Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cancer-associated venous thromboembolism

Abstract

Cancer-associated thrombosis (including venous thromboembolism (VTE) and arterial events) is highly consequential for patients with cancer and is associated with worsened survival. Despite substantial improvements in cancer treatment, the risk of VTE has increased in recent years; VTE rates additionally depend on the type of cancer (with pancreas, stomach and primary brain tumours having the highest risk) as well as on individual patient’s and cancer treatment factors. Multiple cancer-specific mechanisms of VTE have been identified and can be classified as mechanisms in which the tumour expresses proteins that alter host systems, such as levels of platelets and leukocytes, and in which the tumour expresses procoagulant proteins released into the circulation that directly activate the coagulation cascade or platelets, such as tissue factor and podoplanin, respectively. As signs and symptoms of VTE may be non-specific, diagnosis requires clinical assessment, evaluation of pre-test probability, and objective diagnostic testing with ultrasonography or CT. Risk assessment tools have been validated to identify patients at risk of VTE. Primary prevention of VTE (thromboprophylaxis) has long been recommended in the inpatient and post-surgical settings, and is now an option in the outpatient setting for individuals with high-risk cancer. Anticoagulant therapy is the cornerstone of therapy, with low molecular weight heparin or newer options such as direct oral anticoagulants. Personalized treatment incorporating risk of bleeding and patient preferences is essential, especially as a diagnosis of VTE is often considered by patients even more distressing than their cancer diagnosis, and can severely affect the quality of life. Future research should focus on current knowledge gaps including optimizing risk assessment tools, biomarker discovery, next-generation anticoagulant development and implementation science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Consequences of cancer-associated VTE.
Fig. 2: VTE incidence over time in patients with and without cancer4.
Fig. 3: Survival in patients receiving immune checkpoint inhibitors11.
Fig. 4: Potential mechanisms of cancer-associated thrombosis.
Fig. 5: Clinical algorithm for management of cancer-associated VTE.
Fig. 6: Evolution of anticoagulant therapy.

Similar content being viewed by others

References

  1. Khorana, A. A. Malignancy, thrombosis and Trousseau: the case for an eponym. J. Thromb. Haemost. 1, 2463–2465 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 110, 2339–2346 (2007).

    Article  PubMed  Google Scholar 

  3. Lyman, G. H., Culakova, E., Poniewierski, M. S. & Kuderer, N. M. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb. Res. 164 (Suppl. 1), 112–118 (2018).

    Article  Google Scholar 

  4. Mulder, F. I. et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood. 137, 1959–1969 (2020).

    Article  Google Scholar 

  5. Eichinger, S. Cancer associated thrombosis: risk factors and outcomes. Thromb. Res. 140 (Suppl. 1), 12–17 (2016).

    Article  Google Scholar 

  6. Sussman, T. A. et al. Incidence of thromboembolism in patients with melanoma on immune checkpoint inhibitor therapy and its adverse association with survival. J. Immunother. Cancer 9, e001719 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gervaso, L., Montero, A. J., Jia, X. & Khorana, A. A. Venous thromboembolism in breast cancer patients receiving cyclin-dependent kinase inhibitors. J. Thromb. Haemost. 18, 162–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Petrelli, F., Cabiddu, M., Borgonovo, K. & Barni, S. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials. Ann. Oncol. 23, 1672–1679 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Grover, S. P., Hisada, Y. M., Kasthuri, R. S., Reeves, B. N. & Mackman, N. Cancer therapy-associated thrombosis. Arterioscler Thromb Vasc Biol. 41, 1291–1305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grilz, E. et al. Relative risk of arterial and venous thromboembolism in persons with cancer vs. persons without cancer — a nationwide analysis. Eur. Heart J. 42, 2299–2307 (2021).

    Article  PubMed  Google Scholar 

  11. Moik, F. et al. Incidence, risk factors and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 137, 1669–1305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roopkumar, J. et al. Increased incidence of venous thromboembolism with cancer immunotherapy. Med 2, 423–434 (2021). Together with Moik et al. (Blood, 2020), this study describes concern for a high incidence of VTE in association with use of immune checkpoint inhibitors.

    Article  PubMed  Google Scholar 

  13. Siegal, D. M. et al. Variations in incidence of venous thromboembolism in low-, middle-, and high-income countries. Cardiovasc. Res. 117, 576–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Aonuma, A. O. et al. Incidence of cancer-associated thromboembolism in Japanese gastric and colorectal cancer patients receiving chemotherapy: a single-institutional retrospective cohort analysis (Sapporo CAT study). BMJ Open 9, e028563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peng, M. et al. Solid tumor complicated with venous thromboembolism: a 10-year retrospective cross-sectional study. Clin. Appl. Thromb. Hemost. 27, 1076029620975484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoon, S. Y. et al. The incidence of venous thromboembolism is not low in Korean patients with advanced pancreatic cancer [corrected]. Blood Res. 53, 227–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee, Y. G. et al. Risk factors and prognostic impact of venous thromboembolism in Asian patients with non-small cell lung cancer. Thromb. Haemost. 111, 1112–1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, L. H., Gallus, A., Jindal, R., Wang, C. & Wu, C. C. Incidence of venous thromboembolism in Asian populations: a systematic review. Thromb. Haemost. 117, 2243–2260 (2017).

    Article  PubMed  Google Scholar 

  19. Moik, F., Ay, C. & Pabinger, I. Risk prediction for cancer-associated thrombosis in ambulatory patients with cancer: past, present and future. Thromb. Res. 191, S3–S11 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zaorsky, N. G. et al. Causes of death among cancer patients. Ann. Oncol. 28, 400–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 5, 632–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Svendsen, E. & Karwinski, B. Prevalence of pulmonary embolism at necropsy in patients with cancer. J. Clin. Pathol. 42, 805–809 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gimbel, I. A. et al. Pulmonary embolism at autopsy in cancer patients. J. Thromb. Haemost. 19, 1228–1235 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ording, A. G. et al. Increasing incidence and declining mortality after cancer-associated venous thromboembolism — nationwide cohort study. Am. J. Med. 134, 868–876.e5 (2021).

    Article  PubMed  Google Scholar 

  25. Carrier, M. et al. Apixaban to prevent venous thromboembolism in patients with cancer. N. Engl. J. Med. 380, 711–719 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Khorana, A. A. et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N. Engl. J. Med. 380, 720–728 (2019). Together with Carrier et al. (2019), this publication describes similarly designed large randomized trials that identified a population of outpatients with higher-risk cancer who would benefit from primary thromboprophylaxis with a DOAC.

    Article  CAS  PubMed  Google Scholar 

  27. Bosch, F. T. M. et al. Primary thromboprophylaxis in ambulatory cancer patients with a high Khorana score: a systematic review and meta-analysis. Blood Adv. 4, 5215–5225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moik, F., Posch, F., Zielinski, C., Pabinger, I. & Ay, C. Direct oral anticoagulants compared to low-molecular-weight heparin for the treatment of cancer-associated thrombosis: updated systematic review and meta-analysis of randomized controlled trials. Res. Pract. Thromb. Haemost. 4, 550–561 (2020). This study provides a comprehensive systematic review of multiple randomized trials of treatment of acute VTE in cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abdulla, A. et al. A meta-analysis of case fatality rates of recurrent venous thromboembolism and major bleeding in patients with cancer. Thromb. Haemost. 120, 702–713 (2020).

    Article  PubMed  Google Scholar 

  30. Chew, H. K., Wun, T., Harvey, D., Zhou, H. & White, R. H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166, 458–464 (2006).

    Article  PubMed  Google Scholar 

  31. Khorana, A. A. et al. Cancer associated thrombosis and mortality in patients with cancer stratified by Khorana score risk levels. Cancer Med. 9, 8062–8073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rothman K. J. Epidemiology: An Introduction 2nd edn (Oxford Univ. Press, 2012).

  33. Khorana, A. A., Dalal, M. R., Lin, J. & Connolly, G. C. Health care costs associated with venous thromboembolism in selected high-risk ambulatory patients with solid tumors undergoing chemotherapy in the United States. Clinicoecon Outcomes Res. 5, 101–108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Prandoni, P. et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 100, 3484–3488 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kahn, S. R. The post-thrombotic syndrome. Hematol. Am. Soc. Hematol Educ. Program. 2016, 413–418 (2016).

    Article  Google Scholar 

  36. Klok, F. A. et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 28, 221–226 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Icht, O. et al. Venous thromboembolism incidence and risk assessment in lung cancer patients treated with immune checkpoint inhibitors. J. Thromb. Haemost. 19, 1250–1258 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Hultcrantz, M. et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study. Ann. Intern. Med. 168, 317–325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rotunno, G. et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 123, 1552–1555 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kewan, T. et al. Prognostic impact and risk factors of cancer-associated thrombosis events in stage-IV cancer patients treated with immune checkpoint inhibitors. Eur. J. Haematol. 106, 682–688 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Pabinger, I. et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients – results from the Vienna Cancer and Thrombosis Study (CATS). J. Thromb. Haemost. 13, 17–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Munoz Martin, A. J. et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br. J. Cancer 118, 1056–1061 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blom, J. W., Doggen, C. J., Osanto, S. & Rosendaal, F. R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 293, 715–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Skille, H. et al. Combined effects of five prothrombotic genotypes and cancer on the risk of a first venous thromboembolic event. J. Thromb. Haemost. 18, 2861–2869 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Mateos, M. K. et al. Genome-wide association meta-analysis of single-nucleotide polymorphisms and symptomatic venous thromboembolism during therapy for acute lymphoblastic leukemia and lymphoma in Caucasian children. Cancers 12, 1285 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  46. Al-Samkari, H. et al. Impact of ALK rearrangement on venous and arterial thrombotic risk in NSCLC. J. Thorac. Oncol. 15, 1497–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Roopkumar, J. et al. Risk of thromboembolism in patients with ALK- and EGFR-mutant lung cancer: a cohort study. J. Thromb. Haemost. 19, 822–829 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Ng, T. L. et al. ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events. J. Thorac. Oncol. 14, 596–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Corrales-Rodriguez, L. et al. Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study. Thromb. Res. 133, 48–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Ades, S. et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J. Thromb. Haemost. 13, 998–1003 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Unruh, D. et al. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol. 132, 917–930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mir Seyed Nazari, P. et al. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism. J. Thromb. Haemost. 16, 1121–1127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunbar, A. et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood 137, 2103–2113 (2021). In this analysis of patients with solid tumors, the authors identified multiple somatic mutations associated with the risk of thromboembolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferroni, P. et al. Validation of a machine learning approach for venous thromboembolism risk prediction in oncology. Dis. Markers 2017, 8781379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wolberg, A. S. et al. Venous thrombosis. Nat. Rev. Dis. Prim. 1, 15006 (2015).

    Article  PubMed  Google Scholar 

  56. Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 122, 2331–2336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Falanga, A., Russo, L., Milesi, V. & Vignoli, A. Mechanisms and risk factors of thrombosis in cancer. Crit. Rev. Oncol. Hematol. 118, 79–83 (2017).

    Article  PubMed  Google Scholar 

  58. Falanga, A. & Marchetti, M. Anticancer treatment and thrombosis. Thromb. Res. 129, 353–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Timp, J. F., Braekkan, S. K., Versteeg, H. H. & Cannegieter, S. C. Epidemiology of cancer-associated venous thrombosis. Blood 122, 1712–1723 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Levin, J. & Conley, C. L. Thrombocytosis associated with malignant disease. Arch. Intern. Med. 114, 497–500 (1964).

    Article  CAS  PubMed  Google Scholar 

  61. Khorana, A. A., Francis, C. W., Culakova, E. & Lyman, G. H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 104, 2822–2829 (2005).

    Article  PubMed  Google Scholar 

  62. Simanek, R. et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J. Thromb. Haemost. 8, 114–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Jensvoll, H., Blix, K., Braekkan, S. K. & Hansen, J. B. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: the Tromso study. PLoS ONE 9, e92011 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Matsuo, K. et al. Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. Eur. J. Cancer 51, 1978–1988 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Riedl, J., Pabinger, I. & Ay, C. Platelets in cancer and thrombosis. Hamostaseologie 34, 54–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, W. S. et al. Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma. World J. Gastroenterol. 11, 2166–2170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zietek, Z., Iwan-Zietek, I., Paczulski, R., Kotschy, M. & Wolski, Z. von Willebrand factor antigen in blood plasma of patients with urinary bladder carcinoma. Thromb. Res. 83, 399–402 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Gadducci, A. et al. Pretreatment plasma levels of fibrinopeptide-A (FPA), D-dimer (DD), and von Willebrand factor (vWF) in patients with ovarian carcinoma. Gynecol. Oncol. 53, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Riedl, J. et al. Association of platelet activation markers with cancer-associated venous thromboembolism. Platelets 27, 80–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Poruk, K. E. et al. Serum platelet factor 4 is an independent predictor of survival and venous thromboembolism in patients with pancreatic adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 19, 2605–2610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Geddings, J. E. et al. Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J. Thromb. Haemost. 14, 153–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Mezouar, S., Darbousset, R., Dignat-George, F., Panicot-Dubois, L. & Dubois, C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int. J. Cancer 136, 462–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Connolly, G. C., Phipps, R. P. & Francis, C. W. Platelets and cancer-associated thrombosis. Semin. Oncol. 41, 302–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Shai, A. et al. Statins, aspirin and risk of thromboembolic events in ovarian cancer patients. Gynecol. Oncol. 133, 304–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Shai, A. et al. Statins, aspirin and risk of venous thromboembolic events in breast cancer patients. J. Thromb. Thrombolysis 38, 32–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Zwicker, J. I. et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 4, e125851 (2019).

    Article  PubMed Central  Google Scholar 

  78. Shoenfeld, Y., Tal, A., Berliner, S. & Pinkhas, J. Leukocytosis in non hematological malignancies — a possible tumor-associated marker. J. Cancer Res. Clin. Oncol. 111, 54–58 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Granger, J. M. & Kontoyiannis, D. P. Etiology and outcome of extreme leukocytosis in 758 nonhematologic cancer patients: a retrospective, single-institution study. Cancer 115, 3919–3923 (2009).

    Article  PubMed  Google Scholar 

  80. Kasuga, I. et al. Tumor-related leukocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer 92, 2399–2405 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Ruka, W., Rutkowski, P., Kaminska, J., Rysinska, A. & Steffen, J. Alterations of routine blood tests in adult patients with soft tissue sarcomas: relationships to cytokine serum levels and prognostic significance. Ann. Oncol. 12, 1423–1432 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Khorana, A. A., Kuderer, N. M., Culakova, E., Lyman, G. H. & Francis, C. W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111, 4902–4907 (2008). This study investigated the first developed and validated risk tool for cancer-associated VTE; this tool has since been validated in multiple external cohorts and tested as an inclusion criterion in trials of outpatient thromboprophylaxis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pabinger, I. & Posch, F. Flamethrowers: blood cells and cancer thrombosis risk. Hematol. Am. Soc. Hematol. Educ. Program. 2014, 410–417 (2014).

    Article  Google Scholar 

  84. Blix, K., Jensvoll, H., Braekkan, S. K. & Hansen, J. B. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism — the Tromso study. PLoS ONE 8, e73447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Falanga, A. et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 96, 4261–4266 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Falanga, A., Marchetti, M., Vignoli, A., Balducci, D. & Barbui, T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp. Hematol. 33, 523–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Grover, S. P. & Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 38, 709–725 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Lwaleed, B. A., Francis, J. L. & Chisholm, M. Monocyte tissue factor levels in patients with urological tumours: an association between tumour presence and progression. BJU Int. 83, 476–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Morgan, D., Edwards, R. L. & Rickles, F. R. Monocyte procoagulant activity as a peripheral marker of clotting activation in cancer patients. Haemostasis 18, 55–65 (1988).

    CAS  PubMed  Google Scholar 

  90. Edwards, R. L., Rickles, F. R. & Cronlund, M. Abnormalities of blood coagulation in patients with cancer. Mononuclear cell tissue factor generation. J. Lab. Clin. Med. 98, 917–928 (1981).

    CAS  PubMed  Google Scholar 

  91. Thalin, C., Hisada, Y., Lundstrom, S., Mackman, N. & Wallen, H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb.Vasc. Biol. 39, 1724–1738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Mauracher, L. M. et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. 16, 508–518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Demers, M. & Wagner, D. D. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin. Thromb. Hemost. 40, 277–283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. DuPre, S. A. & Hunter, K. W. Jr Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Demers, M. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl Acad. Sci. USA 109, 13076–13081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hisada, Y. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica 105, 218–225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leal, A. C. et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci. Rep. 7, 6438 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Geddings, J. E. & Mackman, N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 122, 1873–1880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hisada, Y. & Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 130, 1499–1506 (2017). This is a comprehensive overview of the basic and translational science underlying pathogenesis of cancer-associated thrombosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Falanga, A. et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood 86, 1072–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Marchetti, M., Diani, E., ten Cate, H. & Falanga, A. Characterization of the thrombin generation potential of leukemic and solid tumor cells by calibrated automated thrombography. Haematologica 97, 1173–1180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gyorgy, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. CMLS 68, 2667–2688 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circul. Res. 120, 1632–1648 (2017).

    Article  CAS  Google Scholar 

  105. Gardiner, C. et al. Extracellular vesicles, tissue factor, cancer and thrombosis–discussion themes of the ISEV 2014 Educational Day. J. Extracell. Vesicles 4, 26901 (2015).

    Article  PubMed  Google Scholar 

  106. Dvorak, H. F. et al. Procoagulant activity associated with plasma membrane vesicles shed by cultured tumor cells. Cancer Res. 43, 4434–4442 (1983).

    CAS  PubMed  Google Scholar 

  107. Bastida, E., Ordinas, A., Escolar, G. & Jamieson, G. A. Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis. Blood 64, 177–184 (1984).

    Article  CAS  PubMed  Google Scholar 

  108. Yu, J. L. & Rak, J. W. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J. Thromb. Haemost. 2, 2065–2067 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, J. L. et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105, 1734–1741 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Thomas, G. M. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J. Exp. Med. 206, 1913–1927 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Davila, M. et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J. Thromb. Haemost. 6, 1517–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, J. G. et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 119, 5543–5552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thomas, G. M. et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J. Thromb. Haemost. 13, 1310–1319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hisada, Y., Ay, C., Auriemma, A. C., Cooley, B. C. & Mackman, N. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J. Thromb. Haemost. 15, 2208–2217 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Zwicker, J. I. et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin. Cancer Res. 15, 6830–6840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tesselaar, M. E. et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J. Thromb. Haemost. 5, 520–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Tesselaar, M. E., Romijn, F. P., van der Linden, I. K., Bertina, R. M. & Osanto, S. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J. Thromb. Haemost. 7, 1421–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Woei-A-Jin, F. J. S. H. et al. Tissue factor-bearing microparticles and CA19.9: two players in pancreatic cancer-associated thrombosis? Br. J. Cancer 115, 332–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Khorana, A. A. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J. Thromb. Haemost. 6, 1983–1985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thaler, J. et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J. Thromb. Haemost. 10, 1363–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Bharthuar, A. et al. Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers. Thromb. Res. 132, 180–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Thaler, J. et al. Microparticle-associated tissue factor activity in patients with pancreatic cancer: correlation with clinicopathological features. Eur. J. Clin. Invest. 43, 277–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Manly, D. A., Boles, J. & Mackman, N. Role of tissue factor in venous thrombosis. Annu. Rev. Physiol. 73, 515–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Doormaal, F. et al. Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thromb. Haemost. 108, 160–165 (2012).

    Article  PubMed  Google Scholar 

  125. van Es, N. et al. Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: a prospective cohort study. Thromb. Res. 166, 54–59 (2018).

    Article  PubMed  Google Scholar 

  126. Gezelius, E. et al. Coagulation biomarkers and prediction of venous thromboembolism and survival in small cell lung cancer: a sub-study of RASTEN — a randomized trial with low molecular weight heparin. PLoS ONE 13, e0207387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cohen, J. G. et al. Evaluation of venous thrombosis and tissue factor in epithelial ovarian cancer. Gynecol. Oncol. 146, 146–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Marchetti, M. et al. Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia. Am. J. Hematol. 89, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Ando, Y. et al. Risk factors for cancer-associated thrombosis in patients undergoing treatment with immune checkpoint inhibitors. Invest. New Drugs 38, 1200–1206 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Kasthuri, R. S., Hisada, Y., Ilich, A., Key, N. S. & Mackman, N. Effect of chemotherapy and longitudinal analysis of circulating extracellular vesicle tissue factor activity in patients with pancreatic and colorectal cancer. Res. Pract. Thromb. Haemost. 4, 636–643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Faille, D. et al. Biomarkers for the risk of thrombosis in pancreatic adenocarcinoma are related to cancer process. Oncotarget 9, 26453–26465 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mackman, N., Morrissey, J. H., Fowler, B. & Edgington, T. S. Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry. 28, 1755–1762 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Rong, Y. et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res. 69, 2540–2549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Magnus, N., Garnier, D. & Rak, J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 116, 815–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Tawil, N. et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv. 5, 1682–1694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Swystun, L. L., Mukherjee, S. & Liaw, P. C. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J. Thromb. Haemost. 9, 2313–2321 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Battistelli, S. et al. Coagulation factor levels in non-metastatic colorectal cancer patients. Int. J. Biol. Markers 23, 36–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Nickel, K. F. et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood. 126, 1379–1389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Naudin, C., Burillo, E., Blankenberg, S., Butler, L. & Renne, T. Factor XII contact activation. Semin. Thromb. Hemost. 43, 814–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Smith, S. A. & Morrissey, J. H. 2013 scientific sessions Sol Sherry distinguished lecture in thrombosis: polyphosphate: a novel modulator of hemostasis and thrombosis. Arterioscler. Thromb.Vasc. Biol. 35, 1298–1305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hisada, Y. et al. The intrinsic pathway does not contribute to activation of coagulation in mice bearing human pancreatic tumors expressing tissue factor. Thromb. Haemost. 121, 967–970 (2021).

    Article  PubMed  Google Scholar 

  145. Schleef, R. R. & Loskutoff, D. J. Fibrinolytic system of vascular endothelial cells. Role of plasminogen activator inhibitors. Haemostasis 18, 328–341 (1988).

    CAS  PubMed  Google Scholar 

  146. Westrick, R. J. & Eitzman, D. T. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr. Drug Targets 8, 966–1002 (2007).

    Article  PubMed  Google Scholar 

  147. Andren-Sandberg, A., Lecander, I., Martinsson, G. & Astedt, B. Peaks in plasma plasminogen activator inhibitor-1 concentration may explain thrombotic events in cases of pancreatic carcinoma. Cancer 69, 2884–2887 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Sciacca, F. L. et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin. Cancer Res. 10, 1312–1317 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Hisada, Y. et al. Plasminogen activator inhibitor 1 and venous thrombosis in pancreatic cancer. Blood Adv. 5, 487–495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, N. et al. Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma. Mol. Cancer 14, 140 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Suzuki-Inoue, K., Inoue, O. & Ozaki, Y. Novel platelet activation receptor CLEC-2: from discovery to prospects. J. Thromb. Haemost. 9 (Suppl. 1), 44–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Krishnan, H. et al. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 109, 1292–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kato, Y. et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 99, 54–61 (2008).

    CAS  PubMed  Google Scholar 

  154. Raica, M., Cimpean, A. M. & Ribatti, D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 28, 2997–3006 (2008).

    PubMed  Google Scholar 

  155. Suzuki-Inoue, K. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J. Biol. Chem. 282, 25993–26001 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Ernst, A. et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin. Cancer Res. 15, 6541–6550 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Mir Seyed Nazari, P., Riedl, J., Pabinger, I. & Ay, C. The role of podoplanin in cancer-associated thrombosis. Thromb. Res. 164 (Suppl. 1), 34–39 (2018).

    Article  Google Scholar 

  158. Thaler, J. et al. Biomarkers predictive of venous thromboembolism in patients with newly diagnosed high-grade gliomas. Neuro-oncology 16, 1645–1651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Riedl, J. et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. 129, 1831–1839 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Grant, J. D. et al. Diagnosis and management of upper extremity deep-vein thrombosis in adults. Thromb. Haemost. 108, 1097–1108 (2012).

    Article  PubMed  Google Scholar 

  161. Ageno, W. et al. Upper extremity DVT versus lower extremity DVT: perspectives from the GARFIELD-VTE Registry. Thromb. Haemost. 119, 1365–1372 (2019).

    Article  PubMed  Google Scholar 

  162. Riva, N. & Ageno, W. Cerebral and splanchnic vein thrombosis: advances, challenges, and unanswered questions. J. Clin. Med. 9, 743 (2020).

    Article  PubMed Central  Google Scholar 

  163. O’Connell, C. How I treat incidental pulmonary embolism. Blood 125, 1877–1882 (2015).

    Article  PubMed  Google Scholar 

  164. Riva, N. et al. Clinical history and antithrombotic treatment of incidentally detected splanchnic vein thrombosis: a multicentre, international prospective registry. Lancet Haematol. 3, e267–e275 (2016).

    Article  PubMed  Google Scholar 

  165. Lim, W. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: diagnosis of venous thromboembolism. Blood Adv. 2, 3226–3256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Konstantinides, S. V. et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 41, 543–603 (2020).

    Article  PubMed  Google Scholar 

  167. Wells, P. S. et al. Accuracy of clinical assessment of deep-vein thrombosis. Lancet 345, 1326–1330 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Wells, P. S. et al. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N. Engl. J. Med. 349, 1227–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Klok, F. A. et al. Simplification of the revised Geneva score for assessing clinical probability of pulmonary embolism. Arch. Intern. Med. 168, 2131–2136 (2008).

    Article  PubMed  Google Scholar 

  170. Constans, J. et al. A clinical prediction score for upper extremity deep venous thrombosis. Thromb. Haemost. 99, 202–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Key, N. S. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 38, 496–520 (2020).

    Article  PubMed  Google Scholar 

  172. Farge, D. et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 20, e566–e581 (2019).

    Article  PubMed  Google Scholar 

  173. Mulder, F. I. et al. The Khorana score for prediction of venous thromboembolism in cancer patients: a systematic review and meta-analysis. Haematologica. 104, 1277–1287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sanfilippo, K. M. et al. Predicting venous thromboembolism in multiple myeloma: development and validation of the IMPEDE VTE score. Am. J. Hematol. 94, 1176–1184 (2019). Myeloma is a unique disease associated with a high risk of VTE in specific settings; this study develops and validates a risk tool for prediction of VTE in this specific setting.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li, A. et al. Derivation and validation of a risk assessment model for immunomodulatory drug-associated thrombosis among patients with multiple myeloma. J. Natl Compr. Canc Netw. 17, 840–847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Khorana, A. A. et al. Prediction and prevention of cancer-associated thromboembolism. Oncologist 26, e2–e7 (2021).

    Article  PubMed  Google Scholar 

  177. Pabinger, I. et al. Development and validation of a clinical prediction model for cancer-associated venous thromboembolism in two independent prospective cohorts. Lancet Haematol. 5, e289 (2018). The authors develop and validate a clinical prediction model and nomogram that helps predict the risk of cancer-associated VTE.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lyman, G. H. et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Adv. 5, 927–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Patell, R., Rybicki, L., McCrae, K. R. & Khorana, A. A. Predicting risk of venous thromboembolism in hospitalized cancer patients: utility of a risk assessment tool. Am. J. Hematol. 92, 501–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Parker, A. et al. Risk stratification for the development of venous thromboembolism in hospitalized patients with cancer. J. Thromb. Haemost. 16, 1321–1326 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Carrier, M. et al. Lack of evidence to support thromboprophylaxis in hospitalized medical patients with cancer. Am. J. Med. 127, 82–86.e1 (2014).

    Article  PubMed  Google Scholar 

  182. Zwicker, J. I. et al. Dose-adjusted enoxaparin thromboprophylaxis in hospitalized cancer patients: a randomized, double-blinded multicenter phase 2 trial. Blood Adv. 4, 2254–2260 (2020). Inpatient thromboprophylaxis is recommended for hospitalized medically ill patients with cancer, but based on extrapolation from study populations largely without cancer; this pilot randomized study attempts to identify appropriate dosing of prophylaxis specifically for patients with cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. & Agnelli, G. et al. The ultra-low molecular weight heparin (ULMWH) semuloparin for prevention of venous thromboembolism (VTE) in patients with cancer receiving chemotherapy: SAVE ONCO study [abstract]. J. Clin. Oncol. 29 (Suppl. 18), LBA9014 (2011).

    Article  Google Scholar 

  184. Agnelli, G. et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: a randomised, placebo-controlled, double-blind study. Lancet Oncol. 10, 943–949 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Khorana, A. A. et al. Assessing full benefit of rivaroxaban prophylaxis in high-risk ambulatory patients with cancer: thromboembolic events in the randomized CASSINI trial. TH Open. 4, e107–e112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Li, A. et al. Cost-effectiveness analysis of low-dose direct oral anticoagulant (DOAC) for the prevention of cancer-associated thrombosis in the United States. Cancer 126, 1736–1748 (2020).

    Article  PubMed  Google Scholar 

  187. Wang, T. F. et al. The use of direct oral anticoagulants for primary thromboprophylaxis in ambulatory cancer patients: guidance from the SSC of the ISTH. J. Thromb. Haemost. 17, 1772–1778 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kunapareddy, G. et al. Implementation of an electronic medical record tool for early detection of deep vein thrombosis in the ambulatory oncology setting. Res. Pract. Thromb. Haemost. 3, 226–233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Lustig, D. B., Rodriguez, R. & Wells, P. S. Implementation and validation of a risk stratification method at the Ottawa Hospital to guide thromboprophylaxis in ambulatory cancer patients at intermediate-high risk for venous thrombosis. Thromb. Res. 136, 1099–1102 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Holmes, C. E. et al. Successful model for guideline implementation to prevent cancer-associated thrombosis: venous thromboembolism prevention in the ambulatory cancer clinic. JCO Oncol. Pract. 16, e868–e874 (2020). Implementing findings of clinical trials has an important impact on the public health burden of VTE; this model from Vermont describes one pathway to guideline-compliant implementation of outpatient prophylaxis.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lee, A. Y. Y. et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N. Engl. J. Med. 349, 146–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Kearon, C. et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 149, 315–352 (2016).

    Article  PubMed  Google Scholar 

  193. Lyman, G. H., Bohlke, K. & Falanga, A. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology Clinical practice guideline update. J. Oncol. Pract. 11, e442–e444 (2015).

    Article  PubMed  Google Scholar 

  194. Lee, A. Y. Y. Anticoagulant therapy for venous thromboembolism in cancer. N. Engl. J. Med. 382, 1650–1652 (2020).

    Article  PubMed  Google Scholar 

  195. Raskob, G. E. et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N. Engl. J. Med. 378, 615–624 (2017).

    Article  PubMed  Google Scholar 

  196. Young, A. M. et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J. Clin. Oncol. 36, 2017–2023 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Agnelli, G. et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N. Engl. J. Med. 382, 1599–1607 (2020). Together with Raskob et al. (2017) and Young et al. (2018), this randomized trial established the risks and benefits of DOACs for treatment of acute VTE in cancer, when compared with the prior gold standard of LMWH.

    Article  CAS  PubMed  Google Scholar 

  198. McBane, R. D. II et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J. Thromb. Haemost. 18, 411–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Farge, D. et al. Quality of life in cancer patients undergoing anticoagulant treatment with LMWH for venous thromboembolism: the QUAVITEC study on behalf of the Groupe Francophone Thrombose et Cancer (GFTC). Oncotarget 9, 26990–26999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Chuang, L. H. et al. Health-related quality of life and mortality in patients with pulmonary embolism: a prospective cohort study in seven European countries. Qual. Life Res. 28, 2111–2124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Monreal, M. et al. Deep vein thrombosis in Europe — health-related quality of life and mortality. Clin. Appl. Thromb. Hemost. 25, 1076029619883946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lloyd, A. J., Dewilde, S., Noble, S., Reimer, E. & Lee, A. Y. Y. What impact does venous thromboembolism and bleeding have on cancer patients’ quality of life? Value Health 21, 449–455 (2018).

    Article  PubMed  Google Scholar 

  203. Hunter, R., Lewis, S., Noble, S., Rance, J. & Bennett, P. D. “Post-thrombotic panic syndrome”: a thematic analysis of the experience of venous thromboembolism. Br. J. Health Psychol. 22, 8–25 (2017).

    Article  PubMed  Google Scholar 

  204. Seaman, S., Nelson, A. & Noble, S. Cancer-associated thrombosis, low-molecular-weight heparin, and the patient experience: a qualitative study. Patient Prefer. Adherence 8, 453–461 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. Noble, S., Prout, H. & Nelson, A. Patients’ experiences of lIving with cancer-associated thrombosis: the PELICAN study. Patient Prefer. Adherence 9, 337–345 (2015). This unique study provides patient input on experiencing cancer-associated thrombosis.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Font, C. et al. Patients’ experience of living with cancer-associated thrombosis in Spain (PELICANOS). Support. Care Cancer 26, 3233–3239 (2018).

    Article  PubMed  Google Scholar 

  207. Noble, S. et al. Patient experience of living with cancer-associated thrombosis in Canada (PELICANADA). Res. Pract. Thromb. Haemost. 4, 154–160 (2020).

    Article  PubMed  Google Scholar 

  208. Noble, S., Matzdorff, A., Maraveyas, A., Holm, M. V. & Pisa, G. Assessing patients’ anticoagulation preferences for the treatment of cancer-associated thrombosis using conjoint methodology. Haematologica 100, 1486–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hutchinson, A. et al. Oral anticoagulation is preferable to injected, but only if it is safe and effective: an interview study of patient and carer experience of oral and injected anticoagulant therapy for cancer-associated thrombosis in the select-d trial. Palliat. Med. 33, 510–517 (2019).

    Article  PubMed  Google Scholar 

  210. Woulfe, T. et al. “Wolverine, I think it’s called: blood thinners but in tablets.” Patients experience of living with cancer associated thrombosis in New Zealand (PELICANZ). Thromb. Res. 189, 35–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Kim, A. S., Khorana, A. A. & McCrae, K. R. Mechanisms and biomarkers of cancer-associated thrombosis. Transl. Res. 225, 33–53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Deschênes-Simard, X. et al. Venous thrombotic events in patients treated with immune checkpoint inhibitors for non-small cell lung cancer: a retrospective multicentric cohort study. Thromb. Res. 205, 29–39 (2021).

    Article  PubMed  Google Scholar 

  213. Gong, J. et al. Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur. J. Cancer 158, 99–110 (2021).

    Article  PubMed  Google Scholar 

  214. Ibrahimi, S. et al. Incidence of vascular thromboembolic events in patients receiving immunotherapy: a single institution experience. Blood 130 (Suppl. 1), 4864 (2017).

    Google Scholar 

  215. Hegde, A. M. et al. Incidence and impact of thromboembolic events in lung cancer patients treated with nivolumab [abstract]. J. Clin. Oncol. 35 (Suppl. 15), e20624 (2017).

    Article  Google Scholar 

  216. Totzeck, M., Mincu, R. I. & Rassaf, T. Cardiovascular adverse events in patients with cancer treated with bevacizumab: a meta analysis of more than 20 000 patients. J. Am. Heart. Assoc. 6, e006278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Alexander, M. et al. A multicenter study of thromboembolic events among patients diagnosed with ROS1-rearranged non-small cell lung cancer. Lung Cancer 142, 34–40 (2020).

    Article  PubMed  Google Scholar 

  218. West, M. T. et al. CDK 4/6 inhibitors are associated with a high incidence of thrombotic events in women with breast cancer in real-world practice. Eur. J. Haematol. 106, 634–642 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Thein, K. Z. et al. Venous thromboembolism risk in patients with hormone receptor-positive HER2-negative metastatic breast cancer treated with combined CDK 4/6 inhibitors plus endocrine therapy versus endocrine therapy alone: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. Treat. 183, 479–487 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.A.K. acknowledges research support from the Consortium Linking Oncology to Thrombosis (CLOT), funded by the National Heart, Lung and Blood Institute (U01 HL143402) and the Sondra and Stephen Hardis Endowed Chair in Oncology Research. A.A.K. also acknowledges D. Attia for editorial assistance. N.M. is supported by a grant from the National Heart, Lung and Blood Institute of the National Institutes of Health (R35 HL20011) and the John C. Parker Endowed Chair in Hematology. N.M. also acknowledges helpful comments from Y. Hisada. A.F. acknowledges support from the Italian Cancer Research Association (AIRC) and from ARTET Foundation. The authors thank the patients for sharing their experiences as outlined in Box 1.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.A.K., N.M., A.F., S.N., W.A. and A.Y.Y.L.); Epidemiology (A.A.K., I.P., F.M. and A.Y.Y.L.); Mechanisms/pathophysiology (N.M., A.F. and I.P.); Diagnosis, screening and prevention (A.A.K. and W.A.); Management (A.A.K., N.M., A.F. and A.Y.Y.L.); Quality of life (S.N. and A.Y.Y.L.); Outlook (A.A.K., I.P., S.N. and A.Y.Y.L.); Overview of primer (A.A.K.).

Corresponding author

Correspondence to Alok A. Khorana.

Ethics declarations

Competing interests

A.A.K. received honoraria from Janssen, Bayer, BMS, Pfizer, Sanofi, Anthos and Halozyme. N.M. received a research grant from GSK. W.A. received honoraria from Bayer, Portola, Sanofi, Aspen, Norgine, Leo Pharma and BMS-Pfizer, and research support from Bayer. S.N. received honoraria for delivering lectures from Leo Pharma, BMS-Pfizer Alliance, and grant support from Leo Pharma. A.F. was a speaker at corporate symposia (Bayer, Sanofi, Pfizer, Leo Pharma), and participated on advisory boards (Bayer, Sanofi). A.Y.Y.L. received honoraria from Bayer, BMS-Pfizer, Leo Pharma, Pfizer and Servier, and research support from BMS. I.P. received honoraria from Bayer, BMS, Pfizer, Sanofi and Daiichi Sanchyo. F.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks S. Cannegieter, J. Hansen, P. M. Sandset, H. T. Sorensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

The Human Protein Atlas: http://www.proteinatlas.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorana, A.A., Mackman, N., Falanga, A. et al. Cancer-associated venous thromboembolism. Nat Rev Dis Primers 8, 11 (2022). https://doi.org/10.1038/s41572-022-00336-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00336-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer