Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Genetic pain loss disorders

Abstract

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pain processing pathway.
Fig. 2: Overview on cellular mechanisms in CIP and HSAN.
Fig. 3: HSAN and ER-phagy.
Fig. 4: Clinical images of patients with CIP or HSAN.
Fig. 5: Human iPSC models in CIP/HSAN research.

Similar content being viewed by others

References

  1. Cox, J. J., Woods, C. G. & Kurth, I. Peripheral sensory neuropathies–pain loss vs. pain gain. Med. Genet. 32, 233–241 (2020).

    Google Scholar 

  2. Rotthier, A. et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132, 2699–2711 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Rotthier, A., Baets, J., Timmerman, V. & Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 8, 73–85 (2012).

    CAS  PubMed  Google Scholar 

  4. Nicholson, G. A. SPTLC1-Related Hereditary Sensory Neuropathy. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1390/ (updated 2 Dec 2021).

  5. Schon, K. R. et al. Congenital Insensitivity to Pain Overview. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK481553/ (updated 11 Jun 2020).

  6. Haga, N., Kubota, M. & Miwa, Z. Epidemiology of hereditary sensory and autonomic neuropathy type IV and V in Japan. Am. J. Med. Genet. A 161A, 871–874 (2013).

    PubMed  Google Scholar 

  7. Kurth, I. Hereditary Sensory and Autonomic Neuropathy Type II. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK49247/ (updated 1 Apr 2021).

  8. Curro, R. et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain 144, 1542–1550 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Lafreniere, R. G. et al. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates. Am. J. Hum. Genet. 74, 1064–1073 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong, J., Edelmann, L., Bajwa, A. M., Kornreich, R. & Desnick, R. J. Familial dysautonomia: detection of the IKBKAP IVS20(+6T –> C) and R696P mutations and frequencies among Ashkenazi Jews. Am. J. Med. Genet. 110, 253–257 (2002).

    PubMed  Google Scholar 

  11. Davidson, G. et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J. Neurol. 259, 1673–1685 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Houlden, H. et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006).

    PubMed  Google Scholar 

  13. Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M. & Nicholson, G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001).

    CAS  PubMed  Google Scholar 

  14. Nicholson, G. A. et al. Hereditary sensory neuropathy type I: haplotype analysis shows founders in southern England and Europe. Am. J. Hum. Genet. 69, 655–659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edvardson, S. et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann. Neurol. 71, 569–572 (2012).

    CAS  PubMed  Google Scholar 

  16. Manganelli, F. et al. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88, 2132–2140 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fortugno, P. et al. Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum. Mutat. 40, 106–114 (2019).

    CAS  PubMed  Google Scholar 

  18. Jin, J. Y. et al. Novel compound heterozygous DST variants causing hereditary sensory and autonomic neuropathies VI in twins of a Chinese family. Front. Genet. 11, 492 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. Yoshioka, N. et al. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis. Model Mech. https://doi.org/10.1242/dmm.041608 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Young, K. G. & Kothary, R. Dystonin/Bpag1–a link to what? Cell Motil. Cytoskeleton 64, 897–905 (2007).

    CAS  PubMed  Google Scholar 

  21. Young, K. G. & Kothary, R. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Exp. Cell Res. 314, 2750–2761 (2008).

    CAS  PubMed  Google Scholar 

  22. Tseng, K. W., Peng, M. L., Wen, Y. C., Liu, K. J. & Chien, C. L. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice. J. Biomed. Sci. 18, 9 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryan, S. D. et al. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Mol. Biol. Cell 23, 553–566 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrier, A., Boyer, J. G. & Kothary, R. Cellular and molecular biology of neuronal dystonin. Int. Rev. Cell Mol. Biol. 300, 85–120 (2013).

    CAS  PubMed  Google Scholar 

  25. Ferrier, A. et al. Disruption in the autophagic process underlies the sensory neuropathy in Dystonia musculorum mice. Autophagy 11, 1025–1036 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Groves, R. W. et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J. Invest. Dermatol. 130, 1551–1557 (2010).

    CAS  PubMed  Google Scholar 

  27. Liu, L. et al. Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Invest. Dermatol. 132, 742–744 (2012).

    CAS  PubMed  Google Scholar 

  28. Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat. Genet. 10, 301–306 (1995).

    CAS  PubMed  Google Scholar 

  29. Scott, B. L. et al. Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat. Commun. 9, 419 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Nahorski, M. S. et al. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 138, 2147–2160 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Nahorski, M. S. et al. Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development. Sci. Rep. 8, 2340 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Riviere, J. B. et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 89, 219–230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, J. R. et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum. Mutat. https://doi.org/10.1002/humu.22709 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nemani, T. et al. KIF1A-related disorders in children: a wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 25, 117–124 (2020).

    PubMed  Google Scholar 

  35. Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16–25 (2015).

    CAS  PubMed  Google Scholar 

  36. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    CAS  PubMed  Google Scholar 

  37. Sgro, A. E., Bajjalieh, S. M. & Chiu, D. T. Single-axonal organelle analysis method reveals new protein-motor associations. ACS Chem. Neurosci. 4, 277–284 (2013).

    CAS  PubMed  Google Scholar 

  38. Hummel, J. J. A. & Hoogenraad, C. C. Specific KIF1A-adaptor interactions control selective cargo recognition. J. Cell Biol. https://doi.org/10.1083/jcb.202105011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Houlden, H. et al. A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann. Neurol. 56, 586–590 (2004).

    CAS  PubMed  Google Scholar 

  41. Zhang, K. et al. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J. Neurosci. 33, 7451–7462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ponomareva, O. Y., Eliceiri, K. W. & Halloran, M. C. Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Dev. 11, 2 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Lowe, H., Toyang, N., Steele, B., Bryant, J. & Ngwa, W. The endocannabinoid system: a potential target for the treatment of various diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Habib, A. M. et al. Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. Br. J. Anaesth. 123, e249–e253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiang, K. P., Gerber, A. L., Sipe, J. C. & Cravatt, B. F. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet. 13, 2113–2119 (2004).

    CAS  PubMed  Google Scholar 

  47. Mikaeili, H. et al. CRISPR interference at the FAAH-OUT genomic region reduces FAAH expression. Preprint at bioRxiv https://doi.org/10.1101/633396 (2019).

    Article  Google Scholar 

  48. Cravatt, B. F. et al. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl Acad. Sci. USA 101, 10821–10826 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dincheva, I. et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Commun. 6, 6395 (2015).

    CAS  PubMed  Google Scholar 

  50. Lichtman, A. H., Shelton, C. C., Advani, T. & Cravatt, B. F. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain 109, 319–327 (2004).

    CAS  PubMed  Google Scholar 

  51. Clapper, J. R. et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat. Neurosci. 13, 1265–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Klein, C. J. et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595–600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Winkelmann, J. et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum. Mol. Genet. 21, 2205–2210 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baets, J. et al. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders. Brain 138, 845–861 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Chen, Y. C. et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat. Genet. 47, 803–808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Inamadar, A. C. et al. Extending the phenotype of midface toddler excoriation syndrome (MiTES): five new cases in three families with PR domain containing protein 12 (PRDM12) mutations. J. Am. Acad. Dermatol. 81, 1415–1417 (2019).

    CAS  PubMed  Google Scholar 

  57. Landy, M. A., Goyal, M., Casey, K. M., Liu, C. & Lai, H. C. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep. 34, 108913 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Desiderio, S. et al. Prdm12 directs nociceptive sensory neuron development by regulating the expression of the NGF receptor TrkA. Cell Rep. 26, 3522–3536.e5 (2019).

    CAS  PubMed  Google Scholar 

  59. Bartesaghi, L. et al. PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis. Cell Rep. 26, 3484–3492.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, S. et al. Clinical features for diagnosis and management of patients with PRDM12 congenital insensitivity to pain. J. Med. Genet. 53, 533–535 (2016).

    PubMed  Google Scholar 

  61. Habib, A. M. et al. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain 141, 365–376 (2018).

    PubMed  Google Scholar 

  62. Durr, A. et al. Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch. Neurol. 61, 1867–1872 (2004).

    PubMed  Google Scholar 

  63. Guelly, C. et al. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am. J. Hum. Genet. 88, 99–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016).

    CAS  PubMed  Google Scholar 

  65. Leonardis, L., Auer-Grumbach, M., Papic, L. & Zidar, J. The N355K atlastin 1 mutation is associated with hereditary sensory neuropathy and pyramidal tract features. Eur. J. Neurol. 19, 992–998 (2012).

    CAS  PubMed  Google Scholar 

  66. Fischer, D. et al. A novel missense mutation confirms ATL3 as a gene for hereditary sensory neuropathy type 1. Brain 137, e286 (2014).

    PubMed  Google Scholar 

  67. Kornak, U. et al. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137, 683–692 (2014).

    PubMed  Google Scholar 

  68. Xu, H. et al. ATL3 gene mutation in a Chinese family with hereditary sensory neuropathy type 1F. J. Peripher. Nerv. Syst. 24, 150–155 (2019).

    CAS  PubMed  Google Scholar 

  69. Cintra, V. P. et al. Rare mutations in ATL3, SPTLC2 and SCN9A explaining hereditary sensory neuropathy and congenital insensitivity to pain in a Brazilian cohort. J. Neurol. Sci. 427, 117498 (2021).

    CAS  PubMed  Google Scholar 

  70. Novarino, G. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343, 506–511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nizon, M. et al. ARL6IP1 mutation causes congenital insensitivity to pain, acromutilation and spastic paraplegia. Clin. Genet. 93, 169–172 (2018).

    CAS  PubMed  Google Scholar 

  72. Maddirevula, S. et al. Autozygome and high throughput confirmation of disease genes candidacy. Genet. Med. 21, 736–742 (2019).

    CAS  PubMed  Google Scholar 

  73. Chukhrova, A. L. et al. A new case of infantile-onset hereditary spastic paraplegia with complicated phenotype (SPG61) in a consanguineous Russian family. Eur. J. Neurol. 26, e61–e62 (2019).

    CAS  PubMed  Google Scholar 

  74. Wakil, S. M. et al. Truncating ARL6IP1 variant as the genetic cause of fatal complicated hereditary spastic paraplegia. BMC Med. Genet. 20, 119 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Cao, Y. et al. Genotype-phenotype study and expansion of ARL6IP1-related complicated hereditary spastic paraplegia. Clin. Genet. 99, 477–480 (2021).

    CAS  PubMed  Google Scholar 

  76. Kurth, I. et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41, 1179–1181 (2009).

    CAS  PubMed  Google Scholar 

  77. Falcao de Campos, C. et al. Hereditary sensory autonomic neuropathy type II: report of two novel mutations in the FAM134B gene. J. Peripher. Nerv. Syst. 24, 354–358 (2019).

    CAS  PubMed  Google Scholar 

  78. Ilgaz Aydinlar, E., Rolfs, A., Serteser, M. & Parman, Y. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve 49, 774–775 (2014).

    PubMed  Google Scholar 

  79. Luo, Z. Y. et al. Late-onset hereditary sensory and autonomic neuropathy type 2B caused by novel compound heterozygous mutations in FAM134B presenting as chronic recurrent ulcers on the soles. Indian. J. Dermatol. Venereol. Leprol. 87, 455 (2021).

    PubMed  Google Scholar 

  80. Murphy, S. M., Davidson, G. L., Brandner, S., Houlden, H. & Reilly, M. M. Mutation in FAM134B causing severe hereditary sensory neuropathy. J. Neurol. Neurosurg. Psychiatry 83, 119–120 (2012).

    PubMed  Google Scholar 

  81. Wakil, S. M. et al. Exome sequencing: mutilating sensory neuropathy with spastic paraplegia due to a mutation in FAM134B gene. Case Rep. Genet. 2018, 9468049 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Yang, Y. S. & Strittmatter, S. M. The reticulons: a family of proteins with diverse functions. Genome Biol. 8, 234 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    CAS  PubMed  Google Scholar 

  84. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    CAS  PubMed  Google Scholar 

  85. Baumann, O. & Walz, B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int. Rev. Cytol. 205, 149–214 (2001).

    CAS  PubMed  Google Scholar 

  86. Hubner, C. A. & Kurth, I. Membrane-shaping disorders: a common pathway in axon degeneration. Brain 137, 3109–3121 (2014).

    PubMed  Google Scholar 

  87. Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

    CAS  PubMed  Google Scholar 

  88. Muriel, M. P. et al. Atlastin-1, the dynamin-like GTPase responsible for spastic paraplegia SPG3A, remodels lipid membranes and may form tubules and vesicles in the endoplasmic reticulum. J. Neurochem. 110, 1607–1616 (2009).

    CAS  PubMed  Google Scholar 

  89. Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983 (2009).

    CAS  PubMed  Google Scholar 

  90. Behrendt, L., Kurth, I. & Kaether, C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol. Life Sci. 76, 1433–1445 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krols, M. et al. Sensory neuropathy-causing mutations in ATL3 affect ER-mitochondria contact sites and impair axonal mitochondrial distribution. Hum. Mol. Genet. 28, 615–627 (2019).

    CAS  PubMed  Google Scholar 

  92. Krols, M. et al. Sensory-neuropathy-causing mutations in ATL3 cause aberrant ER membrane tethering. Cell Rep. 23, 2026–2038 (2018).

    CAS  PubMed  Google Scholar 

  93. Yamamoto, Y., Yoshida, A., Miyazaki, N., Iwasaki, K. & Sakisaka, T. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion. Biochem. J. 458, 69–79 (2014).

    CAS  PubMed  Google Scholar 

  94. Fowler, P. C. & O’Sullivan, N. C. ER-shaping proteins are required for ER and mitochondrial network organization in motor neurons. Hum. Mol. Genet. 25, 2827–2837 (2016).

    CAS  PubMed  Google Scholar 

  95. Dong, R. et al. The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J. Cell Biol. 217, 3577–3592 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science https://doi.org/10.1126/science.aaf3928 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lee, C. A. & Blackstone, C. ER morphology and endo-lysosomal crosstalk: functions and disease implications. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158544 (2020).

    CAS  PubMed  Google Scholar 

  98. Borgese, N., Francolini, M. & Snapp, E. Endoplasmic reticulum architecture: structures in flux. Curr. Opin. Cell Biol. 18, 358–364 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  100. Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359–362 (2015).

    CAS  PubMed  Google Scholar 

  101. Hubner, C. A. & Dikic, I. ER-phagy and human diseases. Cell Death Differ. 27, 833–842 (2020).

    PubMed  Google Scholar 

  102. Chen, Q., Teng, J. & Chen, J. ATL3, a cargo receptor for reticulophagy. Autophagy 15, 1465–1466 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liang, J. R., Lingeman, E., Ahmed, S. & Corn, J. E. Atlastins remodel the endoplasmic reticulum for selective autophagy. J. Cell Biol. 217, 3354–3367 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, Q. et al. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29, 846–855.e6 (2019).

    CAS  PubMed  Google Scholar 

  105. Fregno, I. et al. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J. https://doi.org/10.15252/embj.201899259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Forrester, A. et al. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J. https://doi.org/10.15252/embj.201899847 (2019).

    Article  PubMed  Google Scholar 

  107. Jiang, X. et al. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J. 39, e102608 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pleiner, T. et al. WNK1 is an assembly factor for the human ER membrane protein complex. Mol. Cell 81, 2693–2704.e12 (2021).

    CAS  PubMed  Google Scholar 

  109. Shekarabi, M. et al. Mutations in the nervous system-specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J. Clin. Invest. 118, 2496–2505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, J. J., Yu, B. & Li, Z. The coexistence of a novel WNK1 variant and a copy number variation causes hereditary sensory and autonomic neuropathy type IIA. BMC Med. Genet. 20, 91 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Loggia, M. L. et al. Carriers of recessive WNK1/HSN2 mutations for hereditary sensory and autonomic neuropathy type 2 (HSAN2) are more sensitive to thermal stimuli. J. Neurosci. 29, 2162–2166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Izadifar, A. et al. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron https://doi.org/10.1016/j.neuron.2021.07.006 (2021).

    Article  PubMed  Google Scholar 

  113. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bradshaw, R. A. Rita Levi-Montalcini (1909-2012). Nature 493, 306 (2013).

    CAS  PubMed  Google Scholar 

  115. Shaikh, S. S. et al. A comprehensive functional analysis of NTRK1 missense mutations causing hereditary sensory and autonomic neuropathy type IV (HSAN IV). Hum. Mutat. 38, 55–63 (2017).

    CAS  PubMed  Google Scholar 

  116. Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011 (1994).

    CAS  PubMed  Google Scholar 

  117. Smeyne, R. J. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249 (1994).

    CAS  PubMed  Google Scholar 

  118. Einarsdottir, E. et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum. Mol. Genet. 13, 799–805 (2004).

    CAS  PubMed  Google Scholar 

  119. Indo, Y. et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 13, 485–488 (1996).

    CAS  PubMed  Google Scholar 

  120. Carvalho, O. P. et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J. Med. Genet. 48, 131–135 (2011).

    CAS  PubMed  Google Scholar 

  121. Shaikh, S. S., Nahorski, M. S. & Woods, C. G. A third HSAN5 mutation disrupts the nerve growth factor furin cleavage site. Mol. Pain. 14, 1744806918809223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Minde, J. et al. A novel NGFB point mutation: a phenotype study of heterozygous patients. J. Neurol. Neurosurg. Psychiatry 80, 188–195 (2009).

    CAS  PubMed  Google Scholar 

  123. Cortese, A. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 51, 649–658 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Rafehi, H. et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am. J. Hum. Genet. 105, 151–165 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tagliapietra, M. et al. RFC1 AAGGG repeat expansion masquerading as chronic idiopathic axonal polyneuropathy. J. Neurol. https://doi.org/10.1007/s00415-021-10552-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kumar, K. R. et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjogren syndrome. Brain 143, e82 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Beijer, D. et al. RFC1 repeat expansions: a recurrent cause of sensory and autonomic neuropathy with cough and ataxia. Eur. J. Neurol. https://doi.org/10.1111/ene.15310 (2022).

    Article  PubMed  Google Scholar 

  128. Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).

    CAS  PubMed  Google Scholar 

  129. Körner, J. & Lampert, A. in The Senses: a Comprehensive Reference 2nd edn Vol. 5 (ed. Fritzsch, B.) 120–141 (Academic, 2020).

  130. Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Middleton, S. J. et al. Nav1.7 is required for normal C-low threshold mechanoreceptor function in humans and mice. Brain https://doi.org/10.1093/brain/awab482 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007).

    CAS  PubMed  Google Scholar 

  133. Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186–190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. McDermott, L. A. et al. Defining the functional role of NaV1.7 in human nociception. Neuron 101, 905–919.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA 101, 12706–12711 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Minett, M. S. et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 3, 791 (2012).

    PubMed  Google Scholar 

  137. Minett, M. S. et al. Pain without nociceptors? Nav1.7-independent pain mechanisms. Cell Rep. 6, 301–312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shields, S. D. et al. Insensitivity to pain upon adult-onset deletion of Nav1.7 or its blockade with selective inhibitors. J. Neurosci. 38, 10180–10201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Eagles, D. A., Chow, C. Y. & King, G. F. Fifteen years of NaV 1.7 channels as an analgesic target: why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br. J. Pharmacol. https://doi.org/10.1111/bph.15327 (2020).

    Article  PubMed  Google Scholar 

  140. Moreno, A. M. et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay9056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kingwell, K. Nav1.7 withholds its pain potential. Nat. Rev. Drug Discov. https://doi.org/10.1038/d41573-41019-00065-41570 (2019).

    Article  PubMed  Google Scholar 

  142. Pereira, V. et al. Analgesia linked to Nav1.7 loss of function requires micro- and delta-opioid receptors. Wellcome Open Res. 3, 101 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Minett, M. S. et al. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat. Commun. 6, 8967 (2015).

    CAS  PubMed  Google Scholar 

  144. Isensee, J. et al. Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in Nav1.7 knockout mice. Sci. Signal. https://doi.org/10.1126/scisignal.aah4874 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. MacDonald, D. I. et al. A central mechanism of analgesia in mice and humans lacking the sodium channel NaV1.7. Neuron 109, 1497–1512.e6 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bennett, D. L. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

    CAS  PubMed  Google Scholar 

  147. Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    CAS  PubMed  Google Scholar 

  148. Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  149. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. King, M. K., Leipold, E., Goehringer, J. M., Kurth, I. & Challman, T. D. Pain insensitivity: distal S6-segment mutations in NaV1.9 emerge as critical hotspot. Neurogenetics 18, 179–181 (2017).

    CAS  PubMed  Google Scholar 

  151. Phatarakijnirund, V. et al. Congenital insensitivity to pain: fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 84, 289–298 (2016).

    CAS  PubMed  Google Scholar 

  152. Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399–1404 (2013).

    CAS  PubMed  Google Scholar 

  153. Cox, J. J. & Wood, J. N. No pain, more gain. Nat. Genet. 45, 1271–1272 (2013).

    CAS  PubMed  Google Scholar 

  154. Woods, C. G., Babiker, M. O., Horrocks, I., Tolmie, J. & Kurth, I. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur. J. Hum. Genet. 23, 561–563 (2015).

    CAS  PubMed  Google Scholar 

  155. Huang, J. et al. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 137, 1627–1642 (2014).

    PubMed  Google Scholar 

  156. Leipold, E. et al. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat. Commun. 6, 10049 (2015).

    CAS  PubMed  Google Scholar 

  157. Zhang, X. Y. et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93, 957–966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang, J. et al. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J. Clin. Invest. 127, 2805–2814 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Faber, C. G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl Acad. Sci. USA 109, 19444–19449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kaluza, L. et al. Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflug. Arch. 470, 1787–1801 (2018).

    CAS  Google Scholar 

  161. Kist, A. M. et al. SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing. PLoS ONE 11, e0161789 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Weiss, B. & Stoffel, W. Human and murine serine-palmitoyl-CoA transferase–cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249, 239–247 (1997).

    CAS  PubMed  Google Scholar 

  163. Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27, 261–262 (2001).

    CAS  PubMed  Google Scholar 

  164. Rotthier, A. et al. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet. 87, 513–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Auer-Grumbach, M. Hereditary sensory neuropathy type I. Orphanet J. Rare Dis. 3, 7 (2008).

    PubMed  PubMed Central  Google Scholar 

  166. Auer-Grumbach, M. et al. Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur. J. Med. Genet. 56, 266–269 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Rotthier, A. et al. Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Hum. Mutat. 32, E2211–E2225 (2011).

    CAS  PubMed  Google Scholar 

  168. Penno, A. et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285, 11178–11187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gantner, M. L. et al. Serine and lipid metabolism in macular disease and peripheral neuropathy. N. Engl. J. Med. 381, 1422–1433 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mwinyi, J. et al. Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PLoS ONE 12, e0175776 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Dohrn, M. F. et al. Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy? Eur. J. Neurol. 22, 806–e55 (2015).

    CAS  PubMed  Google Scholar 

  172. Othman, A. et al. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 3, e000073 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Othman, A. et al. Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes 64, 1035–1045 (2015).

    CAS  PubMed  Google Scholar 

  174. Alecu, I. et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid Res. 58, 42–59 (2017).

    CAS  PubMed  Google Scholar 

  175. Wilson, E. R. et al. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiol. Dis. 117, 1–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Clark, A. J. et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep. Med. 2, 100345 (2021).

    PubMed  PubMed Central  Google Scholar 

  177. Scherer, S. S. The debut of a rational treatment for an inherited neuropathy? J. Clin. Invest. 121, 4624–4627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021).

    CAS  PubMed  Google Scholar 

  179. Johnson, J. O. et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2021.2598 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Waszak, S. M. et al. Germline elongator mutations in sonic hedgehog medulloblastoma. Nature 580, 396–401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Goffena, J. et al. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat. Commun. 9, 889 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Lefcort, F., Mergy, M., Ohlen, S. B., Ueki, Y. & George, L. Animal and cellular models of familial dysautonomia. Clin. Auton. Res. 27, 235–243 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. Dietrich, P. & Dragatsis, I. Familial dysautonomia: mechanisms and models. Genet. Mol. Biol. 39, 497–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Quigley, J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell 118, 757–766 (2004).

    CAS  PubMed  Google Scholar 

  187. Chiabrando, D., Fiorito, V., Petrillo, S., Bertino, F. & Tolosano, E. HEME: a neglected player in nociception? Neurosci. Biobehav. Rev. 124, 124–136 (2021).

    PubMed  Google Scholar 

  188. Rajadhyaksha, A. M. et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am. J. Hum. Genet. 87, 643–654 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chiabrando, D. et al. Mutations in the heme exporter FLVCR1 cause sensory neurodegeneration with loss of pain perception. PLoS Genet. 12, e1006461 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Bertino, F. et al. Heme and sensory neuropathy: insights from novel mutations in the heme exporter feline leukemia virus subgroup C receptor 1. Pain 160, 2766–2775 (2019).

    CAS  PubMed  Google Scholar 

  191. Grudzinska Pechhacker, M. K. et al. FLVCR1-related disease as a rare cause of retinitis pigmentosa and hereditary sensory autonomic neuropathy. Eur. J. Med. Genet. 63, 104037 (2020).

    PubMed  Google Scholar 

  192. Koehler, K. et al. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am. J. Hum. Genet. 93, 727–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Gold, W. A. et al. A novel mutation in GMPPA in siblings with apparent intellectual disability, epilepsy, dysmorphism, and autonomic dysfunction. Am. J. Med. Genet. A 173, 2246–2250 (2017).

    CAS  PubMed  Google Scholar 

  194. Benitez, E. O., Morales, J. J., Munoz, L. A., Hubner, C. A. & Mutchinick, O. M. A novel GMPPA mutation in two adult sisters with achalasia, alacrima, short stature, dysmorphism, and intellectual disability. Mol. Syndromol. 9, 110–114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Diaz, J., Kane, T. D. & Leon, E. Evidence of GMPPA founder mutation in indigenous Guatemalan population associated with alacrima, achalasia, and mental retardation syndrome. Am. J. Med. Genet. A 182, 425–430 (2020).

    CAS  PubMed  Google Scholar 

  196. Franzka, P. et al. GMPPA defects cause a neuromuscular disorder with α-dystroglycan hyperglycosylation. J. Clin. Invest. https://doi.org/10.1172/JCI139076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Zheng, L. et al. Cryo-EM structures of human GMPPA-GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Nat. Struct. Mol. Biol. 28, 1–12 (2021).

    PubMed  Google Scholar 

  198. Schneeberger, P. E. et al. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 143, 2437–2453 (2020).

    PubMed  PubMed Central  Google Scholar 

  199. Baumann, M. et al. MPV17 mutations in juvenile- and adult-onset axonal sensorimotor polyneuropathy. Clin. Genet. 95, 182–186 (2019).

    CAS  PubMed  Google Scholar 

  200. Appenzeller, O., Kornfeld, M. & Snyder, R. Acromutilating, paralyzing neuropathy with corneal ulceration in Navajo children. Arch. Neurol. 33, 733–738 (1976).

    CAS  PubMed  Google Scholar 

  201. Johnsen, S. D., Johnson, P. C. & Stein, S. R. Familial sensory autonomic neuropathy with arthropathy in Navajo children. Neurology 43, 1120–1125 (1993).

    CAS  PubMed  Google Scholar 

  202. Karadimas, C. L. et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am. J. Hum. Genet. 79, 544–548 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Spinazzola, A. et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 38, 570–575 (2006).

    CAS  PubMed  Google Scholar 

  204. Heimer, G. et al. TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. Eur. J. Paediatr. Neurol. 20, 69–79 (2016).

    PubMed  Google Scholar 

  205. Palma, J. A. et al. Expanding the genotypic spectrum of congenital sensory and autonomic neuropathies using whole-exome sequencing. Neurol. Genet. 7, e568 (2021).

    PubMed  PubMed Central  Google Scholar 

  206. Neuser, S. et al. Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability. Hum. Mutat. 42, 762–776 (2021).

    CAS  PubMed  Google Scholar 

  207. Covone, A. E. et al. WES in a family trio suggests involvement of TECPR2 in a complex form of progressive motor neuron disease. Clin. Genet. 90, 182–185 (2016).

    CAS  PubMed  Google Scholar 

  208. Oz-Levi, D. et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am. J. Hum. Genet. 91, 1065–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Fraiberg, M. et al. Lysosomal targeting of autophagosomes by the TECPR domain of TECPR2. Autophagy 17, 3096–3108 (2021).

    CAS  PubMed  Google Scholar 

  210. Tamim-Yecheskel, B. C. et al. A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation. Autophagy 17, 3082–3095 (2021).

    CAS  PubMed  Google Scholar 

  211. Stadel, D. et al. TECPR2 cooperates with LC3C to regulate COPII-dependent ER export. Mol. Cell 60, 89–104 (2015).

    CAS  PubMed  Google Scholar 

  212. Patwari, P. P., Wolfe, L. F., Sharma, G. D. & Berry-Kravis, E. TECPR2 mutation-associated respiratory dysregulation: more than central apnea. J. Clin. Sleep. Med. 16, 977–982 (2020).

    PubMed  PubMed Central  Google Scholar 

  213. Bouhouche, A., Benomar, A., Bouslam, N., Chkili, T. & Yahyaoui, M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J. Med. Genet. 43, 441–443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Bouhouche, A. et al. Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur. J. Hum. Genet. 14, 249–252 (2006).

    CAS  PubMed  Google Scholar 

  215. Antona, V. et al. A novel CCT5 missense variant associated with early onset motor neuropathy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21207631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Makari, G. S., Carroll, J. E. & Burton, E. M. Hereditary sensory neuropathy manifesting as possible child abuse. Pediatrics 93, 842–844 (1994).

    CAS  PubMed  Google Scholar 

  217. van den Bosch, G. E. et al. Pain insensitivity syndrome misinterpreted as inflicted burns. Pediatrics 133, e1381–e1387 (2014).

    PubMed  Google Scholar 

  218. Marbach, F. et al. Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain. Genet. Med. 23, 1465–1473 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Jinnah, H. A. HPRT1 Disorders. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1149/ (updated 6 Aug 2020).

  220. Hepburn, L. et al. Innate immunity. A Spaetzle-like role for nerve growth factor β in vertebrate immunity to Staphylococcus aureus. Science 346, 641–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Li, N. et al. Heterogeneity of clinical features and mutation analysis of NTRK1 in Han Chinese patients with congenital insensitivity to pain with anhidrosis. J. Pain. Res. 12, 453–465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Carroll, A. et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2021-327909 (2022).

    Article  PubMed  Google Scholar 

  223. Obici, L. & Mussinelli, R. Current and emerging therapies for hereditary transthyretin amyloidosis: strides towards a brighter future. Neurotherapeutics 18, 2286–2302 (2021).

    CAS  PubMed  Google Scholar 

  224. Schwartzlow, C. & Kazamel, M. Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr. Neurol. Neurosci. Rep. 19, 52 (2019).

    PubMed  Google Scholar 

  225. De Jonghe, P. K. in Hereditary Peripheral Neuropathies (eds Kuhlenbäumer G., Stögbauer F., Ringelstein E. B., & Young P.) 41–63 (Springer, 2005).

  226. Lauria, G. et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur. J. Neurol. 17, 903–e49 (2010).

    CAS  PubMed  Google Scholar 

  227. Dyck, P. J. in Peripheral Neuropathy 3rd edn (eds Dyck P. J. et al.) 1065–1093 (Saunders, 1993).

  228. Rolke, R. et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur. J. Pain. 10, 77–88 (2006).

    CAS  PubMed  Google Scholar 

  229. Roberts, R. C. Removing the idiopathic from the chronic sensory neuropathies. Brain 144, 1291–1292 (2021).

    PubMed  PubMed Central  Google Scholar 

  230. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Boomsma, D. I. et al. The genome of the Netherlands: design, and project goals. Eur. J. Hum. Genet. 22, 221–227 (2014).

    CAS  PubMed  Google Scholar 

  233. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    CAS  PubMed  Google Scholar 

  234. Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).

    CAS  PubMed  Google Scholar 

  235. Wei, C. H., Allot, A., Leaman, R. & Lu, Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47, W587–W593 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    CAS  PubMed  Google Scholar 

  237. Consortium, G. T. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Google Scholar 

  238. Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    CAS  PubMed  Google Scholar 

  239. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  241. Jagadeesh, K. A. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016).

    CAS  PubMed  Google Scholar 

  242. Heyne, H. O. et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay6848 (2020).

    Article  PubMed  Google Scholar 

  243. Kopanos, C. et al. VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019).

    CAS  PubMed  Google Scholar 

  244. Holtgrewe, M. et al. VarFish: comprehensive DNA variant analysis for diagnostics and research. Nucleic Acids Res. 48, W162–W169 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. Matthijs, G. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 24, 2–5 (2016).

    CAS  PubMed  Google Scholar 

  247. Kobren, S. N. et al. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet. Med. https://doi.org/10.1038/s41436-020-01084-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Bis-Brewer, D. M. et al. Assessing non-Mendelian inheritance in inherited axonopathies. Genet. Med. 22, 2114–2119 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Kurth, I. et al. Whole exome sequencing in congenital pain insensitivity identifies a novel causative intronic NTRK1-mutation due to uniparental disomy. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171, 875–878 (2016).

    CAS  PubMed  Google Scholar 

  250. Li, L. et al. Novel gross deletion mutations in NTRK1 gene associated with congenital insensitivity to pain with anhidrosis. Front. Pediatr. 9, 638190 (2021).

    PubMed  PubMed Central  Google Scholar 

  251. Marchi, M. et al. Congenital insensitivity to pain: a novel mutation affecting a U12-type intron causes multiple aberrant splicing of SCN9A. Pain https://doi.org/10.1097/j.pain.0000000000002535 (2021).

    Article  PubMed  Google Scholar 

  252. Geng, X. et al. Novel NTRK1 mutations in Chinese patients with congenital insensitivity to pain with anhidrosis. Mol. Pain. 14, 1744806918781140 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. GATK Team. (How to) Call common and rare germline copy number variants. GATK https://gatk.broadinstitute.org/hc/en-us/articles/360035531152–How-to-Call-common-and-rare-germline-copy-number-variants (2022).

  254. Kraft, F. & Kurth, I. Long-read sequencing to understand genome biology and cell function. Int. J. Biochem. Cell Biol. 126, 105799 (2020).

    CAS  PubMed  Google Scholar 

  255. Axelrod, F. B. Familial dysautonomia: a review of the current pharmacological treatments. Expert. Opin. Pharmacother. 6, 561–567 (2005).

    CAS  PubMed  Google Scholar 

  256. Bar-On, E. et al. Orthopaedic manifestations of familial dysautonomia. A review of one hundred and thirty-six patients. J. Bone Jt. Surg. Am. 82, 1563–1570 (2000).

    CAS  Google Scholar 

  257. Kayani, B. et al. Orthopaedic manifestations of congenital indifference to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Eur. J. Paediatr. Neurol. 21, 318–326 (2017).

    PubMed  Google Scholar 

  258. Bar-On, E. et al. Congenital insensitivity to pain. Orthopaedic manifestations. J. Bone Jt. Surg. Br. 84, 252–257 (2002).

    CAS  Google Scholar 

  259. Loh, J., Cyr, K. & Martin, R. Ankle fracture in hereditary sensory neuropathy type 1. J. Foot Ankle Surg. 60, 621–625 (2021).

    PubMed  Google Scholar 

  260. Auer-Grumbach, M. Hereditary sensory and autonomic neuropathies. Handb. Clin. Neurol. 115, 893–906 (2013).

    PubMed  Google Scholar 

  261. Fruchtman, Y., Perry, Z. H. & Levy, J. Morbidity characteristics of patients with congenital insensitivity to pain with anhidrosis (CIPA). J. Pediatr. Endocrinol. Metab. 26, 325–332 (2013).

    PubMed  Google Scholar 

  262. Weingarten, T. N. et al. Anesthesia and patients with congenital hyposensitivity to pain. Anesthesiology 105, 338–345 (2006).

    PubMed  Google Scholar 

  263. Ngai, J., Kreynin, I., Kim, J. T. & Axelrod, F. B. Anesthesia management of familial dysautonomia. Paediatr. Anaesth. 16, 611–620 (2006).

    PubMed  Google Scholar 

  264. Zlotnik, A. et al. Anesthetic management of patients with congenital insensitivity to pain with anhidrosis: a retrospective analysis of 358 procedures performed under general anesthesia. Anesth. Analg. 121, 1316–1320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Ozmete, O., Sener, M., Bali, C., Caliskan, E. & Aribogan, A. Congenital insensitivity to pain: how should anesthesia be managed? Turk. J. Pediatr. 59, 87–89 (2017).

    PubMed  Google Scholar 

  266. Weingarten, T. N., Sprung, J. & Burgher, A. H. Perioperative management of familial dysautonomia: a systematic review. Eur. J. Anaesthesiol. 24, 309–316 (2007).

    CAS  PubMed  Google Scholar 

  267. Elhennawy, K. et al. Oral manifestations, dental management, and a rare homozygous mutation of the PRDM12 gene in a boy with hereditary sensory and autonomic neuropathy type VIII: a case report and review of the literature. J. Med. Case Rep. 11, 233 (2017).

    PubMed  PubMed Central  Google Scholar 

  268. Axelrod, F. B. & Berlin, D. Pregabalin: a new approach to treatment of the dysautonomic crisis. Pediatrics 124, 743–746 (2009).

    PubMed  Google Scholar 

  269. Norcliffe-Kaufmann, L., Martinez, J., Axelrod, F. & Kaufmann, H. Hyperdopaminergic crises in familial dysautonomia: a randomized trial of carbidopa. Neurology 80, 1611–1617 (2013).

    PubMed  PubMed Central  Google Scholar 

  270. Norcliffe-Kaufmann, L., Palma, J. A., Martinez, J. & Kaufmann, H. Carbidopa for afferent baroreflex failure in familial dysautonomia: a double-blind randomized crossover clinical trial. Hypertension 76, 724–731 (2020).

    CAS  PubMed  Google Scholar 

  271. Spalink, C. L., Barnes, E., Palma, J. A., Norcliffe-Kaufmann, L. & Kaufmann, H. Intranasal dexmedetomidine for adrenergic crisis in familial dysautonomia. Clin. Auton. Res. 27, 279–282 (2017).

    PubMed  PubMed Central  Google Scholar 

  272. Shirazi, E., Sayyahfar, S., Motamed, M. & Alaghband-Rad, J. A case of congenital insensitivity to pain with anhidrosis comorbid with attention deficit hyperactivity disorder: clinical implications for pathophysiology and treatment. J. Nerv. Ment. Dis. 206, 296–299 (2018).

    PubMed  Google Scholar 

  273. de Greef, B. T. A. et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain 142, 263–275 (2019).

    PubMed  Google Scholar 

  274. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

    PubMed  Google Scholar 

  275. Di Stefano, G., Di Lionardo, A., Di Pietro, G., Cruccu, G. & Truini, A. Pharmacotherapeutic options for managing neuropathic pain: a systematic review and meta-analysis. Pain. Res. Manag. 2021, 6656863 (2021).

    PubMed  PubMed Central  Google Scholar 

  276. Yozu, A. et al. Hereditary sensory and autonomic neuropathy types 4 and 5: review and proposal of a new rehabilitation method. Neurosci. Res. 104, 105–111 (2016).

    PubMed  Google Scholar 

  277. Missaoui, B. & Thoumie, P. Balance training in ataxic neuropathies. Effects on balance and gait parameters. Gait Posture 38, 471–476 (2013).

    PubMed  Google Scholar 

  278. Garofalo, K. et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Invest. 121, 4735–4745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Fridman, V. et al. Randomized trial of L-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, e359–e370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Auranen, M. et al. Clinical and metabolic consequences of L-serine supplementation in hereditary sensory and autonomic neuropathy type 1C. Cold Spring Harb. Mol. Case Stud. https://doi.org/10.1101/mcs.a002212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Bode, H. et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum. Mol. Genet. 25, 853–865 (2016).

    CAS  PubMed  Google Scholar 

  282. Yang, H., Brown, R. H. Jr, Wang, D., Strauss, K. A. & Gao, G. AAV-mediated gene therapy for glycosphingolipid biosynthesis deficiencies. Trends Mol. Med. 27, 520–523 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Morini, E. et al. ELP1 splicing correction reverses proprioceptive sensory loss in familial dysautonomia. Am. J. Hum. Genet. 104, 638–650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Palma, J. A. et al. Current treatments in familial dysautonomia. Expert. Opin. Pharmacother. 15, 2653–2671 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Yannai, S., Zonszain, J., Donyo, M. & Ast, G. Combinatorial treatment increases IKAP levels in human cells generated from familial dysautonomia patients. PLoS ONE 14, e0211602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Sinha, R. et al. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res. 46, 4833–4844 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Bonne, G. The Treatabolome, an emerging concept. J. Neuromuscul. Dis. 8, 337–339 (2021).

    PubMed  PubMed Central  Google Scholar 

  288. Aarestrup, F. M. et al. Towards a European health research and innovation cloud (HRIC). Genome Med. 12, 18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Jennings, M. J., Lochmuller, A., Atalaia, A. & Horvath, R. Targeted therapies for hereditary peripheral neuropathies: systematic review and steps towards a ‘treatabolome’. J. Neuromuscul. Dis. 8, 383–400 (2021).

    PubMed  PubMed Central  Google Scholar 

  290. Kugathasan, U. et al. Development of MRC centre MRI calf muscle fat fraction protocol as a sensitive outcome measure in hereditary sensory neuropathy type 1. J. Neurol. Neurosurg. Psychiatry 90, 895–906 (2019).

    PubMed  Google Scholar 

  291. Schrenk-Siemens, K. et al. PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat. Neurosci. 18, 10–16 (2015).

    CAS  PubMed  Google Scholar 

  292. Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021).

    PubMed  PubMed Central  Google Scholar 

  293. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Nickolls, A. R. et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep. 30, 932–946.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Namer, B. et al. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine 39, 401–408 (2019).

    PubMed  Google Scholar 

  296. Lampert, A. et al. Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiol. Pain. 8, 100055 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Zeidler, M. et al. NOCICEPTRA: gene and microRNA signatures and their trajectories characterizing human iPSC-derived nociceptor maturation. Adv. Sci. 8, e2102354 (2021).

    Google Scholar 

  298. Eberhardt, E. et al. Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors. Stem Cell Rep. 5, 305–313 (2015).

    CAS  Google Scholar 

  299. Clark, A. J. et al. Co-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination. Brain 140, 898–913 (2017).

    PubMed  PubMed Central  Google Scholar 

  300. Pereira, J. D. et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat. Commun. 12, 4744 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Sharma, A., Sances, S., Workman, M. J. & Svendsen, C. N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell 26, 309–329 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186 (2022).

    CAS  PubMed  Google Scholar 

  303. Haring, M. et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21, 869–880 (2018).

    PubMed  Google Scholar 

  304. Kupari, J. et al. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat. Commun. 12, 1510 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J. & Davidson, S. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. eLife https://doi.org/10.7554/eLife.71752 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell Rep. 22, 2216–2225 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    CAS  PubMed  Google Scholar 

  308. Vega-Loza, A., Van, C., Moreno, A. M. & Aleman, F. Gene therapies to reduce chronic pain: are we there yet? Pain. Manag. 10, 209–212 (2020).

    PubMed  Google Scholar 

  309. Mullard, A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat. Rev. Drug Discov. 20, 804–805 (2021).

    CAS  PubMed  Google Scholar 

  310. Just, S. & Buning, H. Key to delivery: the (epi-)genome editing vector toolbox. Methods Mol. Biol. 1767, 147–166 (2018).

    CAS  PubMed  Google Scholar 

  311. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    CAS  PubMed  Google Scholar 

  312. Ossipov, M. H., Morimura, K. & Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 8, 143–151 (2014).

    PubMed  PubMed Central  Google Scholar 

  313. Schrenk-Siemens, K. et al. HESC-derived sensory neurons reveal an unexpected role for PIEZO2 in nociceptor mechanotransduction. Preprint at bioRxiv https://doi.org/10.1101/741660 (2019).

    Article  Google Scholar 

  314. Richter, T. et al. Rare disease terminology and definitions–a systematic global review: report of the ISPOR Rare Disease Special Interest Group. Value Health 18, 906–914 (2015).

    PubMed  Google Scholar 

  315. Nahin, R. L. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain. 16, 769–780 (2015).

    PubMed  PubMed Central  Google Scholar 

  316. Stoicea, N. et al. Current perspectives on the opioid crisis in the US healthcare system: a comprehensive literature review. Medicine 98, e15425 (2019).

    PubMed  PubMed Central  Google Scholar 

  317. Sexton, J. E., Cox, J. J., Zhao, J. & Wood, J. N. The genetics of pain: implications for therapeutics. Annu. Rev. Pharmacol. Toxicol. 58, 123–142 (2018).

    CAS  PubMed  Google Scholar 

  318. Miller, R. E., Block, J. A. & Malfait, A. M. What is new in pain modification in osteoarthritis? Rheumatology 57, iv99–iv107 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Brown, M. T. et al. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J. Pain. 13, 790–798 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their relatives who have supported their research activity for years. The authors express their gratitude to the family who was available for the experience report during the writing of the article. The European Network on Inherited Sensory Neuropathies and Insensitivity to Pain (ENISNIP) is supported by the Deutsche Forschungsgemeinschaft (DFG) (I.K. and J.S.; KU 1587/6-1, SE 1839/2-1), the Ministry of Education, Youth and Sports (MEYS), Czech Republic (P.L.), the Austrian Science Fund (FWF) (M.A.-G.), the Swiss National Science Foundation (SNSF) (T.H.), the Scientific and Technological Research Council of Turkey (TUBITAK) (A.Ç. and Y.P.), under the frame of the European Joint Programme on Rare Diseases (EJP RD). In addition, the ENISNIP project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the EJP RD COFUND-EJP no. 825575. The study was supported by a grant from the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University (A.La. and A.Li. and I.K.; IZKF TN1-1/IA 532001, IZKF TN1-2/IA 532002). A.La. has a research contract with Hoffmann-La Roche and Grünenthal and receives consulting fees from Grünenthal, which do not affect the work presented here. J.J.C. is supported by the Medical Research Council (MR/R011737/1) and the Wellcome Trust (200183/Z/15/Z). J.N.W. is supported by the Wellcome trust (200183/Z/15/Z) and Versus Arthritis (21950). The research of C.G.W. is supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was supported by the Association Belge contre les Maladies Neuromusculaires (ABMM). J.B. is supported by a Senior Clinical Researcher mandate of the Research Fund – Flanders (FWO) under grant agreement number 1805021N. J.V.L. is supported by a DOC-PR04 PhD fellowship from the University of Antwerp. Several authors of this publication are members of the European Reference Network for Rare Neuromuscular Diseases (ERN EURO-NMD) and of the European Reference Network for Rare Neurological Diseases (ERN-RND). V.T. and J.B. are partners in the Solve-RD EU project (Horizon 2020 under grant agreement no. 779257). J.B., V.T. and J.V.L. are members of the µNEURO Research Centre of Excellence of the University of Antwerp. The authors thank A. Clark, Nuffield Department of Clinical Neurosciences, Oxford, UK, for providing Fig. 5d and A. Neureiter, Institute of Physiology, Uniklinik RWTH Aachen, Germany, for providing Fig. 5a and Fig. 5b.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (I.K., A.Li., M.E., M.M.R., V.T., J.J.C., C.G.W. and D.L.B.); Epidemiology (I.K., A.Ç. and M.M.R.); Mechanisms/pathophysiology (I.K., A.Li., A.Ç., K.E., M.E., T.H., J.S., V.T., J.J.C., C.G.W., C.A.H., J.V.L., J.B., J.N.W., A.La., D.L.B. and M.F.D.); Diagnosis, screening and prevention (I.K., P.L., A.Ç., K.E., Y.P., M.M.R., J.J.C., C.G.W., C.J.R., J.B. and M.F.D.); Management (I.K., M.A.-G., M.E., Y.P., M.M.R. and C.J.R.); Quality of life (I.K., M.M.R. and C.G.W.); Outlook (I.K., P.L., T.H., J.S., C.G.W., J.V.L., A.Li. and D.L.B.); Overview of Primer (I.K.).

Corresponding author

Correspondence to Ingo Kurth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Angelo Schenone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 4.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lischka, A., Lassuthova, P., Çakar, A. et al. Genetic pain loss disorders. Nat Rev Dis Primers 8, 41 (2022). https://doi.org/10.1038/s41572-022-00365-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00365-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing