Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hirschsprung disease

Abstract

Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat–Wilson syndrome, congenital central hypoventilation syndrome, Shah–Waardenburg syndrome and cartilage–hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical and radiological diagnosis of Hirschsprung disease.
Fig. 2: Timeline of key advances in the history of Hirschsprung disease.
Fig. 3: Pathophysiology and signalling pathways in Hirschsprung disease.
Fig. 4: Anorectal anatomy, rectal biopsy and histopathological diagnosis of Hirschsprung disease.
Fig. 5: Different surgical techniques for pull-through.
Fig. 6: Algorithm for the management of persistent obstructive symptoms and soiling.
Fig. 7: Optimizing functional outcomes and quality of life after pull-through in Hirschsprung disease.

Similar content being viewed by others

References

  1. Best, K. E. et al. Hirschsprung’s disease prevalence in Europe: a register based study. Birth Defects Res. A Clin. Mol. Teratol. 100, 695–702 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kawaguchi, A. L. et al. Management and outcomes for long-segment Hirschsprung disease: a systematic review from the APSA Outcomes and Evidence Based Practice Committee. J. Pediatr. Surg. 56, 1513–1523 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fusaro, F. et al. Autologous intestinal reconstructive surgery in the management of total intestinal aganglionosis. J. Pediatr. Gastroenterol. Nutr. 68, 635–641 (2019).

    Article  PubMed  Google Scholar 

  4. Saxton, M. L., Ein, S. H., Hoehner, J. & Kim, P. C. W. Near-total intestinal aganglionosis: long-term follow-up of a morbid condition. J. Pediatr. Surg. 35, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee, S. & Chakravarti, A. A gene regulatory network explains RET–EDNRB epistasis in Hirschsprung disease. Hum. Mol. Genet. 28, 3137–3147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Lorijn, F. et al. Diagnosis of Hirschsprung’s disease: a prospective, comparative accuracy study of common tests. J. Pediatr. 146, 787–792 (2005).

    Article  PubMed  Google Scholar 

  7. Swenson, O., Rheinlander, H. F. & Diamond, I. Hirschsprung’s disease; a new concept of the etiology – operative results in 34 patients. N. Engl. J. Med. 241, 551–556 (1949). This article is the first to report a successful surgical reconstruction technique for Hirschsprung disease, that is still the most performed technique nowadays.

    Article  CAS  PubMed  Google Scholar 

  8. Duhamel, B. New operation for congenital megacolon: retrorectal and transanal lowering of the colon, and its possible application to the treatment of various other malformations [French]. Presse Med. 64, 2249–2250 (1956).

    CAS  Google Scholar 

  9. Yancey, A. G., Cromartie, J. E., Ford, J. R., Nichols, R. R. & Saville, A. F. A modification of the Swenson technique for congenital megacolon. J. Natl Med. Assoc. 44, 356–363 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Woode, D. et al. Asa G Yancey: The first to describe a modification of the Swenson technique for Hirschsprung disease. J. Pediatr. Surg. 57, 1701–1703 (2022).

    Article  PubMed  Google Scholar 

  11. Soave, F. Hirschsprung’s disease: a new surgical technique. Arch. Dis. Child. 39, 116–124 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rehbein, F. & Von Zimmermann, H. Results with abdominal resection in Hirschsprung’s disease. Arch. Dis. Child. 35, 29–37 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, B. M., Steiner, R. B. & Lobe, T. E. Laparoscopic Duhamel pullthrough procedure for Hirschsprung’s disease in childhood. J. Laparoendosc. Surg. 4, 273–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Georgeson, K. E., Fuenfer, M. M. & Hardin, W. D. Primary laparoscopic pull-through for Hirschsprung’s disease in infants and children. J. Pediatr. Surg. 30, 1017–1022 (1995). This article reports a major advance in surgical management of Hirschsprung disease, with the use of minimally invasive surgery.

    Article  CAS  PubMed  Google Scholar 

  15. De la Torre-Mondragón, L. & Ortega-Salgado, J. A. Transanal endorectal pull-through for Hirschsprung’s disease. J. Pediatr. Surg. 33, 1283–1286 (1998).

    Article  PubMed  Google Scholar 

  16. Langer, J. C., Minkes, R. K., Mazziotti, M. V., Skinner, M. A. & Winthrop, A. L. Transanal one-stage Soave procedure for infants with Hirschsprung’s disease. J. Pediatr. Surg. 34, 148–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Rintala, R. J. & Pakarinen, M. P. Long-term outcomes of Hirschsprung’s disease. Semin. Pediatr. Surg. 21, 336–343 (2012).

    Article  PubMed  Google Scholar 

  18. Huerta, C. T. et al. Nationwide outcomes of newborns with rectosigmoid versus long-segment Hirschsprung disease. J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2023.01.001 (2023).

    Article  PubMed  Google Scholar 

  19. Kyrklund, K. et al. ERNICA guidelines for the management of rectosigmoid Hirschsprung’s disease. Orphanet J. Rare Dis. 15, 164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chia, S. T., Chen, S. C., Lu, C. L., Sheu, S. M. & Kuo, H. C. Epidemiology of Hirschsprung’s disease in Taiwanese children: a 13-year nationwide population-based study. Pediatr. Neonatol. 57, 201–206 (2016).

    Article  PubMed  Google Scholar 

  21. Lof Granstrom, A. et al. Maternal risk factors and perinatal characteristics for Hirschsprung disease. Pediatrics 138, e20154608 (2016).

    Article  PubMed  Google Scholar 

  22. Tilghman, J. M. et al. Molecular genetic anatomy and risk profile of Hirschsprung’s disease. N. Engl. J. Med. 380, 1421–1432 (2019). This study provides insight into the complexity of Hirschsprung disease genetics and heritability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anderson, J. E. et al. Epidemiology of Hirschsprung disease in California from 1995 to 2013. Pediatr. Surg. Int. 34, 1299–1303 (2018).

    Article  PubMed  Google Scholar 

  24. Rajab, A., Freeman, N. V. & Patton, M. A. Hirschsprung’s disease in Oman. J. Pediatr. Surg. 32, 724–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Bradnock, T. J. et al. Hirschsprung’s disease in the UK and Ireland: incidence and anomalies. Arch. Dis. Child. 102, 722–727 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Taghavi, K. et al. Ethnic variations in the childhood prevalence of Hirschsprung disease in New Zealand. ANZ J. Surg. 89, 1246–1249 (2019).

    Article  PubMed  Google Scholar 

  27. Xiao, J. et al. Comprehensive characterization of the genetic landscape of familial Hirschsprung’s disease. World J. Pediatr. https://doi.org/10.1007/s12519-023-00686-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goldberg, E. L. An epidemiological study of Hirschsprung’s disease. Int. J. Epidemiol. 13, 479–485 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Tam, P. K. Hirschsprung’s disease: a bridge for science and surgery. J. Pediatr. Surg. 51, 18–22 (2016).

    Article  PubMed  Google Scholar 

  30. Gunadi et al. NRG1 variant effects in patients with Hirschsprung disease. BMC Pediatr. 18, 292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fadista, J. et al. Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus. Eur. J. Hum. Genet. 26, 561–569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emison, E. S. et al. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am. J. Hum. Genet. 87, 60–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moore, S. W. Chromosomal and related Mendelian syndromes associated with Hirschsprung’s disease. Pediatr. Surg. Int. 28, 1045–1058 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Y. et al. The prevalence and clinical presentation of Hirschsprung’s disease in preterm infants: a systematic review and meta-analysis. Pediatr. Surg. Int. 38, 523–532 (2022).

    Article  PubMed  Google Scholar 

  35. Duess, J. W., Hofmann, A. D. & Puri, P. Prevalence of Hirschsprung’s disease in premature infants: a systematic review. Pediatr. Surg. Int. 30, 791–795 (2014).

    Article  PubMed  Google Scholar 

  36. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    Article  PubMed  Google Scholar 

  37. Dershowitz, L. B., Li, L., Pasca, A. M. & Kaltschmidt, J. A. Anatomical and functional maturation of the mid-gestation human enteric nervous system. Nat. Commun. 14, 2680 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet. 45, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Friedmacher, F. & Puri, P. Hirschsprung’s disease associated with Down syndrome: a meta-analysis of incidence, functional outcomes and mortality. Pediatr. Surg. Int. 29, 937–946 (2013).

    Article  PubMed  Google Scholar 

  40. Brosens, E. et al. Genetics of enteric neuropathies. Dev. Biol. 417, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, S. W. The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatr. Surg. Int. 22, 305–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Pini Prato, A. et al. A prospective observational study of associated anomalies in Hirschsprung’s disease. Orphanet J. Rare Dis. 8, 184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pini Prato, A. et al. Congenital anomalies of the kidney and urinary tract in a cohort of 280 consecutive patients with Hirschsprung disease. Pediatr. Nephrol. 36, 3151–3158 (2021).

    Article  PubMed  Google Scholar 

  44. Hofmann, A. D., Duess, J. W. & Puri, P. Congenital anomalies of the kidney and urinary tract (CAKUT) associated with Hirschsprung’s disease: a systematic review. Pediatr. Surg. Int. 30, 757–761 (2014).

    Article  PubMed  Google Scholar 

  45. Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017). This article comprehensively reviews the current understanding of the factors involved in early development of the enteric nervous system, and areas in need of investigation.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wallace, A. S. & Burns, A. J. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 319, 367–382 (2005).

    Article  PubMed  Google Scholar 

  47. Rolle, U., Nemeth, L. & Puri, P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J. Pediatr. Surg. 37, 551–567 (2002).

    Article  PubMed  Google Scholar 

  48. Burns, A. J. & Thapar, N. Advances in ontogeny of the enteric nervous system. Neurogastroenterol. Motil. 18, 876–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Uesaka, T., Nagashimada, M. & Enomoto, H. Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J. Neurosci. 35, 9879–9888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uribe, R. A., Hong, S. S. & Bronner, M. E. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Dev. Biol. 433, 17–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Howard, A. G. A. & Uribe, R. A. Hox proteins as regulators of extracellular matrix interactions during neural crest migration. Differentiation 128, 26–32 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Fu, M., Lui, V. C. H., Sham, M. H., Cheung, A. N. Y. & Tam, P. K. H. HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev. Dyn. 228, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ganz, J. Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev. Dyn. 247, 268–278 (2018).

    Article  PubMed  Google Scholar 

  54. Anderson, R. B. et al. The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology 130, 1221–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Baker, P. A., Ibarra-Garcıá-Padilla, R., Venkatesh, A., Singleton, E. W. & Uribe, R. A. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 149, dev200668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barlow, A., De Graaff, E. & Pachnis, V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40, 905–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Nagy, N. & Goldstein, A. M. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev. Biol. 293, 203–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Robertson, K., Mason, I. & Hall, S. Hirschsprung’s disease: genetic mutations in mice and men. Gut 41, 436–441 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bondurand, N., Natarajan, D., Barlow, A., Thapar, N. & Pachnis, V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133, 2075–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kapur, R. P. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10Dom/Sox10Dom mouse embryos. Pediatr. Dev. Pathol. 2, 559–569 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Broch, A. et al. Congenital central hypoventilation syndrome and Hirschsprung disease: a retrospective review of the French National Registry Center on 33 cases. J. Pediatr. Surg. 54, 2325–2330 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Sasaki, A. et al. Novel PHOX2B mutations in congenital central hypoventilation syndrome. Pediatr. Int. 61, 393–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G1–G24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Newgreen, D. F. & Hartley, L. Extracellular matrix and adhesive molecules in the early development of the gut and its innervation in normal and spotting lethal rat embryos. Acta Anat. 154, 243–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Soret, R. et al. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J. Clin. Invest. 125, 4483–4496 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moore, S. W. Advances in understanding the association between Down syndrome and Hirschsprung disease (DS-HSCR). Pediatr. Surg. Int. 34, 1127–1137 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Fu, M. et al. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J. 34, 10931–10947 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Nagy, N. et al. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 145, dev160317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nagy, N. et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development 143, 264–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dutt, S., Kléber, M., Matasci, M., Sommer, L. & Zimmermann, D. R. Versican V0 and V1 guide migratory neural crest cells. J. Biol. Chem. 281, 12123–12131 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ring, C., Hassell, J. & Halfter, W. Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev. Biol. 180, 41–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Nagy, N. et al. Endothelial cells promote migration and proliferation of enteric neural crest cells via β1 integrin signaling. Dev. Biol. 330, 263–272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Akbareian, S. E. et al. Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev. Biol. 382, 446–456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raghavan, S., Gilmont, R. R. & Bitar, K. N. Neuroglial differentiation of adult enteric neuronal progenitor cells as a function of extracellular matrix composition. Biomaterials 34, 6649–6658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapur, R. P. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev. Biol. 227, 146–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, T. et al. Direct interaction of Sox10 with cadherin-19 mediates early sacral neural crest cell migration: implications for enteric nervous system development defects. Gastroenterology 162, 179–192.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Burns, A. J., Champeval, D. & Le Douarin, N. M. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev. Biol. 219, 30–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Burns, A. J. & Le Douarin, N. M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125, 4335–4347 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Uesaka, T. et al. Enhanced enteric neurogenesis by Schwann cell precursors in mouse models of Hirschsprung disease. Glia 69, 2575–2590 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Sribudiani, Y. et al. Identification of variants in RET and IHH pathway members in a large family with history of Hirschsprung disease. Gastroenterology 155, 118–129.e6 (2018).

    Article  PubMed  Google Scholar 

  82. Karim, A., Tang, C. S. & Tam, P. K. The emerging genetic landscape of Hirschsprung disease and its potential clinical applications. Front. Pediatr. 9, 638093 (2021). This article provides an extensive review of gene mutations and syndromes associated with Hirschsprung disease.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ke, J., Zhu, Y. & Miao, X. The advances of genetics research on Hirschsprung’s disease. Pediatr. Investig. 2, 189–195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mueller, J. L. & Goldstein, A. M. The science of Hirschsprung disease: what we know and where we are headed. Semin. Pediatr. Surg. 31, 151157 (2022).

    Article  PubMed  Google Scholar 

  85. Tang, C. S., Karim, A., Zhong, Y., Chung, P. H. & Tam, P. K. Genetics of Hirschsprung’s disease. Pediatr. Surg. Int. 39, 104 (2023).

    Article  PubMed  Google Scholar 

  86. Kuil, L. E. et al. Size matters: large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet. 17, e1009698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gui, H. et al. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 18, 48 (2017). This study identifies for the first time novel genes involved in Hirschsprung disease using whole-genome sequencing, providing novel insights into the development of the enteric nervous system.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Le, T. L. et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J. Clin. Invest. 131, e145837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brosens, E., MacKenzie, K. C., Alves, M. M. & Hofstra, R. M. W. Do RET somatic mutations play a role in Hirschsprung disease? Genet. Med. 20, 1477–1478 (2018).

    Article  PubMed  Google Scholar 

  90. Heuckeroth, R. O. Hirschsprung disease – integrating basic science and clinical medicine to improve outcomes. Nat. Rev. Gastroenterol. Hepatol. 15, 152–167 (2018). This review provides insights into the pathophysiology of Hirschsprung disease, and future research direction.

    Article  PubMed  Google Scholar 

  91. Tam, P. K. & Garcia-Barcelo, M. Genetic basis of Hirschsprung’s disease. Pediatr. Surg. Int. 25, 543–558 (2009).

    Article  PubMed  Google Scholar 

  92. Lyonnet, S., Pelet, A., Abel, L. & Bolino, A. A gene for Hirschsprung disease maps to the proximal arm of chromosome 10. Nat. Genet. 4, 346–350 (1993). This study is the first to show the mutation of the RET gene, the most commonly involved gene in Hirschsprung disease.

    Article  CAS  PubMed  Google Scholar 

  93. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Chatterjee, S. et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell 167, 355–368.e10 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luzon-Toro, B. et al. What is new about the genetic background of Hirschsprung disease? Clin. Genet. 97, 114–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Torroglosa, A. Epigenetic mechanisms in Hirschsprung disease. Int J. Mol. Sci. 20, 3123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Strobl-Mazzulla, P. H., Marini, M. & Buzzi, A. Epigenetic landscape and miRNA involvement during neural crest development. Dev. Dyn. 241, 1849–1856 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Fujiwara, N., Nakazawa-Tanaka, N. & Yamataka, A. Animal models of Hirschsprung’s disease: state of the art in translating experimental research to the bedside. Eur. J. Pediatr. Surg. 29, 361–377 (2019).

    Article  PubMed  Google Scholar 

  99. Cardinal, T. et al. Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression. PLoS Genet. 16, e1009008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia, S. B., Minto, S. B., De Marques, I. S. & Kannen, V. Myenteric denervation of the gut with benzalkonium chloride: a review of forty years of an experimental model. Can. J. Gastroenterol. Hepatol. 2019, 3562492 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Fu, M. et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 137, 631–640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moore, S. W. Total colonic aganglionosis and Hirschsprung’s disease: shades of the same or different? Pediatr. Surg. Int. 25, 659–666 (2009).

    Article  PubMed  Google Scholar 

  103. Alnajar, H., Murro, D., Alsadi, A. & Jakate, S. Spectrum of clinicopathological deviations in long-segment Hirschsprung disease compared with short-segment Hirschsprung disease: a single-institution study. Int. J. Surg. Pathol. 25, 216–221 (2017).

    Article  PubMed  Google Scholar 

  104. Lewit, R. A., Kuruvilla, K. P., Fu, M. & Gosain, A. Current understanding of Hirschsprung-associated enterocolitis: pathogenesis, diagnosis and treatment. Semin. Pediatr. Surg. 31, 151162 (2022). This article provides a comprehensive review of our current understanding of Hirschsprung-associated enterocolitis, which is the most severe and frequent complication related to this disease.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gosain, A. et al. Guidelines for the diagnosis and management of Hirschsprung-associated enterocolitis. Pediatr. Surg. Int. 33, 517–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Abbo, O. et al. Necrotizing enterocolitis in full term neonates: is there always an underlying cause? J. Neonatal Surg. 2, 29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Raboel, E. H. Necrotizing enterocolitis in full-term neonates: is it aganglionosis? Eur. J. Pediatr. Surg. 19, 101–104 (2009).

    Article  Google Scholar 

  108. Beltman, L., Labib, H., Oosterlaan, J., van Heurn, E. & Derikx, J. Risk factors for complications in patients with Hirschsprung disease while awaiting surgery: beware of bowel perforation. J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2022.02.022 (2022).

    Article  PubMed  Google Scholar 

  109. Mc Laughlin, D. & Puri, P. Familial Hirschsprung’s disease: a systematic review. Pediatr. Surg. Int. 31, 695–700 (2015).

    Article  Google Scholar 

  110. Zani, A. & Montalva, L. in Encyclopedia of Gastroenterology 2nd edn (ed. Kuipers, E. J.) 644–651 (Academic, 2020).

  111. Garcia, R. et al. Use of the recto-sigmoid index to diagnose Hirschsprung’s disease. Clin. Pediatr. 46, 59–63 (2007).

    Article  CAS  Google Scholar 

  112. Stranzinger, E., DiPietro, M. A., Teitelbaum, D. H. & Strouse, P. J. Imaging of total colonic Hirschsprung disease. Pediatr. Radiol. 38, 1162–1170 (2008).

    Article  PubMed  Google Scholar 

  113. De Lorijn, F., Kremer, L. C. M., Reitsma, J. B. & Benninga, M. A. Diagnostic tests in Hirschsprung disease: a systematic review. J. Pediatr. Gastroenterol. Nutr. 42, 496–505 (2006).

    Article  PubMed  Google Scholar 

  114. Doodnath, R. & Puri, P. A systematic review and meta-analysis of Hirschsprung’s disease presenting after childhood. Pediatr. Surg. Int. 26, 1107–1110 (2010).

    Article  PubMed  Google Scholar 

  115. Jarvi, K., Koivusalo, A., Rintala, R. J. & Pakarinen, M. P. Anorectal manometry with reference to operative rectal biopsy for the diagnosis/exclusion of Hirschprung’s disease in children under 1 year of age. Int. J. Colorectal Dis. 24, 451–454 (2009).

    Article  PubMed  Google Scholar 

  116. Liang, Y., An, T. & Xin, W. Exploring the value of rectal anal canal pressure measurement in the diagnosis of Hirschsprung’s disease. Heliyon 8, e09619 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baaleman, D. F. et al. The not-so-rare absent RAIR: internal anal sphincter achalasia in a review of 1072 children with constipation undergoing high-resolution anorectal manometry. Neurogastroenterol. Motil. 33, e14028 (2021).

    Article  PubMed  Google Scholar 

  118. Wright, N. J. et al. Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study. Lancet 398, 325–339 (2021).

    Article  Google Scholar 

  119. Muise, E. D. & Cowles, R. A. Rectal biopsy for Hirschsprung’s disease: a review of techniques, pathology, and complications. World J. Pediatr. 12, 135–141 (2016).

    Article  PubMed  Google Scholar 

  120. Friedmacher, F. & Puri, P. Rectal suction biopsy for the diagnosis of Hirschsprung’s disease: a systematic review of diagnostic accuracy and complications. Pediatr. Surg. Int. 31, 821–830 (2015).

    Article  PubMed  Google Scholar 

  121. Ambartsumyan, L., Smith, C. & Kapur, R. P. Diagnosis of Hirschsprung disease. Pediatr. Dev. Pathol. 23, 8–22 (2020).

    Article  PubMed  Google Scholar 

  122. Muise, E. D., Hardee, S., Morotti, R. A. & Cowles, R. A. A comparison of suction and full-thickness rectal biopsy in children. J. Surg. Res. 201, 149–155 (2016).

    Article  PubMed  Google Scholar 

  123. Meier-Ruge, W. A. & Bruder, E. Pathology of chronic constipation in pediatric and adult coloproctology. Pathobiology 72, 1–106 (2005).

    PubMed  Google Scholar 

  124. Kapur, R. P. Calretinin-immunoreactive mucosal innervation in very short-segment Hirschsprung disease: a potentially misleading observation. Pediatr. Dev. Pathol. 17, 28–35 (2014).

    Article  PubMed  Google Scholar 

  125. Green, N., Smith, C. A., Bradford, M. C., Ambartsumyan, L. & Kapur, R. P. Rectal suction biopsy versus incisional rectal biopsy in the diagnosis of Hirschsprung disease. Pediatr. Surg. Int. 38, 1989–1996 (2022).

    Article  PubMed  Google Scholar 

  126. Croffie, J. M. et al. At what age is a suction rectal biopsy less likely to provide adequate tissue for identification of ganglion cells? J. Pediatr. Gastroenterol. Nutr. 44, 198–202 (2007).

    Article  PubMed  Google Scholar 

  127. Veras, L. V. et al. Guidelines for synoptic reporting of surgery and pathology in Hirschsprung disease. J. Pediatr. Surg. 54, 2017–2023 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Venugopal, S., Mancer, K. & Shandling, B. The validity of rectal biopsy in relation to morphology and distribution of ganglion cells. J. Pediatr. Surg. 16, 433–437 (1981).

    Article  CAS  PubMed  Google Scholar 

  129. Aldridge, R. T. & Campbell, P. E. Ganglion cell distribution in the normal rectum and anal canal. A basis for the diagnosis of Hirschsprung’s disease by anorectal biopsy. J. Pediatr. Surg. 3, 475–490 (1968).

    Article  CAS  PubMed  Google Scholar 

  130. Weinberg, A. G. The anorectal myenteric plexus: its relation to hypoganglionosis of the colon. Am. J. Clin. Pathol. 54, 637–642 (1970).

    Article  CAS  PubMed  Google Scholar 

  131. Qualman, S. J., Jaffe, R., Bove, K. E. & Monforte-Muñoz, H. Diagnosis of hirschsprung disease using the rectal biopsy: multi-institutional survey. Pediatr. Dev. Pathol. 2, 588–596 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Yunis, E. J., Dibbins, A. W. & Sherman, F. E. Rectal suction biopsy in the diagnosis of Hirschsprung disease in infants. Arch. Pathol. Lab. Med. 100, 329–333 (1976).

    CAS  PubMed  Google Scholar 

  133. Kakita, Y., Oshiro, K., O’Briain, D. S. & Puri, P. Selective demonstration of mural nerves in ganglionic and aganglionic colon by immunohistochemistry for glucose transporter-1: prominent extrinsic nerve pattern staining in Hirschsprung disease. Arch. Pathol. Lab. Med. 124, 1314–1319 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Drabent, P., Bonnard, A., Guimiot, F., Peuchmaur, M. & Berrebi, D. PHOX2B immunostaining: a simple and helpful tool for the recognition of ganglionic cells and diagnosis of Hirschsprung disease. Am. J. Surg. Pathol. 44, 1389–1397 (2020).

    Article  PubMed  Google Scholar 

  135. Logan, S. J. et al. Calretinin staining in anorectal line biopsies accurately distinguished Hirschsprung disease in a retrospective study. Pediatr. Dev. Pathol. 25, 645–655 (2022).

    Article  PubMed  Google Scholar 

  136. Guinard-Samuel, V., Bonnard, A., Peuchmaur, M. & Berrebi, D. A variant pattern of calretinin immunohistochemistry on rectal suction-biopsies is fully specific of short-segment Hirschsprung’s disease. Pediatr. Surg. Int. 30, 803–808 (2014).

    Article  PubMed  Google Scholar 

  137. Somme, S. & Langer, J. C. Primary versus staged pull-through for the treatment of Hirschsprung disease. Semin. Pediatr. Surg. 13, 249–255 (2004).

    Article  PubMed  Google Scholar 

  138. Jarvi K. et al. Bowel function and gastrointestinal quality of life among adults operated for Hirschsprung disease during childhood: a population-based study. Ann Surg. 252, 977–981 (2010). This study evaluated for the first time controlled long-term outcomes and quality of life in adults born with Hirschsprung disease.

    Article  PubMed  Google Scholar 

  139. Apte, A., McKenna, E. & Levitt, M. A. Image of the month: decision-making in surgery for late onset Hirschsprung disease. Eur. J. Pediatr. Surg. Rep. 8, e99–e101 (2020).

    Article  Google Scholar 

  140. Moore, S. W. Total colonic aganglionosis and Hirschsprung’s disease: a review. Pediatr. Surg. Int. 31, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Smith, C., Ambartsumyan, L. & Kapur, R. P. Surgery, surgical pathology, and postoperative management of patients with Hirschsprung disease. Pediatr. Dev. Pathol. 23, 23–39 (2020).

    Article  PubMed  Google Scholar 

  142. Teitelbaum, D. H. et al. A decade of experience with the primary pull-through for Hirschsprung disease in the newborn period: a multicenter analysis of outcomes. Ann. Surg. 232, 372–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kastenberg, Z. J. et al. Perioperative and long-term functional outcomes of neonatal versus delayed primary endorectal pull-through for children with Hirschsprung disease: a pediatric colorectal and pelvic learning consortium study. J. Pediatr. Surg. 56, 1465–1469 (2021).

    Article  PubMed  Google Scholar 

  144. Westfal, M. L. et al. Optimal timing for Soave primary pull-through in short-segment Hirschsprung disease: a meta-analysis. J. Pediatr. Surg. 57, 719–725 (2022).

    Article  PubMed  Google Scholar 

  145. Stolwijk, L. J. et al. Neurodevelopmental outcomes after neonatal surgery for major noncardiac anomalies. Pediatrics 137, e20151728 (2016).

    Article  PubMed  Google Scholar 

  146. Keunen, K., Sperna Weiland, N. H., de Bakker, B. S., de Vries, L. S. & Stevens, M. F. Impact of surgery and anesthesia during early brain development: a perfect storm. Paediatr. Anaesth. 32, 697–705 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Grabowski, J. et al. The effects of early anesthesia on neurodevelopment: a systematic review. J. Pediatr. Surg. 56, 851–861 (2021).

    Article  PubMed  Google Scholar 

  148. Zani, A. et al. European Paediatric Surgeons’ Association survey on the management of Hirschsprung disease. Eur. J. Pediatr. Surg. 27, 96–101 (2017).

    Article  PubMed  Google Scholar 

  149. Bischoff, A., Levitt, M. A. & Peña, A. Total colonic aganglionosis: a surgical challenge. How to avoid complications? Pediatr. Surg. Int. 27, 1047–1052 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lamoshi, A., Ham, P. B., Chen, Z., Wilding, G. & Vali, K. Timing of the definitive procedure and ileostomy closure for total colonic aganglionosis HD: systematic review. J. Pediatr. Surg. 55, 2366–2370 (2020).

    Article  PubMed  Google Scholar 

  151. Wood, R. J. & Garrison, A. P. Total colonic aganglionosis in Hirschsprung disease. Semin. Pediatr. Surg. 31, 151165 (2022).

    Article  PubMed  Google Scholar 

  152. Langer, J. C. et al. One-stage transanal Soave pullthrough for Hirschsprung disease: a multicenter experience with 141 children. Ann. Surg. 238, 569–576 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Giuliani, S., Honeyford, K., Chang, C. Y., Bottle, A. & Aylin, P. Outcomes of primary versus multiple-staged repair in Hirschsprung’s disease in England. Eur. J. Pediatr. Surg. 30, 104–110 (2020).

    Article  PubMed  Google Scholar 

  154. Hutchings, E. E., Townley, O. G., Lindley, R. M. & Murthi, G. V. S. The role of stomas in the initial and long-term management of Hirschsprung disease. J. Pediatr. Surg. 58, 236–240 (2023).

    Article  PubMed  Google Scholar 

  155. Langer, J. C. Surgical approach to Hirschsprung disease. Semin. Pediatr. Surg. 31, 151156 (2022).

    Article  PubMed  Google Scholar 

  156. Mottadelli, G. et al. Robotic surgery in Hirschsprung disease: a unicentric experience on 31 procedures. J. Robot. Surg. https://doi.org/10.1007/S11701-022-01488-5 (2022).

    Article  PubMed  Google Scholar 

  157. Celtik, U., Yavuz, I. & Ergün, O. Transanal endorectal or transabdominal pull-through for Hirschsprung’s disease; which is better? A systematic review and meta-analysis. Pediatr. Surg. Int. 39, 89 (2023).

    Article  PubMed  Google Scholar 

  158. Stensrud, K. J., Emblem, R. & Bjørnland, K. Anal endosonography and bowel function in patients undergoing different types of endorectal pull-through procedures for Hirschsprung disease. J. Pediatr. Surg. 50, 1341–1346 (2015).

    Article  PubMed  Google Scholar 

  159. Delgado-Miguel, C. & Camps, J. I. Robotic Soave pull-through procedure for Hirschsprung’s disease in children under 12-months: long-term outcomes. Pediatr. Surg. Int. 38, 51–57 (2022).

    Article  PubMed  Google Scholar 

  160. Li, W. et al. Surgical management of Hirschsprung’s disease: a comparative study between conventional laparoscopic surgery, transumbilical single-site laparoscopic surgery, and robotic surgery. Front. Surg. 9, 924850 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Payen, E. et al. Outcome of total colonic aganglionosis involving the small bowel depends on bowel length, liver disease, and enterocolitis. J. Pediatr. Gastroenterol. Nutr. 74, 582–587 (2022).

    Article  PubMed  Google Scholar 

  162. Pini Prato, A. et al. Skipped aganglionic lengthening transposition (SALT) for short bowel syndrome in patients with total intestinal aganglionosis: technical report and feasibility. Pediatr. Surg. Int. 36, 1507–1510 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Sauvat, F. et al. Intestinal transplantation for total intestinal aganglionosis: a series of 12 consecutive children. J. Pediatr. Surg. 43, 1833–1838 (2008).

    Article  PubMed  Google Scholar 

  164. O’Hare, T. J., McDermott, M., O’Sullivan, M., Dicker, P. & Antao, B. A retrospective cohort study of total colonic aganglionosis: is the appendix a reliable diagnostic tool? J. Neonatal Surg. 5, 44 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Reppucci, M. L. et al. Is the appendix a good organ to diagnose total colonic aganglionosis? Pediatr. Surg. Int. 38, 25–30 (2022).

    Article  PubMed  Google Scholar 

  166. Lane, V., Levitt, M., Baker, P., Minneci, P. & Deans, K. The appendix and aganglionosis. A note of caution – how the histology can mislead the surgeon in total colonic Hirschsprung disease. Eur. J. Pediatr. Surg. Rep. 3, 3–6 (2015).

    Article  Google Scholar 

  167. Maia, D. M. The reliability of frozen-section diagnosis in the pathologic evaluation of Hirschsprung’s disease. Am. J. Surg. Pathol. 24, 1675–1677 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Shayan, K., Smith, C. & Langer, J. C. Reliability of intraoperative frozen sections in the management of Hirschsprung’s disease. J. Pediatr. Surg. 39, 1345–1348 (2004).

    Article  PubMed  Google Scholar 

  169. Langer, J. C. et al. Guidelines for the management of postoperative obstructive symptoms in children with Hirschsprung disease. Pediatr. Surg. Int. 33, 523–526 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Saadai, P. et al. Guidelines for the management of postoperative soiling in children with Hirschsprung disease. Pediatr. Surg. Int. 35, 829–834 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Ahmad, H. et al. A Hirschsprung pull-through, ‘with a twist’. Eur. J. Pediatr. Surg. Rep. 8, e95–e98 (2020).

    Article  Google Scholar 

  172. Gupta, D. K., Khanna, K. & Sharma, S. Experience with the redo pull-through for Hirschsprung’s disease. J. Indian Assoc. Pediatr. Surg. 24, 45–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Beltman, L. et al. Transition zone pull-through in patients with Hirschsprung disease: is redo surgery beneficial for the long-term outcomes? J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2023.02.043 (2023).

    Article  PubMed  Google Scholar 

  174. Vickery, J. M., Shehata, B. M., Chang, E. P. & Husain, A. N. Reoperation for Hirschsprung disease: two cases of vanishing ganglion cells and review of the literature. Pediatr. Dev. Pathol. 26, 77–85 (2023).

    Article  PubMed  Google Scholar 

  175. Sun, S., Chen, G., Zheng, S., Dong, K. & Xiao, X. Usefulness of posterior sagittal anorectoplasty for redo pull-through in complicated and recurrent Hirschsprung disease: experience with a single surgical group. J. Pediatr. Surg. 52, 458–462 (2017).

    Article  PubMed  Google Scholar 

  176. Bokova, E. et al. Reconstructing the anal sphincters to reverse iatrogenic overstretching following a pull-through for Hirschsprung disease. One-year outcomes. J. Pediatr. Surg. 58, 484–489 (2023).

    Article  PubMed  Google Scholar 

  177. Chantakhow, S., Tepmalai, K., Singhavejsakul, J., Tantraworasin, A. & Khorana, J. Prognostic factors of postoperative Hirschsprung-associated enterocolitis: a cohort study. Pediatr. Surg. Int. 39, 77 (2023).

    Article  PubMed  Google Scholar 

  178. Roorda, D., Oosterlaan, J., van Heurn, E. & Derikx, J. P. M. Risk factors for enterocolitis in patients with Hirschsprung disease: a retrospective observational study. J. Pediatr. Surg. 56, 1791–1798 (2021).

    Article  PubMed  Google Scholar 

  179. Menezes, M. & Puri, P. Long-term clinical outcome in patients with Hirschsprung’s disease and associated Down’s syndrome. J. Pediatr. Surg. 40, 810–812 (2005).

    Article  PubMed  Google Scholar 

  180. Arnaud, A. P. et al. Different fecal microbiota in Hirschsprung’s patients with and without associated enterocolitis. Front. Microbiol. 13, 904758 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Pierre, J. F. et al. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung’s disease. J. Pediatr. Surg. 49, 1242–1251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gosain, A. et al. Impaired cellular immunity in the murine neural crest conditional deletion of endothelin receptor-B model of Hirschsprung’s disease. PLoS ONE 10, e0128822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Neuvonen, M. I. et al. Bowel function and quality of life after transanal endorectal pull-through for Hirschsprung disease: controlled outcomes up to adulthood. Ann. Surg. 265, 622–629 (2017). 

    Article  PubMed  Google Scholar 

  184. Davidson, J. R. et al. Long-term surgical and patient-reported outcomes of Hirschsprung disease. J. Pediatr. Surg. 56, 1502–1511 (2021).

    Article  PubMed  Google Scholar 

  185. Davidson, J. R. et al. Comparative cohort study of Duhamel and endorectal pull-through for Hirschsprung’s disease. BJS Open 6, zrab143 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Stenström, P. et al. Total colonic aganglionosis: multicentre study of surgical treatment and patient-reported outcomes up to adulthood. BJS Open. 4, 943–953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Davidson, J. R. et al. Outcomes in Hirschsprung’s disease with coexisting learning disability. Eur. J. Pediatr. 180, 3499–3507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Vakkilainen, S., Taskinen, M. & Mäkitie, O. Immunodeficiency in cartilage–hair hypoplasia: pathogenesis, clinical course and management. Scand. J. Immunol. 92, e12913 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Mäkitie, O., Kaitila, I. & Rintala, R. Hirschsprung disease associated with severe cartilage–hair hypoplasia. J. Pediatr. 138, 929–931 (2001).

    Article  PubMed  Google Scholar 

  190. Svetanoff, W. J. et al. Psychosocial factors affecting quality of life in patients with anorectal malformation and Hirschsprung disease – a qualitative systematic review. J. Pediatr. Surg. 57, 387–393 (2022).

    Article  PubMed  Google Scholar 

  191. Davidson, J. R. et al. Sexual function, quality of life, and fertility in women who had surgery for neonatal Hirschsprung’s disease. Br. J. Surg. 108, E79–E80 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Trinidad, S. et al. Long-term male sexual function and fecal incontinence outcomes for adult patients with Hirschsprung disease or anorectal malformation. J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2023.04.006 (2023).

    Article  PubMed  Google Scholar 

  193. Roberts, K., Brindle, M. & McLuckie, D. Enhanced recovery after surgery in paediatrics: a review of the literature. BJA Educ. 20, 235–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Neuvonen, M. I. et al. Intestinal microbiota in Hirschsprung disease. J. Pediatr. Gastroenterol. Nutr. 67, 594–600 (2018).

    Article  PubMed  Google Scholar 

  195. Neuvonen, M. et al. Lower urinary tract symptoms and sexual functions after endorectal pull-through for Hirschsprung disease: controlled long-term outcomes. J. Pediatr. Surg. 52, 1296–1301 (2017).

    Article  PubMed  Google Scholar 

  196. Virtanen, V. B. et al. Thyroid cancer and co-occurring RET mutations in Hirschsprung disease. Endocr. Relat. Cancer 20, 595–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Granström, A. L., Amin, L., Arnell, H. & Wester, T. Increased risk of inflammatory bowel disease in a population-based cohort study of patients with Hirschsprung disease. J. Pediatr. Gastroenterol. Nutr. 66, 398–401 (2018).

    Article  Google Scholar 

  198. Granström, A. L., Ludvigsson, J. F. & Wester, T. Clinical characteristics and validation of diagnosis in individuals with Hirschsprung disease and inflammatory bowel disease. J. Pediatr. Surg. 56, 1799–1802 (2021).

    Article  PubMed  Google Scholar 

  199. Sutthatarn, P. et al. Hirschsprung-associated inflammatory bowel disease: a multicenter study from the APSA Hirschsprung disease interest group. J. Pediatr. Surg. 58, 856–861 (2023).

    Article  PubMed  Google Scholar 

  200. Huang, S. G. et al. Machine learning-based quantitative analysis of barium enema and clinical features for early diagnosis of short-segment Hirschsprung disease in neonate. J. Pediatr. Surg. 56, 1711–1717 (2021).

    Article  PubMed  Google Scholar 

  201. Greenberg, A. et al. Automatic ganglion cell detection for improving the efficiency and accuracy of Hirschprung disease diagnosis. Sci. Rep. 11, 3306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shimojima, N. et al. Visualization of the human enteric nervous system by confocal laser endomicroscopy in Hirschsprung’s disease: an alternative to intraoperative histopathological diagnosis? Neurogastroenterol. Motil. 32, e13805 (2020).

    Article  PubMed  Google Scholar 

  203. Harada, A. et al. Visualization of the human enteric nervous system by probe confocal laser endomicroscopy: a first real-time observation of Hirschsprung’s disease and allied disorders. BMC Med. Imaging 21, 118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Nakazawa-Tanaka, N. et al. Increased enteric neural crest cell differentiation after transplantation into aganglionic mouse gut. Pediatr. Surg. Int. 39, 29 (2022).

    Article  PubMed  Google Scholar 

  205. Zhang, L. et al. Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal differentiation in a rat aganglionic model. J. Pediatr. Surg. 52, 1188–1195 (2017).

    Article  PubMed  Google Scholar 

  206. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016). This is the first description of a human pluripotent stem cell-based platform that can be used both for studying human enteric nervous system development and as a potential cell-based treatment for Hirschsprung disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Smits, R. M. et al. Common needs in uncommon conditions: a qualitative study to explore the need for care in pediatric patients with rare diseases. Orphanet J. Rare Dis. 17, 153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Groenewoud, A. S., Westert, G. P. & Kremer, J. A. M. Value based competition in health care’s ethical drawbacks and the need for a values-driven approach. BMC Health Serv. Res. 19, 256 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Antonarakis, S. E. et al. Down syndrome. Nat. Rev. Dis. Primers 6, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Garavelli, L. & Mainardi, P. C. Mowat-Wilson syndrome. Orphanet J. Rare Dis. 2, 42 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Read, A. P. & Newton, V. E. Waardenburg syndrome. J. Med. Genet. 34, 656–665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pingault, V. et al. Review and update of mutations causing Waardenburg syndrome. Hum. Mutat. 31, 391–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Marini, F. et al. Multiple endocrine neoplasia type 2. Orphanet J. Rare Dis. 1, 45 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Porter, F. D. Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16, 535–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Christaller, W. A. A., Vos, Y., Gebre-Medhin, S., Hofstra, R. M. W. & Schäfer, M. K. E. L1 syndrome diagnosis complemented with functional analysis of L1CAM variants located to the two N-terminal Ig-like domains. Clin. Genet. 91, 115–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Forsythe, E. & Beales, P. L. Bardet–Biedl syndrome. Eur. J. Hum. Genet. 21, 8–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Trang, H. et al. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J. Rare Dis. 15, 252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Vakkilainen, S., Taskinen, M., Klemetti, P., Pukkala, E. & Mäkitie, O. A 30-year prospective follow-up study reveals risk factors for early death in cartilage–hair hypoplasia. Front. Immunol. 10, 1581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Robinson, P. N. et al. Shprintzen–Goldberg syndrome: fourteen new patients and a clinical analysis. Am. J. Med. Genet. A 135, 251–262 (2005).

    Article  PubMed  Google Scholar 

  220. Bedeschi, M. F. et al. Impairment of different protein domains causes variable clinical presentation within Pitt–Hopkins syndrome and suggests intragenic molecular syndromology of TCF4. Eur. J. Med. Genet. 60, 565–571 (2017).

    Article  PubMed  Google Scholar 

  221. Naiki, M. et al. MBTPS2 mutation causes BRESEK/BRESHECK syndrome. Am. J. Med. Genet. A 158A, 97–102 (2012).

    Article  PubMed  Google Scholar 

  222. Slavotinek, A. M. et al. Mutation analysis of the MKKS gene in McKusick–Kaufman syndrome and selected Bardet–Biedl syndrome patients. Hum. Genet. 110, 561–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Orphanet. The portal for rare diseases and orphan drugs. orphanet https://www.orpha.net/consor/cgi-bin/Disease.php?lng=EN (2023).

  224. Adam, M. P. et al. (eds) GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1116/ (2023).

  225. Jensen, A. R. & Frischer, J. S. Surgical history of Hirschsprung disease. Semin. Pediatr. Surg. 31, 151174 (2022).

    Article  PubMed  Google Scholar 

  226. Raveenthiran, V. Knowledge of ancient Hindu surgeons on Hirschsprung disease: evidence from Sushruta Samhita of circa 1200-600 BC. J. Pediatr. Surg. 46, 2204–2208 (2011).

    Article  PubMed  Google Scholar 

  227. Goldstein, A. M., Hofstra, R. M. & Burns, A. J. Building a brain in the gut: development of the enteric nervous system. Clin. Genet. 83, 307–316 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Bondurand, N., Dufour, S. & Pingault, V. News from the endothelin-3/EDNRB signaling pathway: role during enteric nervous system development and involvement in neural crest-associated disorders. Dev. Biol. 444, S156–S169 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Stavely, R. et al. A distinct transcriptome characterizes neural crest-derived cells at the migratory wavefront during enteric nervous system development. Development 150, dev201090 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Heuckeroth, R. O. Hirschsprung’s disease, Down syndrome, and missing heritability: too much collagen slows migration. J. Clin. Invest. 125, 4323–4326 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Ahmad, H. et al. Evaluation and treatment of the post pull-through Hirschsprung patient who is not doing well; update for 2022. Semin. Pediatr. Surg. 31, 151164 (2022).

    Article  PubMed  Google Scholar 

  232. Langer, J. C. & Birnbaum, E. Preliminary experience with intrasphincteric botulinum toxin for persistent constipation after pull-through for Hirschsprung’s disease. J. Pediatr. Surg. 32, 1059–1062 (1997).

    Article  CAS  PubMed  Google Scholar 

  233. Svetanoff, W. J., Lim-Beutal, I. I. P., Wood, R. J., Levitt, M. A. & Rentea, R. M. The utilization of botulinum toxin for Hirschsprung disease. Semin. Pediatr. Surg. 31, 151161 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.S.C. is supported by grants from the National Institutes of Health (K08DK133673), the American College of Surgeons, and the American Pediatric Surgical Association. A.G. supported by grants (R01DK125047 and R21AI163503) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.M. and A.G.); Epidemiology (K.K. and I.de B.); Mechanisms/pathophysiology (L.S.C., L.M. and I.de B.); Diagnosis (R.K., D.B. and L.M.); Management (A.B., L.S.C., J.C.L., L.M. and A.G.); Quality of life (M.P. and K.K.); Outlook (L.S.C. and A.G.); Overview of the Primer (L.M. and A.G.).

Corresponding authors

Correspondence to Louise Montalva or Ankush Gosain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks A. Burns, R. Hotta, P. Tam, T. Wester and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalva, L., Cheng, L.S., Kapur, R. et al. Hirschsprung disease. Nat Rev Dis Primers 9, 54 (2023). https://doi.org/10.1038/s41572-023-00465-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00465-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing