J. et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69, 827–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Lapa, J. et al. Burst transspinal magnetic stimulation alleviates nociceptive pain in parkinson disease-a pilot phase II double-blind, randomized study. Neuromodulation 26, 840–849 (2022).

    Article  PubMed  Google Scholar 

  190. Attal, N. et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain 144, 3328–3339 (2021).

    Article  PubMed  Google Scholar 

  191. Nuti, C. et al. Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy. Pain 118, 43–52 (2005).

    Article  PubMed  Google Scholar 

  192. Knotkova, H. et al. Neuromodulation for chronic pain. Lancet 397, 2111–2124 (2021).

    Article  PubMed  Google Scholar 

  193. Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin. Neurophysiol. 131, 474–528 (2020).

    Article  PubMed  Google Scholar 

  194. Moisset, X. et al. Pharmacological and non-pharmacological treatments for neuropathic pain: systematic review and French recommendations. Rev. Neurol. 176, 325–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Hamani, C. et al. Motor cortex stimulation for chronic neuropathic pain: results of a double-blind randomized study. Brain 144, 2994–3004 (2021).

    Article  PubMed  Google Scholar 

  196. de Oliveira, R. A. et al. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain. J. Pain 15, 1271–1281 (2014).

    Article  PubMed  Google Scholar 

  197. Galhardoni, R. et al. Insular and anterior cingulate cortex deep stimulation for central neuropathic pain: disassembling the percept of pain. Neurology 92, e2165–e2175 (2019).

    Article  PubMed  Google Scholar 

  198. Quesada, C. et al. New procedure of high-frequency repetitive transcranial magnetic stimulation for central neuropathic pain: a placebo-controlled randomized crossover study. Pain 161, 718–728 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Wrigley, P. J. et al. Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial. Pain 154, 2178–2184 (2013).

    Article  PubMed  Google Scholar 

  200. Fregni, F. et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209 (2006).

    Article  PubMed  Google Scholar 

  201. Soler, M. D. et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 133, 2565–2577 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Matthiesen, S. T., Lunde, S. J., Wohlert Kjær, S., Carlino, E. & Vase, L. Placebo analgesia effects across central nervous system diseases: what do we know and where do we need to go? Pain Rep. 4, e717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Müller, R. et al. Chronic pain, depression and quality of life in individuals with spinal cord injury: mediating role of participation. J. Rehabil. Med. 49, 489–496 (2017).

    Article  PubMed  Google Scholar 

  204. Sturm, C. et al. Which factors have an association to the quality of life (QoL) of people with acquired spinal cord injury (SCI)? A cross-sectional explorative observational study. Spinal Cord. 59, 925–932 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Weyer Jamora, C., Schroeder, S. C. & Ruff, R. M. Pain and mild traumatic brain injury: the implications of pain severity on emotional and cognitive functioning. Brain Inj. 27, 1134–1140 (2013).

    Article  PubMed  Google Scholar 

  206. Norrbrink Budh, C., Kowalski, J. & Lundeberg, T. A comprehensive pain management programme comprising educational, cognitive and behavioural interventions for neuropathic pain following spinal cord injury. J. Rehabil. Med. 38, 172–180 (2006).

    Article  PubMed  Google Scholar 

  207. Naess, H., Beiske, A. G. & Myhr, K. M. Quality of life among young patients with ischaemic stroke compared with patients with multiple sclerosis. Acta Neurol. Scand. 117, 181–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Lee, B. B., Simpson, J. M., King, M. T., Haran, M. J. & Marial, O. The SF-36 walk-wheel: a simple modification of the SF-36 physical domain improves its responsiveness for measuring health status change in spinal cord injury. Spinal Cord 47, 50–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Choi-Kwon, S., Choi, J. M., Kwon, S. U., Kang, D. W. & Kim, J. S. Factors that affect the quality of life at 3 years post-stroke. J. Clin. Neurol. 2, 34–41 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Payton, H. & Soundy, A. The experience of post-stroke pain and the impact on quality of life: an integrative review. Behav. Sci. 10, 128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Young, J., Amatya, B., Galea, M. P. & Khan, F. Chronic pain in multiple sclerosis: a 10-year longitudinal study. Scand. J. Pain 16, 198–203 (2017).

    Article  PubMed  Google Scholar 

  212. Gustavsen, S. et al. The association of selected multiple sclerosis symptoms with disability and quality of life: a large Danish self-report survey. BMC Neurol. 21, 317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, Y. et al. Feelings of depression, pain and walking difficulties have the largest impact on the quality of life of people with multiple sclerosis, irrespective of clinical phenotype. Mult. Scler. 27, 1262–1275 (2021).

    Article  PubMed  Google Scholar 

  214. Mori, F. et al. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J. Pain 11, 436–442 (2010).

    Article  PubMed  Google Scholar 

  215. Di Lionardo, A. et al. Modulation of the N13 component of the somatosensory evoked potentials in an experimental model of central sensitization in humans. Sci. Rep. 11, 20838 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Salameh, C., Perchet, C., Hagiwara, K. & Garcia-Larrea, L. Sympathetic skin response as an objective tool to estimate stimulus-associated arousal in a human model of hyperalgesia. Neurophysiol. Clin. 52, 436–445 (2022).

    Article  PubMed  Google Scholar 

  217. Ahanonu, B., Crowther, A., Kania, A., Casillas, M. R. & Basbaum, A. Long-term optical imaging of the spinal cord in awake, behaving animals. Preprint at bioRxiv https://doi.org/10.1101/2023.05.22.541477 (2023).

  218. Sternson, S. M. & Roth, B. L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Renthal, W. et al. Human cells and networks of pain: transforming pain target identification and therapeutic development. Neuron 109, 1426–1429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen, X. et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat. Commun. 14, 3345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Tremblay, S. et al. An open resource for non-human primate optogenetics. Neuron 108, 1075–1090.e1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Davis, K. D. Neuroimaging of pain: what does it tell us? Curr. Opin. Support. Palliat. Care 5, 116–121 (2011).

    Article  PubMed  Google Scholar 

  224. Davis, K. D. et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 16, 381–400 (2020). This paper is an overview related to biomarkers of pain in the context of pain management.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Davis, K. D. & Moayedi, M. Central mechanisms of pain revealed through functional and structural MRI. J. Neuroimmune Pharmacol. 8, 518–534 (2013).

    Article  PubMed  Google Scholar 

  226. Davis, K. D. Imaging vs quantitative sensory testing to predict chronic pain treatment outcomes. Pain 160, S59–s65 (2019).

    Article  PubMed  Google Scholar 

  227. Bosma, R. L. et al. Brain dynamics and temporal summation of pain predicts neuropathic pain relief from ketamine infusion. Anesthesiology 129, 1015–1024 (2018).

    Article  PubMed  Google Scholar 

  228. Ringelstein, M. et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 72, 756–763 (2015).

    Article  PubMed  Google Scholar 

  229. Freund, P. et al. Embodied neurology: an integrative framework for neurological disorders. Brain 139, 1855–1861 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Hofstetter, C. P. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 8, 346–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  231. Shirvalkar, P., Veuthey, T. L., Dawes, H. E. & Chang, E. F. Closed-loop deep brain stimulation for refractory chronic pain. Front. Comput. Neurosci. 12, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Mekhail, N. et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 19, 123–134 (2020).

    Article  PubMed  Google Scholar 

  233. Shirvalkar, P. et al. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat. Neurosci. 26, 1090–1099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hohenschurz-Schmidt, D. et al. Recommendations for the development, implementation, and reporting of control interventions in efficacy and mechanistic trials of physical, psychological, and self-management therapies: the CoPPS Statement. BMJ 381, e072108 (2023).

    Article  PubMed  Google Scholar 

  235. Craig, A. D. & Bushnell, M. C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994). This is a landmark paper on a key putative CNP mechanism, that is, disinhibition of a central pain-signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  236. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Craig, B. A. D. Can the basis for central neuropathic pain be identified by using a thermal grill? Pain 135, 215–216 (2008).

    Article  PubMed  Google Scholar 

  238. Rivel, M. et al. Unique features of central neuropathic pain in multiple sclerosis: results of a cluster analysis. Eur. J. Pain 26, 1107–1122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Adam, F. et al. Thermal grill illusion of pain in patients with chronic pain: a clinical marker of central sensitization? Pain 164, 638–644 (2023).

    Article  PubMed  Google Scholar 

  240. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. International Association for the Study of Pain. Pain terms and definitions. International Association for the Study of Pain https://www.iasp-pain.org/resources/terminology/ (2020).

Download references

Acknowledgements

J.R. is supported by a postdoctoral fellowship from the International Foundation for Research in Paraplegia (IRP, no. P191F) and the Clinical Research Priority Program (CRPP) “Pain” of the University of Zurich. D.C.A. is working at the Center for Neuroplasticity and Pain (CNAP), which is supported by the Danish National Research Foundation (DNRF121). D.C.A. is supported by a Novo Nordisk grant NNF21OC0072828 and ERC Horizon Europe Consolidator grant PersoNINpain 101087925. K.D.D. is the Canada Research Chair in Acute and Chronic Pain Research and is supported by funds from the Canadian Institutes of Health Research and the Mayday Fund. S.M.G. acknowledges support from the Rebecca L. Cooper Medical Research Foundation. R.P.S. is supported by NS 107364. N.B.F.’s research is supported by the Lundbeck Foundation R359-2020-2620.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.R. and N.B.F.); Epidemiology (J.L.K.K.); Mechanisms/pathophysiology (J.R., R.P.S. and K.D.D.); Diagnosis, screening and prevention (D.C.A., J.L.K.K. and J.R.); Management (N.B.F., D.C.A. and S.M.G.); Quality of life (S.M.G.); Outlook (J.R. and N.B.F.) and Overview of the Primer (J.R. and N.B.F.). All authors contributed to and critically reviewed all sections.

Corresponding author

Correspondence to Nanna B. Finnerup.

Ethics declarations

Competing interests

J.R. and J.L.K.K. receive consultancy fees from AXONIS Therapeutics. N.B.F. has received consultancy fees from Vertex, Novartis Pharma, NeuroPN, Nanobiotix, Neurvati and Samiona and has undertaken consultancy work for Aarhus University with remunerated work for Biogen, Merz and Confo Therapeutics. She has received grants from IMI2PainCare an EU IMI 2 (Innovative Medicines Initiative) public–private consortium and the companies involved include Grunenthal, Bayer, Eli Lilly, Esteve and Teva, outside the submitted work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Nadine Attal, David Bennett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosner, J., de Andrade, D.C., Davis, K.D. et al. Central neuropathic pain. Nat Rev Dis Primers 9, 73 (2023). https://doi.org/10.1038/s41572-023-00484-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00484-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing