Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adult-onset autoimmune diabetes

Subjects

Abstract

Adult-onset autoimmune (AOA) diabetes pathophysiology starts with immune changes, followed by dysglycaemia and overt disease. AOA diabetes can occur as classic type 1 diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as latent autoimmune diabetes in adults, a slowly progressing form with late onset, a long period not requiring insulin, and it is often misdiagnosed as type 2 diabetes. As its clinical presentation varies remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, especially when insulin treatment is not required at diagnosis. Proper care of AOA diabetes aims to prevent complications and to improve quality of life and life expectancy. To achieve these goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right therapy for AOA diabetes is challenging. Most of the trials testing disease-modifying therapies for autoimmune diabetes are conducted in people with childhood onset, whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 diabetes. More randomized controlled trials of therapeutic agents in AOA diabetes are needed.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The adult-onset diabetes spectrum.
Fig. 2: Frequency of islet-specific autoantibodies in adults with a clinical diagnosis of type 2 diabetes mellitus.
Fig. 3: Model for staging of autoimmune diabetes.
Fig. 4: Model for pathogenesis of autoimmune diabetes.
Fig. 5: Diagnostic and therapeutic algorithm for LADA92.
Fig. 6: Priorities to address gaps in understanding of adult-onset autoimmune diabetes.

References

  1. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes — 2022. Diabetes Care 45 (Suppl. 1), S17–S38 (2021).

    Google Scholar 

  2. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  3. Leslie, R. D. et al. Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care 44, 2449–2456 (2021). An up-to-date authoritative review of the pathogenesis, characteristics, clinical and psychosocial impact and putative management of AOA diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howson, J. M., Rosinger, S., Smyth, D. J., Boehm, B. O. & Todd, J. A., ABDW-END Study Group. Genetic analysis of adult-onset autoimmune diabetes. Diabetes 60, 2645–2653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishra, R. et al. Genetic discrimination between LADA and childhood-onset type 1 diabetes within the MHC. Diabetes Care 43, 418–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Hawa, M. I. et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. Diabetes Care 36, 908–913 (2013). Report from the large European Action LADA cohort pinpointing the major overlap between LADA- and T2DM-associated clinical phenotypes.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maddaloni, E. et al. Latent autoimmune diabetes in adults in the United Arab Emirates: clinical features and factors related to insulin-requirement. PLoS ONE 10, e0131837 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. IDF. IDF Diabetes Atlas 10th edn (International Diabetes Federation, 2021).

  9. Diaz-Valencia, P. A., Bougnères, P. & Valleron, A. J. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15, 255 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Harding, J. L. et al. The incidence of adult-onset type 1 diabetes: a systematic review from 32 countries and regions. Diabetes Care 45, 994–1006 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiang, Y. et al. Identification of autoimmune type 1 diabetes and multiple organ-specific autoantibodies in adult-onset non-insulin-requiring diabetes in China: a population-based multicentre nationwide survey. Diabetes Obes. Metab. 2, 893–902 (2019).

    Article  CAS  Google Scholar 

  12. Sheehan, A., Freni Sterrantino, A., Fecht, D., Elliott, P. & Hodgson, S. Childhood type 1 diabetes: an environment-wide association study across England. Diabetologia 63, 964–976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shields, B. M. et al. Can clinical features be used to differentiate type 1 from type 2 diabetes? A systematic review of the literature. BMJ Open 5, e009088 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thomas, N. J. et al. Type 1 diabetes defined by severe insulin deficiency occurs after 30 years of age and is commonly treated as type 2 diabetes. Diabetologia 62, 1167–1172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, A. G., McDonald, T. J., Shields, B. M., Hagopian, W. & Hattersley, A. T. Latent autoimmune diabetes of adults (LADA) is likely to represent a mixed population of autoimmune (type 1) and nonautoimmune (type 2) diabetes. Diabetes Care 44, 1243–1251 (2021). Provides a cogent argument for better classification to facilitate improved assignment of prognosis and therapy in persons with adult-onset diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, Y. et al. Improving clinical utility of GAD65 autoantibodies by electrochemiluminescence assay and clinical phenotype when identifying autoimmune adult-onset diabetes. Diabetologia 64, 2052–2060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawasaki, E. et al. Discrepancy of glutamic acid decarboxylase 65 autoantibody results between RSR radioimmunoassay and enzyme-linked immunosorbent assay in patients with type 1 diabetes is related to autoantibody affinity. J. Diabetes Investig. 10, 990–996 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawasaki, E. et al. Characterization of patients with diabetes who were incidentally found to be glutamic acid decarboxylase autoantibody-positive by bridging-type enzyme-linked immunosorbent assay. J. Diabetes Investig. 11, 1507–1510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsirogianni, A., Pipi, E. & Soufleros, K. Specificity of islet cell autoantibodies and coexistence with other organ specific autoantibodies in type 1 diabetes mellitus. Autoimmun. Rev. 8, 687–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Zampetti, S. et al. GADA titer-related risk for organ-specific autoimmunity in LADA subjects subdivided according to gender (NIRAD study 6). J. Clin. Endocrinol. Metab. 97, 3759–3765 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Gambelunghe, G. et al. Increased risk for endocrine autoimmunity in Italian type 2 diabetic patients with GAD65 autoantibodies. Clin. Endocrinol. 52, 565–573 (2000).

    Article  CAS  Google Scholar 

  22. Zhu, M. et al. Identification of novel T1D risk loci and their association with age and islet function at diagnosis in autoantibody-positive T1D individuals: based on a two-stage genome-wide association study. Diabetes Care 42, 1414–1421 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Oram, R. A. et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care 39, 337–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Mishra, R. et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med. 15, 88 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Carlsson, S. Environmental (lifestyle) risk factors for LADA. Curr. Diabetes Rev. 15, 178–187 (2019).

    Article  PubMed  Google Scholar 

  26. Hjort, R. et al. Overweight, obesity and the risk of LADA: results from a Swedish case-control study and the Norwegian HUNT Study. Diabetologia 61, 1333–1343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hjort, R. et al. Family history of type 1 and type 2 diabetes and risk of latent autoimmune diabetes in adults (LADA). Diabetes Metab. 43, 536–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Herzog, K. et al. Combined lifestyle factors and the risk of LADA and type 2 diabetes–results from a Swedish population-based case-control study. Diabetes Res. Clin. Pract. 174, 108760 (2021). Population-based study from Sweden showing that a healthy lifestyle, especially a healthy body weight, is reducing the risk of LADA including in those with a positive family history of diabetes and/or high-risk HLA genotypes.

    Article  CAS  PubMed  Google Scholar 

  29. Buzzetti, R., Zampetti, S. & Pozzilli, P. Impact of obesity on the increasing incidence of type 1 diabetes. Diabetes Obes. Metab. 22, 1009–1013 (2020).

    Article  PubMed  Google Scholar 

  30. Censin, J. C. et al. Childhood adiposity and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 14, e1002362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lofvenborg, J. E. et al. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. Eur. J. Endocrinol. 175, 605–614 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Löfvenborg, J. E. et al. Consumption of red meat, genetic susceptibility, and risk of LADA and type 2 diabetes. Eur. J. Nutr. 60, 769–779 (2021).

    Article  PubMed  CAS  Google Scholar 

  33. Rasouli, B. et al. Alcohol and the risk for latent autoimmune diabetes in adults: results based on Swedish ESTRID study. Eur. J. Endocrinol. 171, 535–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. In’t Veld, P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets 3, 131–138 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fasolino, M. et al. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat. Metab. 4, 284–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Insel, R. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38, 1964–1974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia, T. S., Rech, T. H. & Leitão, C. B. Pancreatic size and fat content in diabetes: a systematic review and meta-analysis of imaging studies. PLoS ONE 12, e0180911 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lu, J. et al. Pancreatic volume is reduced in patients with latent autoimmune diabetes in adults. Diabetes Metab. Res. Rev. 32, 858–866 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Subauste, A. et al. Islet autoimmunity identifies a unique pattern of impaired pancreatic beta-cell function, markedly reduced pancreatic beta cell mass and insulin resistance in clinically diagnosed type 2 diabetes. PLoS ONE 9, e106537 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Campbell-Thompson, M. et al. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes 65, 719–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Leete, P. et al. Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65, 1362–1369 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Signore, A. et al. Detection of insulitis by pancreatic scintigraphy with 99mTc-labeled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care 38, 652–658 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Jörns, A., Wedekind, D., Jähne, J. & Lenzen, S. Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared with type 1 diabetes. Diabetes 69, 624–633 (2020).

    Article  PubMed  CAS  Google Scholar 

  44. Brooks-Worrell, B. M., Reichow, J. L., Goel, A., Ismail, H. & Palmer, J. P. Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 34, 168–173 (2011).

    Article  PubMed  Google Scholar 

  45. Brooks-Worrell, B. M., Boyko, E. J. & Palmer, J. P. Impact of islet autoimmunity on the progressive β-cell functional decline in type 2 diabetes. Diabetes Care 37, 3286–3293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richardson, S. J., Willcox, A., Bone, A. J., Foulis, A. K. & Morgan, N. G. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52, 1143–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Krogvold, L. et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64, 1682–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Nigi, L. et al. Increased expression of viral sensor MDA5 in pancreatic islets and in hormone-negative endocrine cells in recent onset type 1 diabetic donors. Front. Immunol. 13, 833141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buzzetti, R. et al. High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Diabetes Care 30, 932–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zampetti, S. et al. High GADA titer increases the risk of insulin requirement in LADA patients: a 7-year follow-up (NIRAD study 7). Eur. J. Endocrinol. 171, 697–704 (2014). Follow-up study defining high GADA titre, BMI ≤25, ZnT8, IA-2IC positivity and sulfonylurea treatment as significant risks to progression towards insulin requirement in LADA.

    Article  CAS  PubMed  Google Scholar 

  51. Kawasaki, E. et al. Autoantibodies to glutamic acid decarboxylase in patients with IDDM and autoimmune thyroid disease. Diabetes 43, 80–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Achenbach, P. et al. Autoantibodies to N-terminally truncated GAD improve clinical phenotyping of individuals with adult-onset diabetes: Action LADA 12. Diabetologia 61, 1644–1649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tiberti, C. et al. Immunoreactivities against different tyrosine-phosphatase 2 (IA-2) (256-760) protein domains characterize distinct phenotypes in subjects With LADA. Front. Endocrinol. 13, 921886 (2022).

    Article  Google Scholar 

  54. Smilek, D. E., Ehlers, M. R. & Nepom, G. T. Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis. Model. Mech. 7, 503–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. James, E. A., Pietropaolo, M. & Mamula, M. J. Immune recognition of β-cells: neoepitopes as key players in the loss of tolerance. Diabetes 67, 1035–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gootjes, C., Zwaginga, J. J., Roep, B. O. & Nikolic, T. Functional impact of risk gene variants on the autoimmune responses in type 1 diabetes. Front. Immunol. 13, 886736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Maine, C. J. et al. PTPN22 alters the development of regulatory T cells in the thymus. J. Immunol. 188, 5267–5275 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Hull, C. M., Peakman, M. & Tree, T. I. M. Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60, 1839–1850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schneider, A. et al. The effector T cells of diabetic subjects are resistant to regulation via CD4+FOXP3+ regulatory T cells. J. Immunol. 181, 7350–7355 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Radenkovic, M. et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin. Exp. Immunol. 186, 46–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Z. et al. The CD4+ regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res. Clin. Pract. 76, 126–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X. et al. Altered T-cell subsets and transcription factors in latent autoimmune diabetes in adults taking sitagliptin, a dipeptidyl peptidase-4 inhibitor: a 1-year open-label randomized controlled trial. J. Diabetes Investig. 10, 375–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Kemppainen, K. M. et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38, 329–332 (2015).

    Article  PubMed  Google Scholar 

  65. Fang, Y. et al. Characteristics of the gut microbiota and metabolism in patients with latent autoimmune diabetes in adults: a case-control study. Diabetes Care 44, 2738–2746 (2021). This paper highlights the finding that the structure and composition of the gut microbiota from individuals with LADA differed from those of individuals with T1DM and T2DM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 18, 1161–1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018). This paper reviews immune-mediated adverse events that have occurred with new powerful immunotherapeutic treatments for cancers, which include diabetes associated with these treatments.

    Article  CAS  PubMed  Google Scholar 

  71. Tachibana, M. & Imagawa, A. Type 1 diabetes related to immune checkpoint inhibitors. Best Pract. Res. Clin. Endocrinol. Metab. 36, 101657 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Quandt, Z., Young, A. & Anderson, M. Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clin. Exp. Immunol. 200, 131–140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, J. et al. Reporting of immune checkpoint inhibitor therapy-associated diabetes, 2015–2019. Diabetes Care 43, e79–e80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abarca-Gómez, L. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  75. Tuomi, T. et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 48, 150–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Carlsson, S. Etiology and pathogenesis of latent autoimmune diabetes in adults (LADA) compared to type 2 diabetes. Front. Physiol. 10, 320 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Buzzetti, R., Zampetti, S. & Maddaloni, E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat. Rev. Endocrinol. 13, 674–686 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Zaharia, O. P. et al. Metabolic characteristics of recently diagnosed adult-onset autoimmune diabetes mellitus. J. Clin. Endocrinol. Metab. 103, 429–437 (2018).

    Article  PubMed  Google Scholar 

  79. Tuomi, T. et al. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 42, 359–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Genovese, S. et al. Clinical phenotype and beta-cell autoimmunity in Italian patients with adult-onset diabetes. Eur. J. Endocrinol. 154, 441–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Pozzilli, P. & Pieralice, S. Latent autoimmune diabetes in adults: current status and new horizons. Endocrinol. Metab. 33, 147–159 (2018).

    Article  CAS  Google Scholar 

  82. Zinman, B. et al. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes 53, 3193–3200 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, Z. et al. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62, 543–550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ong, Y. H. et al. Glutamic acid decarboxylase and islet antigen 2 antibody profiles in people with adult-onset diabetes mellitus: a comparison between mixed ethnic populations in Singapore and Germany. Diabet. Med. 34, 1145–1153 (2017). Transethnic study comparing immunological and clinical features of patients with LADA from Europe and from three ethnic groups from Singapore.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adeleye, O. O. et al. Latent autoimmune diabetes mellitus in adults (LADA) and its characteristics in a subset of Nigerians initially managed for type 2 diabetes. Int. Arch. Med. 5, 23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davies, H. et al. Latent autoimmune diabetes in adults (LADA) in South Wales: incidence and characterization. Diabet. Med. 25, 1354–1357 (2008). First study of LADA in primary care, which describes a lower BMI, the presence of other antibodies, the presence of acute diabetes symptoms and higher glycated haemoglobin in incident LADA cases.

    CAS  PubMed  Google Scholar 

  87. Szepietowska, B., Glebocka, A., Puch, U., Gorska, M. & Szelachowska, M. Latent autoimmune diabetes in adults in a population-based cohort of Polish patients with newly diagnosed diabetes mellitus. Arch. Med. Sci. 8, 491–495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carlsson, S., Midthjell, K., Tesfamarian, M. Y. & Grill, V. Age, overweight and physical inactivity increase the risk of latent autoimmune diabetes in adults: results from the Nord-Trondelag health study. Diabetologia 50, 55–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Hernandez, M. et al. Insulin secretion in patients with latent autoimmune diabetes (LADA): half way between type 1 and type 2 diabetes: Action LADA 9. BMC Endocr. Disord. 15, 1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bacha, F. & Redondo, M. J. Decline pattern of beta cell function in LADA: relationship to GAD autoantibodies. J. Clin. Endocrinol. Metab. 105, e3008–e3009 (2020).

    Article  PubMed Central  Google Scholar 

  91. Donnelly, L. A. et al. Rates of glycaemic deterioration in a real-world population with type 2 diabetes. Diabetologia 61, 607–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Buzzetti, R. et al. Management of latent autoimmune diabetes in adults: a consensus statement from an international expert panel. Diabetes 69, 2037–2047 (2020). First intenational consensus statement providing guidance for the treatment of LADA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andersen, C. D. et al. Worse glycaemic control in LADA patients than in those with type 2 diabetes, despite a longer time on insulin therapy. Diabetologia 56, 252–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Chow, L. S., Chen, H., Miller, M. E., Marcovina, S. M. & Seaquist, E. R. Biomarkers related to severe hypoglycaemia and lack of good glycaemic control in ACCORD. Diabetologia 58, 1160–1166 (2015). Nested case–control analysis from the ACCORD study identifying low C-peptide and the presence of islet autoantibodies as potential risks of severe hypoglycaemia with near-normal glycaemia as treatment target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maioli, M. et al. Number of autoantibodies and HLA genotype, more than high titers of glutamic acid decarboxylase autoantibodies, predict insulin dependence in latent autoimmune diabetes of adults. Eur. J. Endocrinol. 163, 541–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Petrone, A. et al. The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: non insulin requiring autoimmune diabetes (NIRAD) study 3. Diabetes Care 31, 534–538 (2008).

    Article  PubMed  Google Scholar 

  97. Zampetti, S. et al. Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD study 5). Diabet. Med. 27, 701–704 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Tiberti, C. et al. Identification of tyrosine phosphatase 2(256-760) construct as a new, sensitive marker for the detection of islet autoimmunity in type 2 diabetic patients: the non-insulin requiring autoimmune diabetes (NIRAD) study 2. Diabetes 57, 1276–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Buzzetti, R. et al. Tyrosine phosphatase-related islet antigen 2(256-760) autoantibodies, the only marker of islet autoimmunity that increases by increasing the degree of BMI in obese subjects with type 2 diabetes. Diabetes Care 38, 513–520 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Tiberti, C. et al. Evidence of diabetes-specific autoimmunity in obese subjects with normal glucose tolerance. Diabetes Metab. Res. Rev. 34, e3055 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. Andersen, M. K. et al. Zinc transporter type 8 autoantibodies (ZnT8A): prevalence and phenotypic associations in latent autoimmune diabetes patients and patients with adult onset type 1 diabetes. Autoimmunity 46, 251–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Sørgjerd, E. P., Skorpen, F., Kvaløy, K., Midthjell, K. & Grill, V. Prevalence of ZnT8 antibody in relation to phenotype and SLC30A8 polymorphism in adult autoimmune diabetes: results from the HUNT study, Norway. Autoimmunity 46, 74–79 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Fourlanos, S. et al. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia 48, 2206–2212 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka, S. et al. Clinical characteristics of slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM): 1st Subcommittee Report on SPIDDM, Committee on Type 1 Diabetes, Japan Diabetes Society. Journal of the Japan Diabetes Society 54, 65–75 (2011).

    Google Scholar 

  105. Araki, E. et al. Japanese clinical practice guideline for diabetes 2019. J. Diabetes Investig. 11, 1020–1076 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. WHO. Classification of Diabetes Mellitus 2019 (WHO, 2019).

  107. Chung, W. K. et al. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63, 1671–1693 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tuomi, T. et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383, 1084–1094 (2014).

    Article  PubMed  Google Scholar 

  109. Bansal, V. et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med. 15, 213 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bonnefond, A. et al. Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat. Metab. 2, 1126–1134 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Holt, R. I. G. et al. The management of type 1 diabetes in adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 44, 2589–2625 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Magkos, F., Hjorth, M. F. & Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 545–555 (2020).

    Article  PubMed  Google Scholar 

  113. McGee, S. L. & Hargreaves, M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 16, 495–505 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Pieralice, S., Vigevano, F., Del Toro, R., Napoli, N. & Maddaloni, E. Lifestyle management of diabetes: implications for the bone-vascular axis. Curr. Diab. Rep. 18, 84 (2018).

    Article  PubMed  CAS  Google Scholar 

  115. Chimen, M. et al. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 55, 542–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Wake, A. D. Protective effects of physical activity against health risks associated with type 1 diabetes: “Health benefits outweigh the risks”. World J. Diabetes 13, 161–184 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wu, N. et al. Cardiovascular health benefits of exercise training in persons living with type 1 diabetes: a systematic review and meta-analysis. J. Clin. Med. 8, 253 (2019).

    Article  PubMed Central  Google Scholar 

  119. Tikkanen-Dolenc, H. et al. Physical activity reduces risk of premature mortality in patients with type 1 diabetes with and without kidney disease. Diabetes Care 40, 1727–1732 (2017).

    Article  PubMed  Google Scholar 

  120. Maddaloni, E., Moretti, C., Mignogna, C. & Buzzetti, R. Adult-onset autoimmune diabetes in 2020: an update. Maturitas 137, 37–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Maddaloni, E. et al. C-peptide determination in the diagnosis of type of diabetes and its management: a clinical perspective. Diabetes Obes. Metab. https://doi.org/10.1111/dom.14785 (2022).

    Article  PubMed  Google Scholar 

  122. Brophy, S., Davies, H., Mannan, S., Brunt, H. & Williams, R. Interventions for latent autoimmune diabetes (LADA) in adults. Cochrane Database Syst. Rev. 9, CD006165 (2011).

    Google Scholar 

  123. Maddaloni, E., Coleman, R. L., Pozzilli, P. & Holman, R. R. Long-term risk of cardiovascular disease in individuals with latent autoimmune diabetes in adults (UKPDS 85). Diabetes Obes. Metab. 21, 2115–2122 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Group, I. H. S. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 7, 385–396 (2019).

    Article  Google Scholar 

  125. Panzer, J. K. & Caicedo, A. Targeting the pancreatic α-cell to prevent hypoglycemia in type 1 diabetes. Diabetes 70, 2721–2732 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Bell, K. J., Barclay, A. W., Petocz, P., Colagiuri, S. & Brand-Miller, J. C. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2, 133–140 (2014).

    Article  PubMed  Google Scholar 

  127. Vaz, E. C., Porfírio, G. J. M., Nunes, H. R. C. & Nunes-Nogueira, V. D. S. Effectiveness and safety of carbohydrate counting in the management of adult patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Arch. Endocrinol. Metab. 62, 337–345 (2018).

    PubMed  Google Scholar 

  128. Zheng, H. et al. Comparative efficacy and safety of antihyperglycemic drug classes for patients with type 2 diabetes following failure with metformin monotherapy: a systematic review and network meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 38, e3515 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Van der Schueren, B. et al. Obesity in people living with type 1 diabetes. Lancet Diabetes Endocrinol. 9, 776–785 (2021).

    Article  PubMed  Google Scholar 

  130. Cree-Green, M. et al. Metformin improves peripheral insulin sensitivity in youth with type 1 diabetes. J. Clin. Endocrinol. Metab. 104, 3265–3278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49, 434–441 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Z., Zhou, Z., Li, X., Huang, G. & Lin, J. Rosiglitazone preserves islet beta-cell function of adult-onset latent autoimmune diabetes in 3 years follow-up study. Diabetes Res. Clin. Pract. 83, 54–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, Z. et al. Rosiglitazone combined with insulin preserves islet beta cell function in adult-onset latent autoimmune diabetes (LADA). Diabetes Metab. Res. Rev. 21, 203–208 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. Dennis, J. M. et al. Sex and BMI alter the benefits and risks of sulfonylureas and thiazolidinediones in type 2 diabetes: a framework for evaluating stratification using routine clinical and individual trial data. Diabetes Care 41, 1844–1853 (2018).

    Article  PubMed  Google Scholar 

  136. Shimada, A. et al. Pioglitazone may accelerate disease course of slowly progressive type 1 diabetes. Diabetes Metab. Res. Rev. 27, 951–953 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Kristensen, S. L. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7, 776–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Farilla, L. et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144, 5149–5158 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. von Herrath, M. et al. Anti-interleukin-21 antibodyand liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 212–224 (2021).

    Article  Google Scholar 

  140. Pozzilli, P. et al. Randomized 52-week phase 2 trial of albiglutide versus placebo in adult patients with newly diagnosed type 1 diabetes. J. Clin. Endocrinol. Metab. 105, dgaa149 (2020).

    Article  PubMed  Google Scholar 

  141. Pozzilli, P. et al. Dulaglutide treatment results in effective glycaemic control in latent autoimmune diabetes in adults (LADA): a post-hoc analysis of the AWARD-2, -4 and -5 trials. Diabetes Obes. Metab. 20, 1490–1498 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Jones, A. G. et al. Markers of β-cell failure predict poor glycemic response to GLP-1 receptor agonist therapy in type 2 diabetes. Diabetes Care 39, 250–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Ceriello, A., Sportiello, L., Rafaniello, C. & Rossi, F. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin. Drug Saf. 13, S57–S68 (2014).

    Article  PubMed  CAS  Google Scholar 

  144. Awata, T. et al. Possible long-term efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, for slowly progressive type 1 diabetes (SPIDDM) in the stage of non-insulin-dependency: an open-label randomized controlled pilot trial (SPAN-S). Diabetes Ther. 8, 1123–1134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Buzzetti, R., Pozzilli, P., Frederich, R., Iqbal, N. & Hirshberg, B. Saxagliptin improves glycaemic control and C-peptide secretion in latent autoimmune diabetes in adults (LADA). Diabetes Metab. Res. Rev. 32, 289–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Johansen, O. E. et al. C-peptide levels in latent autoimmune diabetes in adults treated with linagliptin versus glimepiride: exploratory results from a 2-year double-blind, randomized, controlled study. Diabetes Care 37, e11–e12 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, Y. et al. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains β-cell function in patients with recent-onset latent autoimmune diabetes in adults: one year prospective study. J. Clin. Endocrinol. Metab. 99, e876–e880 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Yang, L. et al. Islet function and insulin sensitivity in latent autoimmune diabetes in adults taking sitagliptin: a randomized trial. J. Clin. Endocrinol. Metab. 106, e1529–e1541 (2021).

    Article  PubMed  Google Scholar 

  149. Zhang, Z. et al. Adding vitamin D3 to the dipeptidyl peptidase-4 inhibitor saxagliptin has the potential to protect β-cell function in LADA patients: a 1-year pilot study. Diabetes Metab. Res. Rev. 36, e3298 (2020).

    CAS  PubMed  Google Scholar 

  150. Hals, I. K. et al. Investigating optimal β-cell-preserving treatment in latent autoimmune diabetes in adults: results from a 21-month randomized trial. Diabetes Obes. Metab. 21, 2219–2227 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Mathieu, C. et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 Study): 24-week results from a randomized controlled trial. Diabetes Care 41, 1938–1946 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Dandona, P. et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 5, 864–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377, 2337–2348 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Kaku, K., Isaka, H., Sakatani, T. & Toyoshima, J. Efficacy and safety of ipragliflozin add-on therapy to insulin in Japanese patients with type 1 diabetes mellitus: a randomized, double-blind, phase 3 trial. Diabetes Obes. Metab. 21, 2284–2293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Medicines and Healthcare products Regulatory Agency. Dapagliflozin (Forxiga): no longer authorised for treatment of type 1 diabetes mellitus. Medicines and Healthcare products Regulatory Agency https://www.gov.uk/drug-safety-update/dapagliflozin-forxiga-no-longer-authorised-for-treatment-of-type-1-diabetes-mellitus (2021).

  156. Mathieu, C. et al. Benefit/risk profile of dapagliflozin 5 mg in the DEPICT-1 and -2 trials in individuals with type 1 diabetes and body mass index ≥27 kg/m2. Diabetes Obes. Metab. 22, 2151–2160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Danne, T. et al. Efficacy and safety of adding sotagliflozin, a dual sodium-glucose co-transporter (SGLT)1 and SGLT2 inhibitor, to optimized insulin therapy in adults with type 1 diabetes and baseline body mass index ≥27 kg/m2. Diabetes Obes. Metab. 23, 854–860 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Whitehouse, F. et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 25, 724–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Pozzilli, P., Maddaloni, E. & Buzzetti, R. Combination immunotherapies for type 1 diabetes mellitus. Nat. Rev. Endocrinol. 11, 289–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Mignogna, C., Maddaloni, E., D’Onofrio, L. & Buzzetti, R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin. Investig. Drugs 30, 1209–1219 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Agardh, C. D., Lynch, K. F., Palmér, M., Link, K. & Lernmark, A. GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 52, 1363–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Gitelman, S. E. et al. Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 502–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bradley, C. et al. The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. Qual. Life Res. 8, 79–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Bradley, C. Diabetes treatment satisfaction questionnaire. Change version for use alongside status version provides appropriate solution where ceiling effects occur. Diabetes care 22, 530–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Ahola, A. J. et al. Health-related quality of life in patients with type 1 diabetes-association with diabetic complications (the FinnDiane study). Nephrol. Dial. Transpl. 25, 1903–1908 (2010).

    Article  Google Scholar 

  166. Driscoll, K. A. et al. Biopsychosocial aspects of weight management in type 1 diabetes: a review and next steps. Review. Curr. Diabetes Rep. 17, 58 (2017).

    Article  CAS  Google Scholar 

  167. Hassan, K., Loar, R., Anderson, B. J. & Heptulla, R. A. The role of socioeconomic status, depression, quality of life, and glycemic control in type 1 diabetes mellitus. J. Pediatr. 149, 526–531 (2006).

    Article  PubMed  Google Scholar 

  168. Granado-Casas, M. et al. Decreased quality of life and treatment satisfaction in patients with latent autoimmune diabetes of the adult. PeerJ 5, e3928 (2017). Directly addresses QoL and treatment satisfaction in persons with LADA compared with those with classic T1DM and T2DM.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Fadiga, L. et al. Adult-onset autoimmune diabetes: comparative analysis of classical and latent presentation. Diabetol. Metab. Syndr. 12, 107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Maddaloni, E., Coleman, R. L., Agbaje, O., Buzzetti, R. & Holman, R. R. Time-varying risk of microvascular complications in latent autoimmune diabetes of adulthood compared with type 2 diabetes in adults: a post-hoc analysis of the UK Prospective Diabetes Study 30-year follow-up data (UKPDS 86). Lancet Diabetes Endocrinol. 8, 206–215 (2020). Post-hoc analysis of the UKPDS comparing the long-term risk of microvascular complications between people with LADA and people with T2DM.

    Article  CAS  PubMed  Google Scholar 

  171. Tanaka, S. et al. Diagnostic criteria for slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM)(2012): report by the Committee on Slowly Progressive Insulin-Dependent (Type 1) Diabetes Mellitus of the Japan Diabetes Society. Diabetol. Int. 6, 1–7 (2015).

    Article  Google Scholar 

  172. Lohmann, T. et al. Titre and combination of ICA and autoantibodies to glutamic acid decarboxylase discriminate two clinically distinct types of latent autoimmune diabetes in adults (LADA). Diabetologia 44, 1005–1010 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Li, X., Yang, L., Zhou, Z., Huang, G. & Yan, X. Glutamic acid decarboxylase 65 autoantibody levels discriminate two subtypes of latent autoimmune diabetes in adults. Comparative Study. Chin. Med. J. 116, 1728–1732 (2003).

    CAS  PubMed  Google Scholar 

  174. Aoyama, T. et al. Clinical heterogeneity of adult Japanese diabetes depending on titers of glutamic acid decarboxylase autoantibodies. J. Diabetes Invest. 3, 266–270 (2012).

    Article  CAS  Google Scholar 

  175. Laugesen, E., Østergaard, J. A. & Leslie, R. D. G. Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabet. Med. 32, 843–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. University of Exeter. T1DT2D Prediction Model. Diabetes Genes https://www.diabetesgenes.org/t1dt2d-prediction-model/ (2022).

  177. Goel, A., Chiu, H., Felton, J., Palmer, J. P. & Brooks-Worrell, B. T-cell responses to islet antigens improves detection of autoimmune diabetes and identifies patients with more severe beta-cell lesions in phenotypic type 2 diabetes. Diabetes 56, 2110–2115 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Liang, H. et al. Clinical manifestation and islet beta-cell function of a subtype of latent autoimmune diabetes in adults (LADA): positive for T cell responses in phenotypic type 2 diabetes. Acta Diabetol. 56, 1225–1230 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Greenbaum, C. J. et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite type 1 Diabetes TrialNet data. Diabetes 61, 2066–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mortensen, H. B. et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 32, 1384–1390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhong, T. et al. The remission phase in type 1 diabetes: changing epidemiology, definitions, and emerging immuno-metabolic mechanisms. Diabetes Metab. Res. Rev. 36, e3207 (2020).

    Article  PubMed  Google Scholar 

  182. Takeda, H. et al. Clinical, autoimmune, and genetic characteristics of adult-onset diabetic patients with GAD autoantibodies in Japan (Ehime study). Diabetes Care 25, 995–1001 (2002).

    Article  PubMed  Google Scholar 

  183. Turner, R. et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet 350, 1288–1293 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. Radtke, M. A., Midthjell, K., Nilsen, T. I. & Grill, V. Heterogeneity of patients with latent autoimmune diabetes in adults: linkage to autoimmunity is apparent only in those with perceived need for insulin treatment: results from the Nord-Trøndelag Health (HUNT) study. Diabetes Care 32, 245–250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Qi, X. et al. Prevalence and correlates of latent autoimmune diabetes in adults in Tianjin, China: a population-based cross-sectional study. Diabetes Care 34, 66–70 (2011).

    Article  PubMed  Google Scholar 

  186. Agyei-Frempong, M. T., Titty, F. V., Owiredu, W. K. & Eghan, B. A. The prevalence of autoimmune diabetes among diabetes mellitus patients in Kumasi, Ghana. Pak. J. Biol. Sci. 11, 2320–2325 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Muazu, S. B., Okpe, I. & Anumah, F. The prevalence and characteristics of latent autoimmune diabetes in adults subset among type two diabetes mellitus patients in northern Nigeria. Ann. Afr. Med. 15, 163–170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Al-Zubairi, T., Al-Habori, M. & Saif-Ali, R. Latent autoimmune diabetes in adults (LADA) and its metabolic characteristics among yemeni type 2 diabetes mellitus patients. Diabetes Metab. Syndr. Obes. 14, 4223–4232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jónsdóttir, A. M., Aspelund, T., Sigurdsson, G., Gudnason, V. & Benediktsson, R. Latent autoimmune diabetes in adults in Iceland: prevalence, phenotype and relatedness [Icelandic]. Laeknabladid 91, 909–914 (2005).

    PubMed  Google Scholar 

  190. Brahmkshatriya, P. P., Mehta, A. A., Saboo, B. D. & Goyal, R. K. Characteristics and prevalence of latent autoimmune diabetes in adults (LADA). ISRN Pharmacol. 2012, 580202 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Roh, M. O., Jung, C. H., Kim, B. Y., Mok, J. O. & Kim, C. H. The prevalence and characteristics of latent autoimmune diabetes in adults (LADA) and its relation with chronic complications in a clinical department of a university hospital in Korea. Acta Diabetol. 50, 129–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Davis, T. M. E. & Davis, W. Incidence and associates of diabetic ketoacidosis in a community-based cohort: the Fremantle Diabetes Study Phase II. BMJ Open Diabetes Res. Care 8, e000983 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dhatariya, K. K., Glaser, N. S., Codner, E. & Umpierrez, G. E. Diabetic ketoacidosis. Nat. Rev. Dis. Primers 6, 40 (2020).

    Article  PubMed  Google Scholar 

  194. Kalscheuer, H. et al. Event rates and risk factors for the development of diabetic ketoacidosis in adult patients with type 1 diabetes: analysis from the DPV registry based on 46,966 patients. Diabetes Care 42, e34–e36 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Weinstock, R. S. et al. Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D exchange clinic registry. J. Clin. Endocrinol. Metab. 98, 3411–3419 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Fazeli Farsani, S. et al. Incidence and prevalence of diabetic ketoacidosis (DKA) among adults with type 1 diabetes mellitus (T1D): a systematic literature review. BMJ Open 7, e016587 (2017).

    Article  PubMed  Google Scholar 

  197. Alam, U. et al. Latent autoimmune diabetes of adulthood (LADA) is associated with small fibre neuropathy. Diabet. Med. 36, 1118–1124 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. D’Onofrio, L. et al. Small nerve fiber damage and langerhans cells in type 1 and type 2 diabetes and LADA measured by corneal confocal microscopy. Invest. Ophthalmol. Vis. Sci. 62, 5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Baum, P. et al. Diabetic neuropathy in patients with “latent autoimmune diabetes of the adults” (LADA) compared with patients with type 1 and type 2 diabetes. J. Neurol. 250, 682–687 (2003).

    Article  PubMed  Google Scholar 

  200. Maddaloni, E. et al. Risk of cardiac autonomic neuropathy in latent autoimmune diabetes in adults is similar to type 1 diabetes and lower compared to type 2 diabetes: a cross-sectional study. Diabet. Med. 38, e14455 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.B. was supported by the Italian Ministry of Universities and Research (Project of National Interest–PRIN, #20175L9H7H) and by the Research Foundation of the Italian Society of Diabetology (SID). B.O.B. was supported by the Ministry of Education, Singapore, Ong Tiong Tat Chair Professorship, Boehringer Ingelheim, Ulm University Bio Center (BIU) and Deutsche Forschungsgemeinschaft (DFG) (SFB 518, GRK 104).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.B., R.D.L.); Epidemiology (R.B., R.D.L.); Mechanisms/pathophysiology (F.S.W.); Diagnosis/screening/prevention (B.O.B.); Management (E.M.); Quality of life (J.G.); Outlook (J.G.); Overview of the Primer (R.B., E.M., B.O.B).

Corresponding author

Correspondence to Raffaella Buzzetti.

Ethics declarations

Competing interests

R.B. declares consulting for Sanofi, Novo Nordisk and Eli Lilly; and receiving honoraria for speaker bureaux from AstraZeneca and Abbott. J.G. declares consulting for Vertex Pharmaceuticals, Inc., Dompé farmaceutici and Avotres, Inc. E.M. declares consulting for Merck KGaA and PikDare; and receiving honoraria as speaker from Abbott. R.D.L., F.S.W. and B.O.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks A. Michels, who co-reviewed with A. Mitchell; E. Kawasaki; L. Harrison; J. Størling; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buzzetti, R., Maddaloni, E., Gaglia, J. et al. Adult-onset autoimmune diabetes. Nat Rev Dis Primers 8, 63 (2022). https://doi.org/10.1038/s41572-022-00390-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00390-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing