Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Fracture-related infection

Abstract

Musculoskeletal trauma leading to broken and damaged bones and soft tissues can be a life-threating event. Modern orthopaedic trauma surgery, combined with innovation in medical devices, allows many severe injuries to be rapidly repaired and to eventually heal. Unfortunately, one of the persisting complications is fracture-related infection (FRI). In these cases, pathogenic bacteria enter the wound and divert the host responses from a bone-healing course to an inflammatory and antibacterial course that can prevent the bone from healing. FRI can lead to permanent disability, or long courses of therapy lasting from months to years. In the past 5 years, international consensus on a definition of these infections has focused greater attention on FRI, and new guidelines are available for prevention, diagnosis and treatment. Further improvements in understanding the role of perioperative antibiotic prophylaxis and the optimal treatment approach would be transformative for the field. Basic science and engineering innovations will be required to reduce infection rates, with interventions such as more efficient delivery of antibiotics, new antimicrobials, and optimizing host defences among the most likely to improve the care of patients with FRI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical course of a complex bone fracture, subsequent fracture-related infection and eventual recovery.
Fig. 2: Risk factors for the development of fracture-related infection.
Fig. 3: Localization of bacteria in distinct niches in fracture-related infection.
Fig. 4: Disruption of normal bone healing in fracture-related infection.
Fig. 5: Mechanisms of bone changes during bacterial infection in fracture-related infection.

Similar content being viewed by others

References

  1. Metsemakers, W. J. et al. Fracture-related infection: a consensus on definition from an international expert group. Injury 49, 505–510 (2018). This paper describes the first consensus definition for FRI and is a seminal work in FRI.

    CAS  PubMed  Google Scholar 

  2. Metsemakers, W. J. et al. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch. Orthop. Trauma Surg. 140, 1013–1027 (2020).

    PubMed  Google Scholar 

  3. GBD 2019 Fracture Collaborators. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2, e580–e592 (2021).

    Google Scholar 

  4. Wildemann, B. et al. Non-union bone fractures. Nat. Rev. Dis. Primers 7, 57 (2021).

    PubMed  Google Scholar 

  5. Papakostidis, C. et al. Prevalence of complications of open tibial shaft fractures stratified as per the Gustilo–Anderson classification. Injury 42, 1408–1415 (2011).

    PubMed  Google Scholar 

  6. Court-Brown, C. M. & McQueen, M. M. Global forum: fractures in the elderly. J. Bone Jt Surg. Am. 98, e36 (2016).

    Google Scholar 

  7. iHealthcareAnalyst. Bone fracture repair device market $22.3 billion by 2029. iHealthcareAnalyst https://www.ihealthcareanalyst.com/global-bone-fracture-repair-devices-market/ (2022).

  8. McQuillan, T. J., Cai, L. Z., Corcoran-Schwartz, I., Weiser, T. G. & Forrester, J. D. Surgical site infections after open reduction internal fixation for trauma in low and middle human development index countries: a systematic review. Surg. Infect. 19, 254–263 (2018).

    Google Scholar 

  9. Gustilo, R. B., Merkow, R. L. & Templeman, D. The management of open fractures. J. Bone Jt Surg. Am. 72, 299–304 (1990).

    CAS  Google Scholar 

  10. Obremskey, W. T. et al. Musculoskeletal infection in orthopaedic trauma: assessment of the 2018 International Consensus Meeting on Musculoskeletal Infection. J. Bone Jt Surg. Am. 102, e44 (2020).

    Google Scholar 

  11. Morgenstern, M. et al. The effect of local antibiotic prophylaxis when treating open limb fractures: a systematic review and meta-analysis. Bone Jt Res. 7, 447–456 (2018).

    CAS  Google Scholar 

  12. Kortram, K. et al. Risk factors for infectious complications after open fractures; a systematic review and meta-analysis. Int. Orthop. 41, 1965–1982 (2017).

    PubMed  Google Scholar 

  13. Gortler, H. et al. Diabetes and healing outcomes in lower extremity fractures: a systematic review. Injury 49, 177–183 (2018).

    PubMed  Google Scholar 

  14. Tacconelli, E. & Pezzani, M. D. Public health burden of antimicrobial resistance in Europe. Lancet Infect. Dis. 19, 4–6 (2019).

    PubMed  Google Scholar 

  15. Centers for Disease Control and Prevention. Infographic: Antibiotic Resistance: The Global Threat. Center for Global Health https://www.cdc.gov/globalhealth/infographics/antibiotic-resistance/antibiotic_resistance_global_threat.htm (2019).

  16. The World Bank. Drug-resistant infections: a threat to our economic future. The World Bank. https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (2017).

  17. Vedadhir, A. A., Rodrigues, C. & Lambert, H. Social science research contributions to antimicrobial resistance: protocol for a scoping review. Syst. Rev. 9, 24 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Metsemakers, W. J. et al. Antimicrobial resistance, the COVID-19 pandemic, and lessons for the orthopaedic community. J. Bone Jt Surg. Am. 103, 4–9 (2021).

    Google Scholar 

  19. Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. David, M. Z. & Daum, R. S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23, 616–687 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuehl, R. et al. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: an observational prospective study with 229 patients. Clin. Microbiol. Infect. 25, 76–81 (2019).

    CAS  PubMed  Google Scholar 

  22. Rupp, M. et al. Is there a difference in microbiological epidemiology and effective empiric antimicrobial therapy comparing fracture-related infection and periprosthetic joint infection? A retrospective comparative study. Antibiotics https://doi.org/10.3390/antibiotics10080921 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sudduth, J. D. et al. Open fractures: are we still treating the same types of infections? Surg. Infect. 21, 766–772 (2020).

    Google Scholar 

  24. Hu, F., Wang, M., Zhu, D. & Wang, F. CHINET efforts to control antimicrobial resistance in China. J. Glob. Antimicrob. Resist. 21, 76–77 (2020).

    PubMed  Google Scholar 

  25. Peng, J. et al. Epidemiological, clinical and microbiological characteristics of patients with post-traumatic osteomyelitis of limb fractures in Southwest China: a hospital-based study. J. Bone Jt Infect. 2, 149–153 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Wang, B. et al. Epidemiology and microbiology of fracture-related infection: a multicenter study in Northeast China. J. Orthop. Surg. Res. 16, 490 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. Pollard, T. C., Newman, J. E., Barlow, N. J., Price, J. D. & Willett, K. M. Deep wound infection after proximal femoral fracture: consequences and costs. J. Hosp. Infect. 63, 133–139 (2006).

    CAS  PubMed  Google Scholar 

  28. Edwards, C., Counsell, A., Boulton, C. & Moran, C. G. Early infection after hip fracture surgery: risk factors, costs and outcome. J. Bone Jt Surg. Br. 90, 770–777 (2008).

    CAS  Google Scholar 

  29. Anderson, D. J. et al. Clinical and financial outcomes due to methicillin resistant Staphylococcus aureus surgical site infection: a multi-center matched outcomes study. PLoS ONE 4, e8305 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Dudareva, M. et al. The microbiology of chronic osteomyelitis: changes over ten years. J. Infect. 79, 189–198 (2019).

    PubMed  Google Scholar 

  31. World Health Organization. Antimicrobial resistance. World Health Organization https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2021).

  32. Trampuz, A. & Zimmerli, W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37 (Suppl. 2), S59–S66 (2006).

    PubMed  Google Scholar 

  33. Fang, C. et al. Infection after fracture osteosynthesis–Part I. J. Orthop. Surg. 25, 2309499017692712 (2017).

    Google Scholar 

  34. Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 276, 111–119 (2014).

    CAS  PubMed  Google Scholar 

  35. Depypere, M. et al. Pathogenesis and management of fracture-related infection. Clin. Microbiol. Infect. 26, 572–578 (2020).

    CAS  PubMed  Google Scholar 

  36. Chen, A. F., Wessel, C. B. & Rao, N. Staphylococcus aureus screening and decolonization in orthopaedic surgery and reduction of surgical site infections. Clin. Orthop. Relat. Res. 471, 2383–2399 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Berthelot, P. et al. Is nasal carriage of Staphylococcus aureus the main acquisition pathway for surgical-site infection in orthopaedic surgery. Eur. J. Clin. Microbiol. Infect. Dis. 29, 373–382 (2010).

    CAS  PubMed  Google Scholar 

  38. Metsemakers, W. J. et al. Prevention of fracture-related infection: a multidisciplinary care package. Int. Orthop. 41, 2457–2469 (2017).

    PubMed  Google Scholar 

  39. Moriarty, T. F. et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 1, 89–99 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Duckworth, A. D. et al. Deep infection after hip fracture surgery: predictors of early mortality. Injury 43, 1182–1186 (2012).

    PubMed  Google Scholar 

  41. Hudek, R. et al. Cutibacterium acnes is an intracellular and intra-articular commensal of the human shoulder joint. J. Shoulder Elb. Surg. 30, 16–26 (2021).

    Google Scholar 

  42. Burns, T. C. et al. Microbiology and injury characteristics in severe open tibia fractures from combat. J. Trauma. Acute Care Surg. 72, 1062–1067 (2012).

    PubMed  Google Scholar 

  43. Oliveira, P. R. et al. The incidence and microbiological profile of surgical site infections following internal fixation of closed and open fractures. Rev. Bras. Ortop. 51, 396–399 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Johnson, E. N., Burns, T. C., Hayda, R. A., Hospenthal, D. R. & Murray, C. K. Infectious complications of open type III tibial fractures among combat casualties. Clin. Infect. Dis. 45, 409–415 (2007).

    PubMed  Google Scholar 

  45. Mertens, B. et al. Isavuconazole in the treatment of Aspergillus fumigatus fracture-related infection: case report and literature review. Antibiotics 11, 344 (2022).

    PubMed  PubMed Central  Google Scholar 

  46. Koehler, P., Tacke, D. & Cornely, O. A. Bone and joint infections by Mucorales, Scedosporium, Fusarium and even rarer fungi. Crit. Rev. Microbiol. 42, 158–171 (2016).

    PubMed  Google Scholar 

  47. Law, M. D. Jr. & Stein, R. E. Late infection in healed fractures after open reduction and internal fixation. Orthop. Rev. 22, 545–552 (1993).

    PubMed  Google Scholar 

  48. Murdoch, D. R. et al. Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin. Infect. Dis. 32, 647–649 (2001).

    CAS  PubMed  Google Scholar 

  49. Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 20 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Masters, E. A. et al. Identification of penicillin binding protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathog. 16, e1008988 (2020). This paper identifies mechanisms of S. aureus invasion of bone OLCN and is a major discovery in the field.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishitani, K. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 33, 1311–1319 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Brandt, S. L., Putnam, N. E., Cassat, J. E. & Serezani, C. H. Innate immunity to Staphylococcus aureus: evolving paradigms in soft tissue and invasive infections. J. Immunol. 200, 3871–3880 (2018).

    CAS  PubMed  Google Scholar 

  53. Farnsworth, C. W. et al. Adaptive upregulation of clumping factor A (ClfA) by Staphylococcus aureus in the obese, type 2 diabetic host mediates increased virulence. Infect. Immun. https://doi.org/10.1128/iai.01005-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Muthukrishnan, G. et al. Humanized mice exhibit exacerbated abscess formation and osteolysis during the establishment of implant-associated Staphylococcus aureus osteomyelitis. Front. Immunol. 12, 651515 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Varrone, J. J., Li, D., Daiss, J. L. & Schwarz, E. M. Anti-glucosaminidase monoclonal antibodies as a passive immunization for methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic infections. Bonekey Osteovision 8, 187–194 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Yokogawa, N. et al. Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis. J. Orthop. Res. 36, 1590–1598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofstee, M. I. et al. A murine Staphylococcus aureus fracture-related infection model characterised by fracture non-union, staphylococcal abscess communities and myeloid-derived suppressor cells. Eur. Cell Mater. 41, 774–792 (2021).

    CAS  PubMed  Google Scholar 

  58. Rauch, S. et al. Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. Infect. Immun. 80, 3721–3732 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tebartz, C. et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J. Immunol. 194, 1100–1111 (2015).

    CAS  PubMed  Google Scholar 

  61. Masters, E. A. et al. Distinct vasculotropic versus osteotropic features of S. agalactiae versus S. aureus implant-associated bone infection in mice. J. Orthop. Res. 39, 389–401 (2021).

    CAS  PubMed  Google Scholar 

  62. Soe, Y. M., Bedoui, S., Stinear, T. P. & Hachani, A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol. 23, e13317 (2021).

    CAS  PubMed  Google Scholar 

  63. Tuchscherr, L., Loffler, B. & Proctor, R. A. Persistence of Staphylococcus aureus: multiple metabolic pathways impact the expression of virulence factors in small-colony variants (SCVs). Front. Microbiol. 11, 1028 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Glatt, V., Evans, C. H. & Tetsworth, K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front. Physiol. 7, 678 (2016).

    PubMed  Google Scholar 

  65. Duchamp de Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 9, 773 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Bahney, C. S. et al. Cellular biology of fracture healing. J. Orthop. Res. 37, 35–50 (2019).

    PubMed  Google Scholar 

  67. Maruyama, M. et al. Modulation of the inflammatory response and bone healing. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.00386 (2020).

    Article  Google Scholar 

  68. Hoff, P. et al. Immunological characterization of the early human fracture hematoma. Immunol. Res. 64, 1195–1206 (2016).

    CAS  PubMed  Google Scholar 

  69. Morgenstern, M. et al. Diagnostic challenges and future perspectives in fracture-related infection. Injury 49 (Suppl. 1), S83–S90 (2018).

    PubMed  Google Scholar 

  70. Metsemakers, W. J. et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury 49, 511–522 (2018).

    CAS  PubMed  Google Scholar 

  71. Mbalaviele, G., Novack, D. V., Schett, G. & Teitelbaum, S. L. Inflammatory osteolysis: a conspiracy against bone. J. Clin. Invest. 127, 2030–2039 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282–290 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dewhirst, F. E., Stashenko, P. P., Mole, J. E. & Tsurumachi, T. Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. J. Immunol. 135, 2562–2568 (1985).

    CAS  PubMed  Google Scholar 

  75. O’Brien, C. A., Gubrij, I., Lin, S. C., Saylors, R. L. & Manolagas, S. C. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-κB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274, 19301–19308 (1999).

    PubMed  Google Scholar 

  76. Hofbauer, L. C. et al. Interleukin-1α and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255–259 (1999).

    CAS  PubMed  Google Scholar 

  77. Shiratori, T. et al. IL-1β induces pathologically activated osteoclasts bearing extremely high levels of resorbing activity: a possible pathological subpopulation of osteoclasts, accompanied by suppressed expression of Kindlin-3 and Talin-1. J. Immunol. 200, 218–228 (2018).

    CAS  PubMed  Google Scholar 

  78. Jimi, E. et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp. Cell Res. 247, 84–93 (1999).

    CAS  PubMed  Google Scholar 

  79. Putnam, N. E. et al. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathog. 15, e1007744 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Y. et al. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection. J. Orthop. Res. 38, 1800–1809 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, D. et al. Novel insights into Staphylococcus aureus deep bone infections: the involvement of osteocytes. mBio 9, e00415-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Claro, T. et al. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology 159, 147–154 (2013).

    CAS  PubMed  Google Scholar 

  83. Widaa, A., Claro, T., Foster, T. J., O’Brien, F. J. & Kerrigan, S. W. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS ONE 7, e40586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Claro, T. et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS ONE 6, e18748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertelli, A. M. et al. Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. Biochim. Biophys. Acta 1862, 1975–1983 (2016).

    PubMed Central  Google Scholar 

  86. Loughran, A. J. et al. Impact of sarA and phenol-soluble modulins on the pathogenesis of osteomyelitis in diverse clinical isolates of Staphylococcus aureus. Infect. Immun. 84, 2586–2594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cassat, J. E. et al. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe 13, 759–772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rasigade, J. P. et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS ONE 8, e63176 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hendrix, A. S. et al. Repurposing the nonsteroidal anti-inflammatory drug diflunisal as an osteoprotective, antivirulence therapy for Staphylococcus aureus osteomyelitis. Antimicrob. Agents Chemother. 60, 5322–5330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Spaan, A. N., van Strijp, J. A. G. & Torres, V. J. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 15, 435–447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, C. T. et al. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci. Adv. 5, eaaw1228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Klosterhalfen, B. et al. Local and systemic inflammatory mediator release in patients with acute and chronic posttraumatic osteomyelitis. J. Trauma 40, 372–378 (1996).

    CAS  PubMed  Google Scholar 

  93. Sabaté-Brescó, M. et al. Fracture biomechanics influence local and systemic immune responses in a murine fracture-related infection model. Biol. Open 10, bio057315 (2021).

    PubMed  PubMed Central  Google Scholar 

  94. Kobayashi, S. D., Malachowa, N. & DeLeo, F. R. Neutrophils and bacterial immune evasion. J. Innate Immun. 10, 432–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wagner, C. et al. Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed site lack chemotactic activity but generate superoxides. Shock 22, 108–115 (2004).

    CAS  PubMed  Google Scholar 

  96. Wagner, C. et al. T lymphocytes in implant-associated posttraumatic osteomyelitis: identification of cytotoxic T effector cells at the site of infection. Shock 25, 241–246 (2006).

    CAS  PubMed  Google Scholar 

  97. Bröker, B. M., Mrochen, D. & Péton, V. The T cell response to Staphylococcus aureus. Pathogens 5, 31 (2016).

    PubMed Central  Google Scholar 

  98. Prabhakara, R. et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect. Immun. 79, 5010–5018 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Baht, G. S., Vi, L. & Alman, B. A. The role of the immune cells in fracture healing. Curr. Osteoporos. Rep. 16, 138–145 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Silversides, J. A., Lappin, E. & Ferguson, A. J. Staphylococcal toxic shock syndrome: mechanisms and management. Curr. Infect. Dis. Rep. 12, 392–400 (2010).

    PubMed  Google Scholar 

  101. Sokhi, U. K. et al. Immune response to persistent Staphyloccocus aureus periprosthetic joint infection in a mouse tibial implant model. J. Bone Miner. Res. https://doi.org/10.1002/jbmr.4489 (2021).

    Article  PubMed  Google Scholar 

  102. Holtfreter, S., Kolata, J. & Broker, B. M. Towards the immune proteome of Staphylococcus aureus – the anti-S. aureus antibody response. Int. J. Med. Microbiol. 300, 176–192 (2010).

    CAS  PubMed  Google Scholar 

  103. Muthukrishnan, G. et al. Serum antibodies against Staphylococcus aureus can prognose treatment success in patients with bone infections. J. Orthop. Res. 39, 2169–2176 (2021).

    CAS  PubMed  Google Scholar 

  104. Nishitani, K. et al. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight https://doi.org/10.1172/jci.insight.141164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Govaert, G. A. M. et al. Diagnosing fracture-related infection: current concepts and recommendations. J. Orthop. Trauma 34, 8–17 (2020).

    PubMed  Google Scholar 

  106. Onsea, J. et al. Validation of the diagnostic criteria of the consensus definition of fracture-related infection. Injury https://doi.org/10.1016/j.injury.2022.03.024 (2022).

    Article  PubMed  Google Scholar 

  107. Govaert, G. A. M. & Glaudemans, A. Nuclear medicine imaging of posttraumatic osteomyelitis. Eur. J. Trauma Emerg. Surg. 42, 397–410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Q. et al. Comparative diagnostic accuracy of respective nuclear imaging for suspected fracture-related infection: a systematic review and Bayesian network meta-analysis. Arch. Orthop. Trauma Surg. 141, 1115–1130 (2021).

    PubMed  Google Scholar 

  109. van den Kieboom, J. et al. Diagnostic accuracy of serum inflammatory markers in late fracture-related infection: a systematic review and meta-analysis. Bone Jt J. 100-B, 1542–1550 (2018).

    Google Scholar 

  110. Sigmund, I. K. et al. Limited diagnostic value of serum inflammatory biomarkers in the diagnosis of fracture-related infections. Bone Jt J. 102-B, 904–911 (2020).

    Google Scholar 

  111. McNally, M., Govaert, G., Dudareva, M., Morgenstern, M. & Metsemakers, W. J. Definition and diagnosis of fracture-related infection. EFORT Open Rev. 5, 614–619 (2020).

    PubMed  PubMed Central  Google Scholar 

  112. Dudareva, M. et al. Providing an evidence base for tissue sampling and culture interpretation in suspected fracture-related infection. J. Bone Jt Surg. Am. 103, 977–983 (2021).

    CAS  Google Scholar 

  113. Onsea, J. et al. Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J. Bone Jt Infect. 3, 173–181 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Dudareva, M. et al. Sonication versus tissue sampling for diagnosis of prosthetic joint and other orthopedic device-related infections. J. Clin. Microbiol. 56, e00688-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Morgenstern, M. et al. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Jt J. 100-B, 966–972 (2018).

    CAS  Google Scholar 

  116. Lack, W. D. et al. Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J. Orthop. Trauma 29, 1–6 (2015).

    PubMed  Google Scholar 

  117. Vanvelk, N. et al. Duration of perioperative antibiotic prophylaxis in open fractures: a systematic review and critical appraisal. Antibiotics https://doi.org/10.3390/antibiotics11030293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. American Academy of Orthopaedic Surgeons. Prevention of surgical site infection after major extremity trauma: clinical practice guideline. American Academy of Orthopaedic Surgeons https://www.aaos.org/globalassets/quality-and-practice-resources/dod/ssitrauma/ssitraumacpg.pdf (2022).

  119. Metsemakers, W. J., Moriarty, T. F., Nijs, S., Pape, H. C. & Richards, R. G. Influence of implant properties and local delivery systems on the outcome in operative fracture care. Injury 47, 595–604 (2016).

    PubMed  Google Scholar 

  120. Major Extremity Trauma Research Consortium (METRC) Effect of intrawound vancomycin powder in operatively treated high-risk tibia fractures: a randomized clinical trial. JAMA Surg. 156, e207259 (2021).

    Google Scholar 

  121. Zalavras, C. G. Prevention of infection in open fractures. Infect. Dis. Clin. North Am. 31, 339–352 (2017).

    PubMed  Google Scholar 

  122. Kaysinger, K. K., Nicholson, N. C., Ramp, W. K. & Kellam, J. F. Toxic effects of wound irrigation solutions on cultured tibiae and osteoblasts. J. Orthop. Trauma 9, 303–311 (1995).

    CAS  PubMed  Google Scholar 

  123. Crowley, D. J., Kanakaris, N. K. & Giannoudis, P. V. Debridement and wound closure of open fractures: the impact of the time factor on infection rates. Injury 38, 879–889 (2007).

    CAS  PubMed  Google Scholar 

  124. Lineaweaver, W. et al. Topical antimicrobial toxicity. Arch. Surg. 120, 267–270 (1985).

    CAS  PubMed  Google Scholar 

  125. Bhandari, M. et al. A trial of wound irrigation in the initial management of open fracture wounds. N. Engl. J. Med. 373, 2629–2641 (2015).

    CAS  PubMed  Google Scholar 

  126. Dirschl, D. R. et al. High pressure pulsatile lavage irrigation of intraarticular fractures: effects on fracture healing. J. Orthop. Trauma 12, 460–463 (1998).

    CAS  PubMed  Google Scholar 

  127. Owens, B. D., White, D. W. & Wenke, J. C. Comparison of irrigation solutions and devices in a contaminated musculoskeletal wound survival model. J. Bone Jt Surg. Am. 91, 92–98 (2009).

    Google Scholar 

  128. Costa, M. L. et al. Effect of negative pressure wound therapy vs standard wound management on 12-month disability among adults with severe open fracture of the lower limb: the WOLLF randomized clinical trial. JAMA 319, 2280–2288 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Greene, L. R. Guide to the elimination of orthopedic surgery surgical site infections: an executive summary of the Association for Professionals in Infection Control and Epidemiology elimination guide. Am. J. Infect. Control 40, 384–386 (2012).

    PubMed  Google Scholar 

  130. Barlam, T. F. et al. Executive summary: implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 62, 1197–1202 (2016).

    PubMed  Google Scholar 

  131. Goff, D. A. et al. A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect. Dis. 17, e56–e63 (2017).

    PubMed  Google Scholar 

  132. Tetsworth, K. & Cierny, G. III Osteomyelitis debridement techniques. Clin. Orthop. Relat. Res. 360, 87–96 (1999).

    Google Scholar 

  133. Foster, A. L. et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury 52, 43–52 (2021).

    PubMed  Google Scholar 

  134. Rittmann, W. W. & Perren, S. M. Cortical Bone Healing after Internal Fixation and Infection: Biomechanics and Biology (Springer, 1974). This book is the seminal work on the interaction between the benefits of fracture stability for healing, even in the presence of infection.

  135. Morgenstern, M. et al. The influence of duration of infection on outcome of debridement and implant retention in fracture-related infection. Bone Jt J. 103-B, 213–221 (2021).

    Google Scholar 

  136. Depypere, M. et al. Recommendations for systemic antimicrobial therapy in fracture-related infection: a consensus from an international expert group. J. Orthop. Trauma 34, 30–41 (2020).

    PubMed  Google Scholar 

  137. Bernard, L. et al. Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N. Engl. J. Med. 384, 1991–2001 (2021).

    CAS  PubMed  Google Scholar 

  138. Li, H. K. et al. Oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA): study protocol for a randomised controlled trial. Trials 16, 583 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, H. K. et al. Oral versus intravenous antibiotics for bone and joint infection. N. Engl. J. Med. 380, 425–436 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zimmerli, W., Widmer, A. F., Blatter, M., Frei, R. & Ochsner, P. E. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279, 1537–1541 (1998). This paper revealed the crucial role for rifampicin in the treatment of staphylococcal implant-related biofilm infections and set the standard of care for decades thereafter.

    CAS  PubMed  Google Scholar 

  141. Karlsen, O. E. et al. Rifampin combination therapy in staphylococcal prosthetic joint infections: a randomized controlled trial. J. Orthop. Surg. Res. 15, 365 (2020).

    PubMed  PubMed Central  Google Scholar 

  142. Widmer, A. F., Gaechter, A., Ochsner, P. E. & Zimmerli, W. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin. Infect. Dis. 14, 1251–1253 (1992).

    CAS  PubMed  Google Scholar 

  143. Beldman, M. et al. If, when, and how to use rifampin in acute staphylococcal periprosthetic joint infections, a multicentre observational study. Clin. Infect. Dis. 73, 1634–1641 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsegka, K. G., Voulgaris, G. L., Kyriakidou, M., Kapaskelis, A. & Falagas, M. E. Intravenous fosfomycin for the treatment of patients with bone and joint infections: a review. Expert Rev. Anti Infect. Ther. 20, 33–43 (2022).

    CAS  PubMed  Google Scholar 

  145. Martinez-Pastor, J. C. et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob. Agents Chemother. 53, 4772–4777 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, Y. et al. Rifamycin resistance, rpoB gene mutation and clinical outcomes of Staphylococcus species isolates from prosthetic joint infections in Republic of Korea. J. Glob. Antimicrob. Resist. 28, 43–48 (2022).

    CAS  PubMed  Google Scholar 

  147. Telles, J. P., Cieslinski, J. & Tuon, F. F. Daptomycin to bone and joint infections and prosthesis joint infections: a systematic review. Braz. J. Infect. Dis. 23, 191–196 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Hall Snyder, A. D., Vidaillac, C., Rose, W., McRoberts, J. P. & Rybak, M. J. Evaluation of high-dose daptomycin versus vancomycin alone or combined with clarithromycin or rifampin against Staphylococcus aureus and S. epidermidis in a novel in vitro PK/PD model of bacterial biofilm. Infect. Dis. Ther. 4, 51–65 (2014).

    PubMed Central  Google Scholar 

  149. Mihailescu, R. et al. High activity of Fosfomycin and Rifampin against methicillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 58, 2547–2553 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Oliva, A. et al. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 58, 1284–1293 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Trautmann, M., Meincke, C., Vogt, K., Ruhnke, M. & Lajous-Petter, A. M. Intracellular bactericidal activity of fosfomycin against staphylococci: a comparison with other antibiotics. Infection 20, 350–354 (1992).

    CAS  PubMed  Google Scholar 

  152. Metsemakers, W. J. et al. Evidence-based recommendations for local antimicrobial strategies and dead space management in fracture-related infection. J. Orthop. Trauma 34, 18–29 (2020).

    PubMed  Google Scholar 

  153. Garabano, G., Del Sel, H., Rodriguez, J. A., Perez Alamino, L. & Pesciallo, C. A. The effectiveness of antibiotic cement-coated nails in post-traumatic femoral and tibial osteomyelitis–comparative analysis of custom-made versus commercially available nails. J. Bone Jt Infect. 6, 457–466 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Neut, D. et al. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J. Antimicrob. Chemother. 47, 885–891 (2001).

    CAS  PubMed  Google Scholar 

  155. Schwarz, E. M. et al. Adjuvant antibiotic-loaded bone cement: concerns with current use and research to make it work. J. Orthop. Res. 39, 227–239 (2021).

    CAS  PubMed  Google Scholar 

  156. Malat, T. A., Glombitza, M., Dahmen, J., Hax, P. M. & Steinhausen, E. The use of bioactive glass S53P4 as bone graft substitute in the treatment of chronic osteomyelitis and infected non-unions–a retrospective study of 50 patients. Z. Orthop. Unf. 156, 152–159 (2018).

    Google Scholar 

  157. Iliaens, J. et al. Fracture-related infection in long bone fractures: a comprehensive analysis of the economic impact and influence on quality of life. Injury 52, 3344–3349 (2021).

    PubMed  Google Scholar 

  158. Morgenstern, M. et al. The AO trauma CPP bone infection registry: epidemiology and outcomes of Staphylococcus aureus bone infection. J. Orthop. Res. 39, 136–146 (2021).

    CAS  PubMed  Google Scholar 

  159. Walter, N. et al. Long-term patient-related quality of life after fracture-related infections of the long bones. Bone Jt Res. 10, 321–327 (2021).

    Google Scholar 

  160. Hotchen, A. J., Dudareva, M., Corrigan, R. A., Ferguson, J. Y. & McNally, M. A. Can we predict outcome after treatment of long bone osteomyelitis? Bone Jt J. 102-B, 1587–1596 (2020).

    Google Scholar 

  161. Ziegler, P. et al. Quality of life and clinical-radiological long-term results after implant-associated infections in patients with ankle fracture: a retrospective matched-pair study. J. Orthop. Surg. Res. 12, 114 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Thakore, R. V. et al. Surgical site infection in orthopedic trauma: a case-control study evaluating risk factors and cost. J. Clin. Orthop. Trauma 6, 220–226 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Metsemakers, W. J., Smeets, B., Nijs, S. & Hoekstra, H. Infection after fracture fixation of the tibia: analysis of healthcare utilization and related costs. Injury 48, 1204–1210 (2017).

    PubMed  Google Scholar 

  164. Malizos, K. et al. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J. Orthop. Traumatol. 18, 159–169 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Ter Boo, G. J. et al. Local application of a gentamicin-loaded thermo-responsive hydrogel allows for fracture healing upon clearance of a high Staphylococcus aureus load in a rabbit model. Eur. Cell Mater. 35, 151–164 (2018).

    PubMed  Google Scholar 

  166. Ter Boo, G. A. et al. Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater. 43, 185–194 (2016).

    PubMed  Google Scholar 

  167. Vallejo Diaz, A. et al. Local application of a gentamicin-loaded hydrogel early after injury is superior to perioperative systemic prophylaxis in a rabbit open fracture model. J. Orthop. Trauma. 34, 231–237 (2020).

    PubMed  Google Scholar 

  168. Boot, W. et al. A hyaluronic acid hydrogel loaded with gentamicin and vancomycin successfully eradicates chronic methicillin-resistant Staphylococcus aureus orthopedic infection in a sheep model. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01840-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Foster, A. L. et al. Single-stage revision of MRSA orthopedic device-related infection in sheep with an antibiotic-loaded hydrogel. J. Orthop. Res. 39, 438–448 (2021).

    CAS  PubMed  Google Scholar 

  170. Onsea, J. et al. Bacteriophage therapy as a treatment strategy for orthopaedic-device-related infections: where do we stand. Eur. Cell Mater. 39, 193–210 (2020).

    CAS  PubMed  Google Scholar 

  171. Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022).

    CAS  PubMed  Google Scholar 

  172. Adjei-Sowah, E. et al. Development of bisphosphonate-conjugated antibiotics to overcome pharmacodynamic limitations of local therapy: initial results with carbamate linked sitafloxacin and tedizolid. Antibiotics https://doi.org/10.3390/antibiotics10060732 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Proctor, R. A. Recent developments for Staphylococcus aureus vaccines: clinical and basic science challenges. Eur. Cell Mater. 30, 315–326 (2015).

    CAS  PubMed  Google Scholar 

  174. Yokogawa, N. et al. Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis. J. Orthop. Res. 36, 1590–1598 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04763759 (2022).

  176. Estelles, A. et al. A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob. Agents Chemother. 60, 2292–2301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ghimire, A., Skelly, J. D. & Song, J. Micrococcal-nuclease-triggered on-demand release of vancomycin from intramedullary implant coating eradicates Staphylococcus aureus infection in mouse femoral canals. ACS Cent. Sci. 5, 1929–1936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, C., Foster, A. L., Han, N. H. B., Trampuz, A. & Schuetz, M. A bibliometric analysis of clinical research on fracture-related infection. BioMed. Res. Int. 2022, 8171831 (2022).

    PubMed  PubMed Central  Google Scholar 

  179. Rupp, M. et al. Can necrotic bone be objectively identified in chronic fracture related infections? – First clinical experience with an intraoperative fluorescence imaging technique. Injury 51, 2541–2545 (2020).

    PubMed  Google Scholar 

  180. Colton, C., Buckley, R. & Camuso M. Principles of management of open fractures: Classification of open fractures. AO Foundation https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/further-reading/principles-of-management-of-open-fractures#classification-of-open-fractures (2018).

  181. Wang, X. et al. Increased intracellular activity of MP1102 and NZ2114 against Staphylococcus aureus in vitro and in vivo. Sci. Rep. 8, 4204 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Becker, K., Kriegeskorte, A., Sunderkötter, C., Löffler, B. & von Eiff, C. Chronisch rezidivierende Infektionen der Haut und Weichgewebe durch Staphylococcus aureus [German]. Hautarzt 65, 15–25 (2014).

    CAS  PubMed  Google Scholar 

  183. Moriarty, T. F. et al. Bone infection: a clinical priority for clinicians, scientists and educators. Eur. Cell Mater. 42, 312–333 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.F.M., R.G.R. and E.M.S. acknowledge support from AOTrauma through the clinical priority program Bone Infection.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.F.M., W.-J.M., B.W. and R.G.R.); Epidemiology (T.F.M., W.-J.M., M.M., J.E.C. and M.D.); Mechanisms/pathophysiology (T.F.M., W.-J.M., M.M., M.I.H., J.E.C., B.W. and E.M.S.); Diagnosis, screening, and prevention (T.F.M., W.-J.M., M.M., A.V.D., J.E.C. and M.D.); Management (T.F.M., W.-J.M., M.M., A.V.D., J.E.C. and M.D.); Quality of life (T.F.M., W.-J.M. and M.M.); Outlook (T.F.M., W.-J.M., M.M., M.I.H., B.W., E.M.S. and R.G.R.); Overview of Primer (R.G.R.).

Corresponding author

Correspondence to R. Geoff Richards.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks P.C. Jutte, J. Parvizi, P.M. Rommens, U.C. Stockle and K.D. Tetsworth for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fracture-related infection

(FRI). Infection associated with a bone fracture, with or without operative management.

Osteomyelitis

Inflammation of bone and bone marrow, most commonly due to bacterial infection.

Peri-prosthetic joint infection

(PJI). Infection associated with an artificial joint involving bone, surrounding soft tissues and/or bacterial colonization of the surface of the implant.

Biomechanical instability

Movement across a fracture gap due to lack of fixation, or insufficient fixation.

Non-union

A fracture that does not heal within the usual time frame, and one later-stage outcome of an intermediate step called delayed union.

Closed fractures

Fractures that do not cause the overlying skin to break.

Complex fractures

Bone fractures further complicated by substantial soft tissue or bone damage.

Open fractures

Bone fractures where the overlying skin is breached.

Gustilo and Anderson (GA) classification

The most widely accepted, standardized classification system of open fractures, based on wound size, bone damage and vascular damage.

Injury severity scores

(ISS). A standardized system to score trauma severity that accounts for injuries to the musculoskeletal and other body systems.

Antimicrobial resistance

(AMR). The ability of microorganisms to withstand antimicrobial treatment.

Biofilm

A community of bacteria within a self-produced matrix of extracellular polymeric substances, which may also involve extracellular DNA or host-derived macromolecules, growing on a substrate such as an implanted fracture fixation device.

Staphylococcal abscess community

(SAC). An accumulation of many S. aureus bacterial cells within a self-produced fibrin pseudocapsule.

Accessory gene regulator

(Agr). The agr locus encodes a quorum-sensing and two-component regulatory system that controls expression of multiple virulence factors in S. aureus and S. epidermidis.

Surgical debridement

A surgical procedure to remove necrotic or infected tissue, which includes irrigation, excision and removal of foreign material.

Osteoblasts

Cells responsible for bone formation.

Mineralization

The addition of minerals (such as calcium or phosphorus) to callus, leading to calcified tissue.

Callus

Tissue formed at the fracture site during the healing process, with cartilaginous composition at earlier stages, transitioning to calcified tissue at a later stage.

Osteoclastogenesis

The formation of bone-resorbing cells, osteoclasts, from myeloid precursor cells.

Sequestra

Pieces of dead bone separated from surrounding bone due to infection and necrosis.

Cytokines

Large group of secreted proteins that are important for cell communication and signalling; during inflammation, they can have pro-inflammatory or anti-inflammatory effects.

Receptor activator of nuclear factor-κΒ ligand

(RANKL). A key mediator of bone resorption that stimulates the formation and activity of osteoclasts by binding to the RANK receptor.

Osteoclasts

Cells responsible for bone resorption.

Myeloid-derived suppressor cells

Immature monocytes or neutrophils that have immunosuppressive abilities; these cells proliferate in response to the prolonged presence of myeloid growth factors and inflammatory molecules.

Sinus tracts

Small channels from sites of infection to the surface of the skin.

Pathognomonic

A clinical sign or feature that is characteristic of a disease; in this context, it confirms that an infection is definitely present.

Empirical antibiotic therapy

Antibiotic therapy selection when pathogens are unknown but based on anticipated and likely causative organisms.

Rifampicin

A key antibiotic owing to its activity against staphylococcal biofilms and stationary phase bacteria.

Fluoroquinolones

A class of antibiotics that are particularly important owing to their anti-biofilm activity against Gram-negative bacterial biofilms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriarty, T.F., Metsemakers, WJ., Morgenstern, M. et al. Fracture-related infection. Nat Rev Dis Primers 8, 67 (2022). https://doi.org/10.1038/s41572-022-00396-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00396-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology