Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

IgA nephropathy

Abstract

IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a ‘four-hit’ process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of IgAN worldwide.
Fig. 2: The multi-hit hypothesis of IgAN and therapeutic targets.
Fig. 3: The complement system and targeted drug treatments.
Fig. 4: Renal biopsy findings in IgAN.
Fig. 5: Modified KDIGO 2021 therapeutic algorithm.

Similar content being viewed by others

References

  1. Pattrapornpisut, P., Avila-Casado, C. & Reich, H. N. IgA nephropathy: core curriculum 2021. Am. J. Kidney Dis. 78, 429–441 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Berthoux, F. et al. Predicting the risk for dialysis or death in IgA nephropathy. J. Am. Soc. Nephrol. 22, 752–761 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jarrick, S. et al. Mortality in IgA nephropathy: a nationwide population-based cohort study. J. Am. Soc. Nephrol. 30, 866–876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moriyama, T. et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PLoS ONE 9, e91756 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okonogi, H. et al. A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity. Clin. Exp. Nephrol. 23, 16–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, H. et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Invest. 118, 629–639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki, H. et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 22, 1795–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xin, G. et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J. Nephrol. 26, 683–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Zhai, Y. L. et al. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine 95, e3099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lafayette, R. et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 402, 859–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues, J. C., Haas, M. & Reich, H. N. IgA nephropathy. Clin. J. Am. Soc. Nephrol. 12, 677–686 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, Y. & Chen, X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am. J. Nephrol. 28, 1–7 (2008).

    Article  PubMed  Google Scholar 

  15. Schena, F. P. & Nistor, I. Epidemiology of IgA nephropathy: a global perspective. Semin. Nephrol. 38, 435–442 (2018).

    Article  PubMed  Google Scholar 

  16. Okpechi, I. G. et al. Epidemiology of histologically proven glomerulonephritis in Africa: a systematic review and meta-analysis. PLoS ONE 11, e0152203 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nair, R. & Walker, P. D. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA? Kidney Int. 69, 1455–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kiryluk, K., Novak, J. & Gharavi, A. G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu. Rev. Med. 64, 339–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Rodriguez, E., Southard, C. T. & Kiryluk, K. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 16, 458–466 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiryluk, K. & Novak, J. The genetics and immunobiology of IgA nephropathy. J. Clin. Invest. 124, 2325–2332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Magistroni, R., D’Agati, V. D., Appel, G. B. & Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 88, 974–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lai, K. N. et al. IgA nephropathy. Nat. Rev. Dis. Primers 2, 16001 (2016).

    Article  PubMed  Google Scholar 

  26. Shen, P. et al. Clinicopathological characteristics and outcome of adult patients with hematuria and/or proteinuria found during routine examination. Nephron Clin. Pract. 103, c149–c156 (2006).

    Article  PubMed  Google Scholar 

  27. Moldoveanu, Z. et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71, 1148–1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Allen, A. C., Bailey, E. M., Barratt, J., Buck, K. S. & Feehally, J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J. Am. Soc. Nephrol. 10, 1763–1771 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hiki, Y. et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59, 1077–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, L. X. & Zhao, M. H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 68, 167–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Barratt, J., Smith, A. C. & Feehally, J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology 12, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Dotz, V. et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J. Am. Soc. Nephrol. 32, 2455–2465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohyama, Y., Renfrow, M. B., Novak, J. & Takahashi, K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J. Clin. Med. 10, 3467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gesualdo, L., Di Leo, V. & Coppo, R. The mucosal immune system and IgA nephropathy. Semin. Immunopathol. 43, 657–668 (2021). A very good review of the role of the mucosal immune system in IgAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franc, V. et al. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J. Proteom. 92, 299–312 (2013).

    Article  CAS  Google Scholar 

  36. Yamada, K. et al. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol. Dial. Transpl. 25, 3890–3897 (2010).

    Article  CAS  Google Scholar 

  37. Suzuki, H. et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem. 289, 5330–5339 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Xing, Y. et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21, 18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serino, G. et al. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transpl. 30, 1132–1139 (2015).

    Article  CAS  Google Scholar 

  41. Serino, G. et al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int. 89, 683–692 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z. et al. Small RNA deep sequencing reveals novel miRNAs in peripheral blood mononuclear cells from patients with IgA nephropathy. Mol. Med. Rep. 22, 3378–3386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gale, D. P. et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 28, 2158–2166 (2017). This study demonstrates that common variation at C1GALT1 influences the Gd-IgA1 level in the population, which is independently associated with risk of progressive IgAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gharavi, A. G. et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 19, 1008–1014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xie, Y., Chen, X., Nishi, S., Narita, I. & Gejyo, F. Relationship between tonsils and IgA nephropathy as well as indications of tonsillectomy. Kidney Int. 65, 1135–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Floege, J. & Feehally, J. The mucosa–kidney axis in IgA nephropathy. Nat. Rev. Nephrol. 12, 147–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Harper, S. J. et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 45, 836–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Yeo, S. C., Cheung, C. K. & Barratt, J. New insights into the pathogenesis of IgA nephropathy. Pediatr. Nephrol. 33, 763–777 (2018).

    Article  PubMed  Google Scholar 

  49. Batra, A., Smith, A. C., Feehally, J. & Barratt, J. T-cell homing receptor expression in IgA nephropathy. Nephrol. Dial. Transpl. 22, 2540–2548 (2007).

    Article  CAS  Google Scholar 

  50. Buren, M., Yamashita, M., Suzuki, Y., Tomino, Y. & Emancipator, S. N. Altered expression of lymphocyte homing chemokines in the pathogenesis of IgA nephropathy. Contrib. Nephrol. 157, 50–55 (2007).

    CAS  PubMed  Google Scholar 

  51. Zachova, K. et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J. Am. Soc. Nephrol. 33, 908–917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kano, T. et al. Mucosal immune system dysregulation in the pathogenesis of IgA nephropathy. Biomedicines 10, 3027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawabe, M. et al. Association between galactose-deficient IgA1 derived from the tonsils and recurrence of IgA nephropathy in patients who underwent kidney transplantation. Front. Immunol. 11, 2068 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rovin, B. H. et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 100, 753–779 (2021). This is the KDIGO practice guideline recommended for IgAN.

    Article  PubMed  Google Scholar 

  55. Schmitt, R. et al. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch–Schönlein purpura. Am. J. Pathol. 176, 608–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watanabe, H. et al. Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol. Dial. Transpl. 32, 2072–2079 (2017).

    CAS  Google Scholar 

  57. Park, J. I. et al. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci. Rep. 10, 16206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014). A large GWA study that suggests that interactions between the host and intestinal pathogens may influence the genetics of IgAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rehnberg, J., Symreng, A., Ludvigsson, J. F. & Emilsson, L. Inflammatory bowel disease is more common in patients with IgA nephropathy and predicts progression of ESKD: a Swedish population-based cohort study. J. Am. Soc. Nephrol. 32, 411–423 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Barratt, J. et al. Why target the gut to treat IgA nephropathy? Kidney Int. Rep. 5, 1620–1624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Angelis, M. et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9, e99006 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hobby, G. P. et al. Chronic kidney disease and the gut microbiome. Am. J. Physiol. Ren. Physiol. 316, F1211–F1217 (2019).

    Article  CAS  Google Scholar 

  63. Sallustio, F. et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol. Dial. Transpl. 36, 452–464 (2021).

    Article  CAS  Google Scholar 

  64. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Donadio, M. E. et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch–Schönlein purpura and primary IgA nephropathy. Pediatr. Nephrol. 29, 1545–1551 (2014).

    Article  PubMed  Google Scholar 

  66. Zheng, N. et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy. JCI Insight 5, e136965 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ciferska, H. et al. Does the renal expression of Toll-like receptors play a role in patients with IgA nephropathy? J. Nephrol. 33, 307–316 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Li, W. et al. TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol. Med. Rep. 10, 1469–1474 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Qin, W. et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol. Dial. Transpl. 23, 1608–1614 (2008).

    Article  CAS  Google Scholar 

  70. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. McCarthy, D. D. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J. Clin. Invest. 121, 3991–4002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goto, T. et al. Increase in B-cell-activation factor (BAFF) and IFN-γ productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy. Clin. Immunol. 126, 260–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ye, M. et al. Vibration induces BAFF overexpression and aberrant O-glycosylation of IgA1 in cultured human tonsillar mononuclear cells in IgA nephropathy. Biomed. Res. Int. 2016, 9125960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shao, J. et al. Capsaicin induces high expression of BAFF and aberrantly glycosylated IgA1 of tonsillar mononuclear cells in IgA nephropathy patients. Hum. Immunol. 75, 1034–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Xin, G. et al. Serum BAFF and APRIL might be associated with disease activity and kidney damage in patients with anti-glomerular basement membrane disease. Nephrology 18, 209–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Muto, M. et al. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B cells in IgA nephropathy. J. Am. Soc. Nephrol. 28, 1227–1238 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Takahara, M. et al. A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 341, 103925 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Makita, Y. et al. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 97, 340–349 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomana, M. et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest. 104, 73–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomana, M. et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52, 509–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki, H. & Novak, J. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43, 669–678 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Knoppova, B. et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front. Immunol. 7, 117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Knoppova, B. et al. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J. Clin. Med. 10, 4051 (2021).

    Article  Google Scholar 

  85. Moldoveanu, Z. et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J. Autoimmun. 118, 102593 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Matsumoto, Y. et al. Identification and characterization of circulating immune complexes in IgA nephropathy. Sci. Adv. 8, eabm8783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, B. et al. Mass spectrometry-based screening identifies circulating immunoglobulinA-α1-microglobulin complex as potential biomarker in immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 36, 782–792 (2021).

    Article  CAS  Google Scholar 

  88. van Zandbergen, G. et al. Crosslinking of the human Fc receptor for IgA (FcαRI/CD89) triggers FcR γ-chain-dependent shedding of soluble CD89. J. Immunol. 163, 5806–5812 (1999).

    Article  PubMed  Google Scholar 

  89. Launay, P. et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J. Exp. Med. 191, 1999–2009 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Dijk, T. B. et al. Cloning and characterization of Fc alpha Rb, a novel Fc alpha receptor (CD89) isoform expressed in eosinophils and neutrophils. Blood 88, 4229–4238 (1996).

    Article  PubMed  Google Scholar 

  91. Cambier, A. et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 101, 274–287 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Berthelot, L. et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 209, 793–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jhee, J. H. et al. Circulating CD89-IgA complex does not predict deterioration of kidney function in Korean patients with IgA nephropathy. Clin. Chem. Lab. Med. 56, 75–85 (2017).

    Article  PubMed  Google Scholar 

  94. Moura, I. C. et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J. Am. Soc. Nephrol. 16, 2667–2676 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Ikee, R. et al. Involvement of transglutaminase-2 in pathological changes in renal disease. Nephron Clin. Pract. 105, c139–c146 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Moresco, R. N. et al. Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and Henoch-Schönlein purpura nephritis. BBA Clin. 5, 79–84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Barratt, J., Feehally, J. & Smith, A. C. Pathogenesis of IgA nephropathy. Semin. Nephrol. 24, 197–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Molyneux, K. et al. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int. 92, 1458–1468 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Mocsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McAdoo, S. P. et al. Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int. 88, 52–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, M. J. et al. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J. Immunol. 189, 3751–3758 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Tamouza, H. et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int. 82, 1284–1296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Makita, Y. et al. Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrol. Dial. Transpl. 37, 1629–1636 (2022).

    Article  CAS  Google Scholar 

  104. Lai, K. N. et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transpl. 24, 62–72 (2009).

    Article  CAS  Google Scholar 

  105. Wang, C. et al. Effect of aggregated immunoglobulin A1 from immunoglobulin A nephropathy patients on nephrin expression in podocytes. Nephrology 14, 213–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Lai, K. N. et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Ren. Physiol. 294, F945–F955 (2008).

    Article  CAS  Google Scholar 

  107. Chan, L. Y., Leung, J. C., Tsang, A. W., Tang, S. C. & Lai, K. N. Activation of tubular epithelial cells by mesangial-derived TNF-α: glomerulotubular communication in IgA nephropathy. Kidney Int. 67, 602–612 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Zambrano, S. et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing. Kidney Int. 101, 752–765 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Wu, D. et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin. Exp. Nephrol. 25, 641–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Nam, K. H. et al. Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin. Immunol. 211, 108331 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Zwirner, J. et al. Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int. 51, 1257–1264 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, S. J. et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 7, e40495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mizerska-Wasiak, M. et al. Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr. Nephrol. 30, 1113–1120 (2015).

    Article  PubMed  Google Scholar 

  114. Evans, D. J. et al. Glomerular deposition of properdin in Henoch-Schönlein syndrome and idiopathic focal nephritis. Br. Med. J. 3, 326–328 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rauterberg, E. W., Lieberknecht, H. M., Wingen, A. M. & Ritz, E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. 31, 820–829 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Miyazaki, R. et al. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin. Nephrol. 21, 335–340 (1984).

    CAS  PubMed  Google Scholar 

  117. Tomino, Y., Endoh, M., Nomoto, Y. & Sakai, H. Double immunofluorescence studies of immunoglobulins, complement components and their control proteins in patients with IgA nephropathy. Acta Pathol. Jpn. 32, 251–256 (1982).

    CAS  PubMed  Google Scholar 

  118. Segarra, A. et al. Mesangial C4d deposits in early IgA nephropathy. Clin. J. Am. Soc. Nephrol. 13, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, H. J. et al. Association of C1q deposition with renal outcomes in IgA nephropathy. Clin. Nephrol. 80, 98–104 (2013).

    Article  PubMed  Google Scholar 

  120. Tan, L. et al. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci. Rep. 11, 5467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chang, S. & Li, X. K. The role of immune modulation in pathogenesis of IgA nephropathy. Front. Med. 7, 92 (2020).

    Article  Google Scholar 

  122. Hiemstra, P. S., Gorter, A., Stuurman, M. E., Es, L. A.van & Daha, M. R. Activation of the alternative pathway of complement by human serum IgA. Eur. J. Immunol. 17, 321–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Russell, M. W. & Mansa, B. Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA. Scand. J. Immunol. 30, 175–183 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Poppelaars, F., Faria, B., Schwaeble, W. & Daha, M. R. The contribution of complement to the pathogenesis of IgA nephropathy: are complement-targeted therapies moving from rare disorders to more common diseases? J. Clin. Med. 10, 4715 (2021). A very good review of the role of complement in IgAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guo, W. Y. et al. Glomerular complement factor H-related protein 5 is associated with histologic injury in immunoglobulin A nephropathy. Kidney Int. Rep. 6, 404–413 (2021).

    Article  PubMed  Google Scholar 

  126. Poppelaars, F. et al. A family affair: addressing the challenges of factor H and the related proteins. Front. Immunol. 12, 660194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tortajada, A. et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 92, 953–963 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Roos, A. et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 17, 1724–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Barratt, J. et al. IgA nephropathy: the lectin pathway and implications for targeted therapy. Kidney Int. 104, 254–264 (2023). A very good review of the role of the lectin pathway in IgAN.

    Article  CAS  PubMed  Google Scholar 

  130. Faria, B. et al. Arteriolar C4d in IgA nephropathy: a cohort study. Am. J. Kidney Dis. 76, 669–678 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, L. L., Jiang, Y., Wang, L. N. & Liu, N. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin. Exp. Immunol. 169, 148–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Medjeral-Thomas, N. R. et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein 5 (FHR5) deposition. Kidney Int. Rep. 3, 426–438 (2018).

    Article  PubMed  Google Scholar 

  133. Paunas, T. I. F. et al. Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin. Proteom. 14, 30 (2017).

    Article  Google Scholar 

  134. Koopman, J. J. E., van Essen, M. F., Rennke, H. G., de Vries, A. P. J. & van Kooten, C. Deposition of the membrane attack complex in healthy and diseased human kidneys. Front. Immunol. 11, 599974 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Selvaskandan, H., Shi, S., Twaij, S., Cheung, C. K. & Barratt, J. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front. Immunol. 11, 572754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cho, B. S., Kim, S. D., Choi, Y. M. & Kang, H. H. School urinalysis screening in Korea: prevalence of chronic renal disease. Pediatr. Nephrol. 16, 1126–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Murakami, M. Screening for proteinuria and hematuria in school children – methods and results. Acta Paediatr. Jpn. 32, 682–689 (1990).

    Article  CAS  PubMed  Google Scholar 

  138. Rivera, F., Lopez-Gomez, J. M. & Perez-Garcia, R., Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 66, 898–904 (2004).

    Article  PubMed  Google Scholar 

  139. Gutierrez, E. et al. Factors that determine an incomplete recovery of renal function in macrohematuria-induced acute renal failure of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2, 51–57 (2007).

    Article  PubMed  Google Scholar 

  140. Tissandie, E. et al. Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int. 80, 1352–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Saha, M. K., Julian, B. A., Novak, J. & Rizk, D. V. Secondary IgA nephropathy. Kidney Int. 94, 674–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Suzuki, K. et al. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int. 63, 2286–2294 (2003).

    Article  PubMed  Google Scholar 

  143. Waldherr, R., Rambausek, M., Duncker, W. D. & Ritz, E. Frequency of mesangial IgA deposits in a non-selected autopsy series. Nephrol. Dial. Transpl. 4, 943–946 (1989).

    Article  CAS  Google Scholar 

  144. Axelsen, R. A. et al. Renal glomerular lesions in unselected patients with cirrhosis undergoing orthotopic liver transplantation. Pathology 27, 237–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Calmus, Y. et al. Prospective assessment of renal histopathological lesions in patients with end-stage liver disease: effects on long-term renal function after liver transplantation. J. Hepatol. 57, 572–576 (2012).

    Article  PubMed  Google Scholar 

  146. Suzuki, H. et al. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int. 93, 700–705 (2018). A study suggesting that IgAN and IgA vasculitis with nephritis have a shared feature regarding galactose-deficient IgA1-oriented pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  147. Kauffmann, R. H., Herrmann, W. A., Meyer, C. J., Daha, M. R. & Van, Es,L. A. Circulating IgA-immune complexes in Henoch-Schönlein purpura. A longitudinal study of their relationship to disease activity and vascular deposition of IgA. Am. J. Med. 69, 859–866 (1980).

    Article  CAS  PubMed  Google Scholar 

  148. Kiryluk, K. et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 80, 79–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pillebout, E. & Sunderkotter, C. IgA vasculitis. Semin. Immunopathol. 43, 729–738 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Ambruzs, J. M., Walker, P. D. & Larsen, C. P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol. 9, 265–270 (2014).

    Article  PubMed  Google Scholar 

  151. Ventura, A., Magazzu, G. & Greco, L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. SIGEP Study Group for Autoimmune Disorders in Celiac Disease. Gastroenterology 117, 297–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Welander, A., Sundelin, B., Fored, M. & Ludvigsson, J. F. Increased risk of IgA nephropathy among individuals with celiac disease. J. Clin. Gastroenterol. 47, 678–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Rollino, C., Vischini, G. & Coppo, R. IgA nephropathy and infections. J. Nephrol. 29, 463–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Bu, R. et al. Clinicopathologic features of IgA-dominant infection-associated glomerulonephritis: a pooled analysis of 78 cases. Am. J. Nephrol. 41, 98–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Huang, Z. et al. Clinicopathological and prognostic study of IgA-dominant postinfectious glomerulonephritis. BMC Nephrol. 22, 248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Champtiaux, N. et al. Spondyloarthritis-associated IgA nephropathy. Kidney Int. Rep. 5, 813–820 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Makino, H. et al. Renal involvement in rheumatoid arthritis: analysis of renal biopsy specimens from 100 patients. Mod. Rheumatol. 12, 148–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Grewal, S. K. et al. The risk of IgA nephropathy and glomerular disease in patients with psoriasis: a population-based cohort study. Br. J. Dermatol. 176, 1366–1369 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Le, W. et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol. Dial. Transpl. 27, 1479–1485 (2012).

    Article  CAS  Google Scholar 

  160. Reich, H. N., Troyanov, S., Scholey, J. W. & Cattran, D. C. Remission of proteinuria improves prognosis in IgA nephropathy. J. Am. Soc. Nephrol. 18, 3177–3183 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Inker, L. A. et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: an individual-patient meta-analysis. Am. J. kidney Dis. 68, 392–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Knoop, T., Vikse, B. E., Mwakimonga, A., Leh, S. & Bjorneklett, R. Long-term outcome in 145 patients with assumed benign immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 32, 1841–1850 (2017).

    Article  CAS  Google Scholar 

  163. Pitcher, D. et al. Long-term outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 18, 727–738 (2023).

    Article  PubMed  Google Scholar 

  164. Roberts, I. S. et al. the Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 76, 546–556 (2009).

    Article  PubMed  Google Scholar 

  165. Trimarchi, H. et al. Oxford classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 91, 1014–1021 (2017).

    Article  PubMed  Google Scholar 

  166. Coppo, R. et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 86, 828–836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Itami, S., Moriyama, T., Miyabe, Y., Karasawa, K. & Nitta, K. A novel scoring system based on Oxford classification indicating steroid therapy use for IgA nephropathy. Kidney Int. Rep. 7, 99–107 (2022).

    Article  PubMed  Google Scholar 

  168. Cambier, A., Troyanov, S., Tesar, V. & Coppo, R., Validation Study of Oxford Classification (VALIGA) Group. Indication for corticosteroids in IgA nephropathy: validation in the European VALIGA cohort of a treatment score based on the Oxford classification. Nephrol. Dial. Transpl. 37, 1195–1197 (2022).

    Article  Google Scholar 

  169. Barbour, S. J. et al. Updating the international IgA nephropathy prediction tool for use in children. Kidney Int. 99, 1439–1450 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Barbour, S. J. et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern. Med. 179, 942–952 (2019). This study reports a new risk prediction tool in IgAN.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Barbour, S. J. et al. Application of the International IgA Nephropathy Prediction Tool one or two years post-biopsy. Kidney Int. 102, 160–172 (2022). This study reports an updated version of the risk prediction tool in IgAN that can be applied up to 2 years after biopsy.

    Article  CAS  PubMed  Google Scholar 

  172. Haaskjold, Y. L. et al. Validation of two IgA nephropathy risk-prediction tools using a cohort with a long follow-up. Nephrol. Dial. Transpl. 38, 1183–1191 (2023).

    Article  CAS  Google Scholar 

  173. Rauen, T. et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N. Engl. J. Med. 373, 2225–2236 (2015). To our knowledge, this is the first of the latest clinical trials studying the value of corticosteroids in IgAN.

    Article  CAS  PubMed  Google Scholar 

  174. Floege, J. & Feehally, J. Treatment of IgA nephropathy and Henoch-Schönlein nephritis. Nat. Rev. Nephrol. 9, 320–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Cheng, J. et al. ACEI/ARB therapy for IgA nephropathy: a meta analysis of randomised controlled trials. Int. J. Clin. Pract. 63, 880–888 (2009). This meta-analysis investigated the effects of RAASi in IgAN.

    Article  CAS  PubMed  Google Scholar 

  176. Lie, D. N. W. et al. Long-term outcomes of add-on direct renin inhibition in IgA nephropathy: a propensity score-matched cohort study. J. Nephrol. 36, 407–416 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Hayashi, K., Nagahama, T., Oka, K., Epstein, M. & Saruta, T. Disparate effects of calcium antagonists on renal microcirculation. Hypertens. Res. 19, 31–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Ruggenenti, P., Perna, A., Benini, R. & Remuzzi, G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). J. Am. Soc. Nephrol. 9, 2096–2101 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Park, H. C. et al. Effect of losartan and amlodipine on proteinuria and transforming growth factor-β1 in patients with IgA nephropathy. Nephrol. Dial. Transpl. 18, 1115–1121 (2003).

    Article  CAS  Google Scholar 

  180. Demarie, B. K. & Bakris, G. L. Effects of different calcium antagonists on proteinuria associated with diabetes mellitus. Ann. Intern. Med. 113, 987–988 (1990).

    Article  CAS  PubMed  Google Scholar 

  181. Mickisch, O. et al. Calcium antagonists in chronic renal failure. Undesirable effects on glomerular hemodynamics? [German]. Dtsch. Med. Wochenschr. 113, 1546–1548 (1988).

    Article  CAS  PubMed  Google Scholar 

  182. Berthoux, F., Mariat, C. & Maillard, N. Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol. Dial. Transpl. 28, iv160–iv166 (2013).

    Article  CAS  Google Scholar 

  183. Wang, Q. et al. Impact of body mass index on primary immunoglobulin A nephropathy prognosis: a systematic review and meta-analysis. Int. Urol. Nephrol. 54, 1067–1078 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Wang, S. et al. Cigarette smoking may accelerate the progression of IgA nephropathy. BMC Nephrol. 22, 239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nuffield Department of Population Health Renal Studies, SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04573478 (2023).

  187. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05047263 (2023).

  189. Rauen, T. et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 98, 1044–1052 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Lv, J. et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 327, 1888–1898 (2022). This is the latest cinical trial studying the value of corticosteroids in IgAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Seikrit, C., Stamellou, E., Rauen, T. & Floege, J. TESTING the effects of corticosteroids in patients with IgA nephropathy. Nephrol. Dial. Transpl. 37, 1786–1788 (2022).

    Article  Google Scholar 

  192. Zhang, Y. M., Lv, J. C., Wong, M. G., Zhang, H. & Perkovic, V. Glucocorticoids for IgA nephropathy-pro. Kidney Int. 103, 666–669 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Cheung, C. K. & Barratt, J. First do no harm: systemic glucocorticoids should not be used for the treatment of progressive IgA nephropathy. Kidney Int. 103, 669–673 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Fellstrom, B. C. et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389, 2117–2127 (2017).

    Article  PubMed  Google Scholar 

  195. Barratt, J. et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 103, 391–402 (2023). This is the clinical trial testing TRF-budesonide in patients with IgAN, the first drug approved for IgAN.

    Article  CAS  PubMed  Google Scholar 

  196. Ismail, G. et al. Budesonide versus systemic corticosteroids in IgA nephropathy: a retrospective, propensity-matched comparison. Medicine 99, e21000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Sun, L., Zi, X., Wang, Z. & Zhang, X. The clinical efficacy of fluticasone propionate combined with ACEI/ARB in the treatment of immunoglobulin A nephropathy. BMC Nephrol. 24, 63 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maes, B. D. et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 65, 1842–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Frisch, G. et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrol. Dial. Transpl. 20, 2139–2145 (2005).

    Article  CAS  Google Scholar 

  200. Tang, S. C. et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int. 77, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Hou, J. H. et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am. J. Kidney Dis. 69, 788–795 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Huerta, A. et al. Corticosteroids and mycophenolic acid analogues in immunoglobulin A nephropathy with progressive decline in kidney function. Clin. Kidney J. 15, 771–777 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Hou, F. F. et al. Effectiveness of mycophenolate mofetil among patients with progressive IgA nephropathy: a randomized clinical trial. JAMA Netw. Open. 6, e2254054 (2023).

    Article  PubMed  Google Scholar 

  204. Liu, L. J. et al. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis. 74, 15–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Tang, C. et al. Long-term safety and efficacy of hydroxychloroquine in patients with IgA nephropathy: a single-center experience. J. Nephrol. 35, 429–440 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Lafayette, R. A. et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 28, 1306–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05065970 (2023).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05799287 (2023).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04716231 (2021).

  210. Lv, J. et al. Randomized phase 2 trial of telitacicept in patients with IgA nephropathy with persistent proteinuria. Kidney Int. Rep. 8, 499–506 (2023).

    Article  PubMed  Google Scholar 

  211. Barratt, J. et al. Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int. Rep. 7, 1831–1841 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04287985 (2023).

  213. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/study/NCT03945318 (2023).

  214. Barratt, J. et al. POS-109 interim results of phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of BION-1301 in patients with IgA nephropathy [abstract POS-109]. Kidney Int. Rep. 7 (Suppl. 2), S46 (2022).

    Article  Google Scholar 

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02062684 (2017).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02112838?tab=history&a=10 (2019).

  217. Tam, W. K. F. et al. Spleen tyrosine kinase (SYK) inhibition in IgA nephropathy: a global, phase II, randomised placebo-controlled trial of fostamatinib [abstract SUN-036]. Kidney Int. Rep. 7 (Suppl. 7), S168 (2019).

    Article  Google Scholar 

  218. Kateifides, A., Garlo, K., Rice, K., Spoerri, N. & Najafian, N. A phase 2 study evaluating the efficacy and safety of ravulizumab in patients with immunoglobulin A (IgA) nephropathy or proliferative lupus nephritis (LN) [abstract WCN23-0140]. Kidney Int. Rep. 8 (Suppl. 3), S54–S55 (2023).

    Article  Google Scholar 

  219. Barratt, J. Exploratory results from the phase 2 study of cemdisiran in patients with IgA nephropathy [abstract FR-OR67]. Presented at Kidney Week 2022 www.asn-online.org/education/kidneyweek/2022/program-abstract.aspx?controlId=3797891 (2022).

  220. Barratt, J. Efficacy and safety of iptacopan in IgA nephropathy: results of a randomized double-blind placebo-controlled phase 2 study at 6 months [abstract POS-546]. Kidney Int. Rep. 7 (Suppl. 2), S236 (2022).

    Article  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03373461 (2023).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04578834 (2023).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03453619 (2023).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04014335 (2023).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02682407 (2020).

  226. Lafayette, R. A. et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int. Rep. 5, 2032–2041 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03608033 (2019).

  228. Chemouny, J. M. et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol. Dial. Transpl. 34, 1135–1144 (2019).

    Article  CAS  Google Scholar 

  229. Di Leo, V. et al. Rifaximin as a potential treatment for IgA nephropathy in a humanized mice model. J. Pers. Med. 11, 309 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Tan, J. et al. Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. J. Transl. Med. 20, 382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lauriero, G. et al. Fecal microbiota transplantation modulates renal phenotype in the humanized mouse model of IgA nephropathy. Front. Immunol. 12, 694787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhao, J. et al. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Ren. Fail. 43, 928–933 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05182775 (2022).

  234. Lv, J. et al. Prediction of outcomes in crescentic IgA nephropathy in a multicenter cohort study. J. Am. Soc. Nephrol. 24, 2118–2125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021).

    Article  Google Scholar 

  236. Audemard-Verger, A. et al. Characteristics and management of IgA vasculitis (Henoch-Schönlein) in adults: data from 260 patients included in a French multicenter retrospective survey. Arthritis Rheumatol. 69, 1862–1870 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Leung, A. K. C., Barankin, B. & Leong, K. F. Henoch-Schönlein purpura in children: an updated review. Curr. Pediatr. Rev. 16, 265–276 (2020).

    Article  PubMed  Google Scholar 

  238. Ozen, S. et al. European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis – the SHARE initiative. Rheumatology 58, 1607–1616 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Coppo, R. Treatment of IgA nephropathy in children: a land without KDIGO guidance. Pediatr. Nephrol. 36, 491–496 (2021). A very good review about the treatment of IgAN in children.

    Article  PubMed  Google Scholar 

  240. Clayton, P., McDonald, S. & Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transpl. 11, 1645–1649 (2011).

    Article  CAS  Google Scholar 

  241. Vasilica, C. et al. Identifying information needs of patients with IgA nephropathy using an innovative social media-stepped analytical approach. Kidney Int. Rep. 6, 1317–1325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Feldman, D. L et al. Voice of the patient: report on the externally led patient-focused drug development meeting on IgA nephropathy. National Kidney Foundation https://www.igan.org/wp-content/uploads/2021/01/VOP_IgAN_12-7-20__FNL.pdf (2019).

  243. Zaour, N., Mayländer, M., Walda, S, George, A.T. Patient journey, perceptions, and burden associated with immunoglobulin a nephropathy (IgAN): a qualitative study [abstract PUB159]. Presented at Kidney Week 2020 www.asn-online.org/education/kidneyweek/2020/program-abstract.aspx?controlId=3444184 (2020).

  244. Davis, R. S. Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  245. Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lu, M. M. et al. Association of TNFSF4 polymorphisms with systemic lupus erythematosus: a meta-analysis. Mod. Rheumatol. 23, 686–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  247. Lucientes-Continente, L., Marquez-Tirado, B. & Goicoechea de Jorge, E. The factor H protein family: the switchers of the complement alternative pathway. Immunol. Rev. 313, 25–45 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Ruben, S. M. et al. I-Rel: a novel rel-related protein that inhibits NF-kappa B transcriptional activity. Genes. Dev. 6, 745–760 (1992).

    Article  CAS  PubMed  Google Scholar 

  249. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nam, S. & Lim, J. S. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch. Pharm. Res. 39, 1548–1555 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Shaffer, A. L., Emre, N. C., Romesser, P. B. & Staudt, L. M. IRF4: immunity. malignancy! therapy? Clin. Cancer Res. 15, 2954–2961 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Khodadadi, L., Cheng, Q., Radbruch, A. & Hiepe, F. The maintenance of memory plasma cells. Front. Immunol. 10, 721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Adamaki, M. et al. Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS ONE 8, e72326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lynch, R. C., Gratzinger, D. & Advani, R. H. Clinical impact of the 2016 update to the WHO lymphoma classification. Curr. Treat. Options Oncol. 18, 45 (2017).

    Article  PubMed  Google Scholar 

  255. Redondo, M. J., Fain, P. R. & Eisenbarth, G. S. Genetics of type 1A diabetes. Recent. Prog. Horm. Res. 56, 69–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  256. Murray, J. A. et al. HLA DQ gene dosage and risk and severity of celiac disease. Clin. Gastroenterol. Hepatol. 5, 1406–1412 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Dyment, D. A., Ebers, G. C. & Sadovnick, A. D. Genetics of multiple sclerosis. Lancet Neurol. 3, 104–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  258. Varney, M. D. et al. HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the Type 1 Diabetes Genetics Consortium families. Diabetes 59, 2055–2062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yang, L., Lu, P., Yang, X., Li, K. & Qu, S. Annexin A3, a calcium-dependent phospholipid-binding protein: implication in cancer. Front. Mol. Biosci. 8, 716415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Marin, N. D. & Garcia, L. F. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. Tuberculosis 102, 8–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  261. Kennedy, M. K., Willis, C. R. & Armitage, R. J. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology 118, 143–152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Picornell, Y. et al. TNFSF15 is an ethnic-specific IBD gene. Inflamm. Bowel Dis. 13, 1333–1338 (2007).

    Article  PubMed  Google Scholar 

  263. Bertin, J. et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-κB. J. Biol. Chem. 275, 41082–41086 (2000).

    Article  CAS  PubMed  Google Scholar 

  264. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  265. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Fan, S., Liu, H. & Li, L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol. Res. 185, 106477 (2022).

    Article  CAS  PubMed  Google Scholar 

  267. Ellinghaus, D. et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90, 636–647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Human Protein Atlas. ZMIZ1. Human Protein Atlas https://www.proteinatlas.org/ENSG00000108175-ZMIZ1 (2019).

  269. Jia, D. et al. OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 6, 15436–15448 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Roca, H. et al. Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS ONE 8, e76773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Lecerf, K. et al. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology 62, 347–359 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Garrett-Sinha, L. A. Review of Ets1 structure, function, and roles in immunity. Cell Mol. Life Sci. 70, 3375–3390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  274. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  275. Hu, X. et al. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882–2891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Maecker, H. et al. TWEAK attenuates the transition from innate to adaptive immunity. Cell 123, 931–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  277. Burkly, L. C. TWEAK/Fn14 axis: the current paradigm of tissue injury-inducible function in the midst of complexities. Semin. Immunol. 26, 229–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  278. Tangye, S. G., Bryant, V. L., Cuss, A. K. & Good, K. L. BAFF, APRIL and human B cell disorders. Semin. Immunol. 18, 305–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  279. Corneth, O. B. J., Neys, S. F. H. & Hendriks, R. W. Aberrant B cell signaling in autoimmune diseases. Cells 11, 3391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Byrjalsen, A. et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 16, e1009231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Bakema, J. E. & van Egmond, M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol. 4, 612–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  282. Wang, J. et al. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol. Ther. 31, 331–343 (2023).

    Article  CAS  PubMed  Google Scholar 

  283. Sun, X., Zhan, M., Sun, X., Liu, W. & Meng, X. C1GALT1 in health and disease. Oncol. Lett. 22, 589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05097989 (2023).

  285. Floege, J., Johnson, R. J. & Feehally, J. Comprehensive Clinical Nephrology 4th edn (Elsevier, 2010).

  286. Wehbi, B., Pascal, V., Zawil, L., Cogne, M. & Aldigier, J. C. History of IgA nephropathy mouse models. J. Clin. Med. 10, 3142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Monteiro, R. C. & Suzuki, Y. Are there animal models of IgA nephropathy? Semin. Immunopathol. 43, 639–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  288. Suzuki, H. & Suzuki, Y. Murine models of human IgA nephropathy. Semin. Nephrol. 38, 513–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  289. Wyatt, R. J. et al. IgA nephropathy: long-term prognosis for pediatric patients. J. Pediatr. 127, 913–919 (1995).

    Article  CAS  PubMed  Google Scholar 

  290. Nozawa, R. et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin. Nephrol. 64, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  291. Coppo, R. Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin. Nephrol. 28, 18–26 (2008).

    Article  PubMed  Google Scholar 

  292. Fassbinder, W. et al. Combined report on regular dialysis and transplantation in Europe, XX, 1989. Nephrol. Dial. Transpl. 6, 5–35 (1991).

    Google Scholar 

  293. Coppo, R. & Robert, T. IgA nephropathy in children and in adults: two separate entities or the same disease? J. Nephrol. 33, 1219–1229 (2020).

    Article  PubMed  Google Scholar 

  294. Zhong, X. & Ding, J. Diagnosis and treatment of IgA nephropathy and IgA vasculitis nephritis in Chinese children. Pediatr. Nephrol. 38, 1707–1715 (2023).

    Article  PubMed  Google Scholar 

  295. Coppo, R. Pediatric IgA nephropathy in Europe. Kidney Dis. 5, 182–188 (2019).

    Article  Google Scholar 

  296. Uffing, A., Hullekes, F., Riella, L. V. & Hogan, J. J. Recurrent glomerular disease after kidney transplantation: diagnostic and management dilemmas. Clin. J. Am. Soc. Nephrol. 16, 1730–1742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Briganti, E. M., Russ, G. R., McNeil, J. J., Atkins, R. C. & Chadban, S. J. Risk of renal allograft loss from recurrent glomerulonephritis. N. Engl. J. Med. 347, 103–109 (2002).

    Article  PubMed  Google Scholar 

  298. O’Shaughnessy, M. M. et al. Kidney transplantation outcomes across GN subtypes in the United States. J. Am. Soc. Nephrol. 28, 632–644 (2017).

    Article  PubMed  Google Scholar 

  299. Cosio, F. G. & Cattran, D. C. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int. 91, 304–314 (2017).

    Article  PubMed  Google Scholar 

  300. Moroni, G. et al. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol. Dial. Transpl. 28, 1305–1314 (2013).

    Article  CAS  Google Scholar 

  301. Floege, J. & Gröne, H. J. Recurrent IgA nephropathy in the renal allograft: not a benign condition. Nephrol. Dial. Transpl. 28, 1070–1073 (2013).

    Article  Google Scholar 

  302. Uffing, A. et al. Recurrence of IgA nephropathy after kidney transplantation in adults. Clin. J. Am. Soc. Nephrol. 16, 1247–1255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Alachkar, N. et al. Evaluation of the modified Oxford score in recurrent IgA nephropathy in North American kidney transplant recipients: the Banff Recurrent Glomerulonephritis Working Group Report. Transplantation 107, 2055–2063 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.K. and E.S.); Epidemiology (R.K., C.S. and E.S.); Mechanisms/pathophysiology (E.S., J.B. and J.F.); Diagnosis/screening/prevention (E.S., C.S., S.C.W.T., V.T., J.B., J.F. and P.B.); Management (E.S., C.S., S.C.W.T., V.T. and J.F.); Quality of life (J.B.); Outlook (J.F.); Overview of the Primer (R.K.).

Corresponding author

Correspondence to Rafael Kramann.

Ethics declarations

Competing interests

S.C.W.T. has acted as a consultant for Boehringer Ingelheim, Eledon Pharmaceuticals and Travere, and has received speaker’s honoraria from AstraZeneca, Bayer, Boehringer Ingelheim, GSK and Novartis. He is an Executive Committee member of KDIGO. P.B. has received consulting fees from Bristol Myers Squibb, lecture fees from Novo Nordisk, Novartis, Astellas and research funding from Ergonex Pharma GmbH and Affiris AG, but none in association with this work. V.T. has acted as a consultant for or has received honoraria from AstraZeneca, Bayer, Boehringer-Ingelheim, Calliditas, GSK, Novartis, Omeros, Otsuka and Travere. J.F. has acted as a consultant for or has received honoraria from AstraZeneca, Boehringer, Calliditas, Chinook, Novartis, Omeros, Roche, Stadapharm, Travere and Vifor. He was also chair of the data safety monitoring committee of a trial by Visterra. J.B. has acted as a consultant for or has received honoraria from Alnylam, Argenx, Astellas, BioCryst, Calliditas, Chinook, Dimerix, Galapagos, Novartis, Omeros, Travere Therapeutics, Vera Therapeutics and Visterra; has received grant support from Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics and Visterra; and has been involved in the following clinical trials: ADU-CL-19 & ALIGN (Chinook), APPLAUSE (Novartis), ARTEMIS-IGAN (Omeros), ENVISION (Visterra), NefIgARD (Calliditas) and ORIGIN (Vera Therapeutics). His research projects include Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra. R.K. is a founder, shareholder and board member of Sequantrix GmbH, a member of the scientific advisory board of Hybridize Therapeutics, has received honoraria for advisory boards and talks from Bayer, Chugai, Pfizer, Roche, Genentech, Lilly and GSK and has research funding from Travere Therapeutics, Galapagos, Novo Nordisk and Ask Bio. R.K. was supported by grants from the German Research Foundation (DFG; SFBTRR219: CRU344 428857858 and CRU5011 445703531), by two grants from the European Research Council (ERC-StG 677448, ERC-CoG 101043403), a grant from the Else Kroener Fresenius Foundation (EKFS), the Dutch Kidney Foundation (DKF), TASKFORCE EP1805 and Kolff Grant no. 113351, the NWO VIDI 09150172010072 and a grant from the Leducq Foundation, and the BMBF eMed Consortium Fibromap and the BMBF Consortium CureFib. C.S. has received honoraria from Stadapharm and is supported by the clinical research unit InteraKD consortium CRU5011 (project ID 45703531) of the DFG and by the Dr. Werner Jackstädt Stiftung. E.S. is supported by the clinical research unit InteraKD consortium CRU5011 (project ID 45703531) of the DFG and by STOP-FSGS by the German Ministry for Science and Education (STOP-FSGS-01GM2202C).

Peer review

Peer reviewer information

Nature Reviews Disease Primers thanks J.-C. Lv; R. Monteiro, who co-reviewed with J. Gleeson; L. Peruzzi; and H. Suzuki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alternative complement pathway

The evolutionarily oldest of the three complement pathways. It undergoes constant low-level self-activation, which is rapidly amplified in the presence of a microorganism, a damaged host cell, or a deficiency in complement regulatory proteins.

BAFF

A key cytokine and member of the TNF family of ligands that regulates B cell survival, maturation and differentiation through binding with its receptors: BAFF receptor (BAFF-R), transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA).

Class switch recombination

A process by which a mature B cell switches from the production of IgM to the production of IgG, IgE or IgA in response to antigen stimulation and costimulatory signals.

Complement C3

A pivotal protein in the activation of the complement system, with its processing and activation by C3 convertase being essential for both the classic and alternative pathways of complement activation.

Crescent

Inflammatory collection of cells in Bowman’s space resulting from severe glomerular injury and localized rupture of the capillary wall or Bowman’s capsule, which enables entry of plasma proteins and inflammatory material into Bowman’s space.

eGFR

The estimated overall rate at which fluid is filtered through the kidney; it is commonly measured using renal clearance techniques and typically averages around 120 ml/min per 1.73 m2 of surface area.

Glomerulosclerosis

Scarring of glomeruli that disrupts the filtration process and leads to leakage of protein from the blood into the urine.

Lectin pathway

One of the three complement pathways. It is activated by pattern recognition molecules of two major protein families, the ficolins and the collectins. This pathway has a crucial role in innate immunity and host defence against microbial infections.

Minimal change disease

A podocytopathy that is characterized by the absence of histological abnormalities except for ultrastructural evidence of podocyte foot process fusion and, clinically, by the manifestation of nephrotic syndrome.

Nephrotic syndrome

A clinical syndrome characterized by the presence of heavy proteinuria (>3.5 g per 24 h), hypoalbuminaemia, hypercholesterolaemia and peripheral oedema due to increased filtration of macromolecules across the glomerular capillary wall.

TLRs

Cell surface and intracellular molecules of eukaryotic cells that recognize structurally conserved molecules derived from microorganisms, activating innate immunity serving as a first line of defence against foreign pathogens.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamellou, E., Seikrit, C., Tang, S.C.W. et al. IgA nephropathy. Nat Rev Dis Primers 9, 67 (2023). https://doi.org/10.1038/s41572-023-00476-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00476-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing