Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Endometrial cancer

Abstract

Although endometrial cancer management remains challenging, a deeper understanding of the genetic diversity as well as the drivers of the various pathogenic states of this disease has led to development of divergent management approaches in an effort to improve therapeutic precision in this complex malignancy. This comprehensive review provides an update on the epidemiology, pathophysiology, diagnosis and molecular classification, recent advancements in disease management, as well as important patient quality-of-life considerations and emerging developments in the rapidly evolving therapeutic landscape of endometrial cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uterine anatomy.
Fig. 2: Incidence and mortality of cancers of the corpus uteri.
Fig. 3: Molecular subgroup of EC.
Fig. 4: Crosstalk between endometrial cancer cells, TAMs and microenvironment.
Fig. 5: Staging of endometrial cancer.
Fig. 6: Histological features of endometrial cancer.
Fig. 7: Progression-free survival of endometrial cancer.
Fig. 8: PORTEC-4a trial schema.

Similar content being viewed by others

References

  1. Henley, S. J. et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 126, 2225–2249 (2020).

    Article  PubMed  Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Morice, P., Leary, A., Creutzberg, C., Abu-Rustum, N. & Darai, E. Endometrial cancer. Lancet 387, 1094–1108 (2016).

    Article  PubMed  Google Scholar 

  4. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  PubMed  Google Scholar 

  5. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003). Prospective study showing that excess body weight was associated with increased death rates from EC and all malignancies combined.

    Article  PubMed  Google Scholar 

  6. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC working group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  9. Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, S. et al. Global, regional, and national burden of endometrial cancer, 1990–2017. Results from the global burden of disease study, 2017. Front. Oncol. 9, 1440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee, S., Gupta, D., Caputo, T. A. & Holcomb, K. Disparities in gynecological malignancies. Front. Oncol. 6, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Svanvik, T., Marcickiewicz, J., Sundfeldt, K., Holmberg, E. & Stromberg, U. Sociodemographic disparities in stage-specific incidences of endometrial cancer: a registry-based study in West Sweden, 1995–2016. Acta Oncologica. 58, 845–851 (2019).

    Article  PubMed  Google Scholar 

  13. Bain, R. P., Greenberg, R. S. & Chung, K. C. Racial differences in survival of women with endometrial cancer. Am. J. Obstet. Gynecol. 157, 914–923 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Felix, A. S. et al. Factors associated with Type I and Type II endometrial cancer. Cancer Causes Control 21, 1851–1856 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park, A. B. et al. Racial disparities in survival among women with endometrial cancer in an equal access system. Gynecol. Oncol. 163, 125–129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Long, B., Liu, F. W. & Bristow, R. E. Disparities in uterine cancer epidemiology, treatment, and survival among African Americans in the United States. Gynecol. Oncol. 130, 652–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madison, T., Schottenfeld, D., James, S. A., Schwartz, A. G. & Gruber, S. B. Endometrial cancer: socioeconomic status and racial/ethnic differences in stage at diagnosis, treatment, and survival. Am. J. Public Health 94, 2104–2111 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cote, M. L., Ruterbusch, J. J., Olson, S. H., Lu, K. & Ali-Fehmi, R. The growing burden of endometrial cancer: a major racial disparity affecting black women. Cancer Epidemiol. Biomark. Prev. 24, 1407–1415 (2015).

    Article  Google Scholar 

  19. Feinberg, J. et al. Ten-year comparison study of type 1 and 2 endometrial cancers: risk factors and outcomes. Gynecol. Obstet. Invest. 84, 290–297 (2019).

    Article  PubMed  Google Scholar 

  20. Althubiti, M. A. Mutation frequencies in endometrial cancer patients of different ethnicities and tumor grades: an analytical study. Saudi J. Med. Sci. 7, 16–21 (2019).

    Article  Google Scholar 

  21. Zhang, M. M. et al. Improved survival of Asians with corpus cancer compared with whites: an analysis of underlying factors. Obstet. Gynecol. 107, 329–335 (2006).

    Article  PubMed  Google Scholar 

  22. Simons, E. et al. Foreign- vs US-born Asians and the association of type I uterine cancer. Am. J. Obstet. Gynecol. 212, 43.e41–43.e46 (2015).

    Article  Google Scholar 

  23. Colombo, N. et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis, treatment and follow-up. Ann. Oncol. 27, 16–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. SGO Clinical Practice Endometrial Cancer Working Group Endometrial cancer: a review and current management strategies: part I. Gynecol. Oncol. 134, 385–392 (2014).

    Article  Google Scholar 

  25. Setiawan, V. W. et al. Type I and II endometrial cancers: have they different risk factors? J. Clin. Oncol. 31, 2607–2618 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Renehan, A. G., Zwahlen, M. & Egger, M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat. Rev. Cancer 15, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Obesity and cancer mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo, J. et al. Intentional weight loss and endometrial cancer risk. J. Clin. Oncol. 35, 1189–1193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liao, C., Zhang, D., Mungo, C., Tompkins, D. A. & Zeidan, A. M. Is diabetes mellitus associated with increased incidence and disease-specific mortality in endometrial cancer? A systematic review and meta-analysis of cohort studies. Gynecol. Oncol. 135, 163–171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Saed, L. et al. The effect of diabetes on the risk of endometrial cancer: an updated a systematic review and meta-analysis. BMC Cancer 19, 527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Z. H., Su, P. Y., Hao, J. H. & Sun, Y. H. The role of preexisting diabetes mellitus on incidence and mortality of endometrial cancer: a meta-analysis of prospective cohort studies. Int. J. Gynecol. Cancer 23, 294–303 (2013).

    Article  PubMed  Google Scholar 

  32. Shikata, K., Ninomiya, T. & Kiyohara, Y. Diabetes mellitus and cancer risk: review of the epidemiological evidence. Cancer Sci. 104, 9–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Esposito, K. et al. Metabolic syndrome and endometrial cancer: a meta-analysis. Endocrine 45, 28–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Rosato, V. et al. Metabolic syndrome and endometrial cancer risk. Ann. Oncol. 22, 884–889 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Trabert, B. et al. Metabolic syndrome and risk of endometrial cancer in the united states: a study in the SEER-medicare linked database. Cancer Epidemiol. Biomark. Prev. 24, 261–267 (2015).

    Article  Google Scholar 

  36. Arthur, R. S. et al. Metabolic syndrome and risk of endometrial cancer in postmenopausal women: a prospective study. Cancer Causes Control 30, 355–363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alford, S. H., Rattan, R., Buekers, T. E. & Munkarah, A. R. Protective effect of bisphosphonates on endometrial cancer incidence in data from the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Cancer 121, 441–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Newcomb, P. A. et al. Oral bisphosphonate use and risk of postmenopausal endometrial cancer. J. Clin. Oncol. 33, 1186–1190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rennert, G., Rennert, H. S., Pinchev, M. & Lavie, O. The effect of bisphosphonates on the risk of endometrial and ovarian malignancies. Gynecol. Oncol. 133, 309–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. S. et al. Risk reduction of endometrial and ovarian cancer after bisphosphonates use: a meta-analysis. Gynecol. Oncol. 150, 509–514 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Clezardin, P. Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48, 71–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Coleman, R. et al. Effects of bone-targeted agents on cancer progression and mortality. J. Natl Cancer Inst. 104, 1059–1067 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Gnant, M. & Clézardin, P. Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat. Rev. 38, 407–415 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ryan, N. A. J. et al. The proportion of endometrial cancers associated with Lynch syndrome: a system review of the literature and meta-analysis. Genet. Med. 21, 2167–2180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonadona, V. et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305, 2304–2310 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Moller, P. et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective lynch syndrome database. Gut 67, 1306–1316 (2018).

    Article  PubMed  Google Scholar 

  47. Ten Broeke, S. W. et al. Cancer risks for PMS2-associated lynch syndrome. J. Clin. Oncol. 36, 2961–2968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ring, K. L. et al. Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod. Pathol. 29, 1381–1389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan, M. H. et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin. Cancer Res. 18, 400–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goshen, R. et al. Is uterine papillary serous adenocarcinoma a manifestation of the hereditary breast-ovarian cancer syndrome? Gynecol. Oncol. 79, 477–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lavie, O. et al. BRCA germline mutations in Jewish women with uterine serous papillary carcinoma. Gynecol. Oncol. 92, 521–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Shu, C. A. et al. Uterine cancer after risk-reducing salpingo-oophorectomy without hysterectomy in women with BRCA mutations. JAMA Oncol. 2, 1434–1440 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Long, B. et al. Cancer susceptibility gene mutations in type I and II endometrial cancer. Gynecol. Oncol. 152, 20–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Lacey, J. V. Jr. et al. Absolute risk of endometrial carcinoma during 20-year follow-up among women with endometrial hyperplasia. J. Clin. Oncol. 28, 788–792 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baak, J. P. et al. The molecular genetics and morphometry-based endometrial intraepithelial neoplasia classification system predicts disease progression in endometrial hyperplasia more accurately than the 1994 World Health Organization classification system. Cancer 103, 2304–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Joshi, A. & Ellenson, L. H. PI3K/PTEN/AKT genetic mouse models of endometrial carcinoma. Adv. Exp. Med. Biol. 943, 261–273 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Rahmanto, Y. S. et al. Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat. Commun. 11, 2717 (2020).

    Article  Google Scholar 

  58. Gao, Y., Lin, P., Lydon, J. P. & Li, Q. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice. J. Pathol. 243, 89–99 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jarboe, E. A. et al. Evidence for a latent precursor (p53 signature) that may precede serous endometrial intraepithelial carcinoma. Mod. Pathol. 22, 345–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cantrell, L. A., Blank, S. V. & Duska, L. R. Uterine carcinosarcoma: a review of the literature. Gynecol. Oncol. 137, 581–588 (2015).

    Article  PubMed  Google Scholar 

  61. Cancer Genome Atlas Research Network Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013). Reports genomic, epigenomic, transcriptomic and proteomic characterizations of endometrial carcinomas and uterine carcinomas, delineating unique molecular phenotypic features and subtypes of these malignancies.

    Article  Google Scholar 

  62. Cherniack, A. D. et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 31, 411–423 (2017). Reports genomic, epigenomic, transcriptomic and proteomic characterizations of endometrial carcinomas and uterine carcinomas, delineating unique molecular phenotypic features and subtypes of these malignancies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crane, E. et al. Molecular variations in uterine carcinosarcomas identify therapeutic opportunities. Int. J. Gynecol. Cancer 30, 480–484 (2020).

    Article  PubMed  Google Scholar 

  64. Urick, M. E. & Bell, D. W. Clinical actionability of molecular targets in endometrial cancer. Nat. Rev. Cancer 19, 510–521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuhn, E., Bahadirli-Talbott, A. & Shih Ie, M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod. Pathol. 27, 1014–1019 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Fader, A. N. et al. Randomized phase II trial of carboplatin-paclitaxel compared with carboplatin-paclitaxel-trastuzumab in advanced (stage III–IV) or recurrent uterine serous carcinomas that overexpress Her2/Neu (NCT01367002): updated overall survival analysis. Clin. Cancer Res. 26, 3928–3935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bosse, T. et al. L1 cell adhesion molecule is a strong predictor for distant recurrence and overall survival in early stage endometrial cancer: pooled PORTEC trial results. Eur. J. Cancer 50, 2602–2610 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Van Gool, I. C. et al. Prognostic significance of L1CAM expression and its association with mutant p53 expression in high-risk endometrial cancer. Mod. Pathol. 29, 174–181 (2016).

    Article  PubMed  Google Scholar 

  69. McConechy, M. K. et al. Endometrial carcinomas with POLE exonuclease domain mutations have a favorable prognosis. Clin. Cancer Res. 22, 2865–2873 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Xing, X. et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat. Commun. 10, 374 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leon-Castillo, A. et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. J. Clin. Oncol. 38, 3388–3397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurnit, K. C. et al. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod. Pathol. 30, 1032–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Depreeuw, J. et al. Amplification of 1q32.1 refines the molecular classification of endometrial carcinoma. Clin. Cancer Res. 23, 7232–7241 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Talhouk, A. et al. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 123, 802–813 (2017). A simplified, pragmatic molecular classifier enabling the identification of four prognostically distinct molecular subtypes to diagnostic specimens, faciliating earlier informed decision-making.

    Article  CAS  PubMed  Google Scholar 

  75. Sari, A. et al. Interobserver agreement for mismatch repair protein immunohistochemistry in endometrial and nonserous, nonmucinous ovarian carcinomas. Am. J. Surg. Pathol. 43, 591–600 (2019).

    Article  PubMed  Google Scholar 

  76. Vermij, L., Smit, V., Nout, R. & Bosse, T. Incorporation of molecular characteristics into endometrial cancer management. Histopathology 76, 52–63 (2020).

    Article  PubMed  Google Scholar 

  77. Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729–748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cuevas, I. C. et al. Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc. Natl Acad. Sci. USA 116, 25880–25890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leskela, S. et al. Molecular basis of tumor heterogeneity in endometrial carcinosarcoma. Cancers 11, 964 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  80. Zhao, S. et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc. Natl Acad. Sci. USA 113, 12238–12243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gotoh, O. et al. Clinically relevant molecular subtypes and genomic alteration-independent differentiation in gynecologic carcinosarcoma. Nat. Commun. 10, 4965 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gotoh, O. et al. Immunogenomic landscape of gynecologic carcinosaroma. Gynecol. Oncol. 160, 547–556 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Vanderstraeten, A., Tuyaerts, S. & Amant, F. The immune system in the normal endometrium and implications for endometrial cancer development. J. Reprod. Immunol. 109, 7–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Vong, S. & Kalluri, R. The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2, 1139–1145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. De Nola, R. et al. The crowded crosstalk between cancer cells and stromal microenvironment in gynecological malignancies: biological pathways and therapeutic implication. Int. J. Mol. Sci. 20, 2401 (2019).

    Article  PubMed Central  Google Scholar 

  86. Tlsty, T. D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Tanwar, P. S., Zhang, L., Roberts, D. J. & Teixeira, J. M. Stromal deletion of the APC tumor suppressor in mice triggers development of endometrial cancer. Cancer Res. 71, 1584–1596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Peña, C. G. et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J. Clin. Invest. 125, 4063–4076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dun, E. C. et al. Infiltration of tumor-associated macrophages is increased in the epithelial and stromal compartments of endometrial carcinomas. Int. J. Gynecol. Pathol. 32, 576–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Pegram, M. D. et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 16, 2659–2671 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Krishnan, V., Schaar, B., Tallapragada, S. & Dorigo, O. Tumor associated macrophages in gynecologic cancers. Gynecol. Oncol. 149, 205–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Ning, C. et al. Infiltrating macrophages induce ERα expression through an IL17A-mediated epigenetic mechanism to sensitize endometrial cancer cells to estrogen. Cancer Res. 76, 1354–1366 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Yamagami, W. et al. Immunofluorescence-detected infiltration of CD4+FOXP3+ regulatory T cells is relevant to the prognosis of patients with endometrial cancer. Int. J. Gynecol. Cancer 21, 1628–1634 (2011).

    Article  PubMed  Google Scholar 

  96. Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).

    Article  PubMed  Google Scholar 

  97. Talhouk, A. et al. Molecular subtype not immune response drives outcomes in endometrial carcinoma. Clin. Cancer Res. 25, 2537–2548 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. van Gool, I. C. et al. POLE proofreading mutations elicit an antitumor immune response in endometrial cancer. Clin. Cancer Res. 21, 3347–3355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jumaah, A. S., Salim, M. M., Al-Haddad, H. S., McAllister, K. A. & Yaseen, A. A. The frequency of POLE-mutation in endometrial carcinoma and prognostic implications: a systemic review and meta-analysis. J. Pathol. Transl. Med. 54, 471–479 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lijun, Z. et al. Tumor-infiltrating dendritic cells may be used as clinicopathologic prognostic factors in endometrial carcinoma. Int. J. Gynecol. Cancer 22, 836–841 (2012).

    Article  PubMed  Google Scholar 

  102. Sungu, N. Expression of immunomodulatory molecules PD-1, PD-L1, and PD-L2, and their relationship with clinicopathologic characteristics in endometrial cancer. Int. J. Gynecol. Pathol. 38, 404–413 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Willis, B. C., Sloan, E. A., Atkins, K. A., Stoler, M. H. & Mills, A. M. Mismatch repair status and PD-L1 expression in clear cell carcinomas of the ovary and endometrium. Mod. Pathol. 30, 1622–1632 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Mills, A. et al. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas. Mod. Pathol. 31, 1282–1290 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Challapalli, A., Carroll, L. & Aboagye, E. O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging 5, 225–253 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mahecha, A. M. & Wang, H. The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and -9 in angiogenesis, metastasis, and prognosis of endometrial cancer. Onco Targets Ther. 10, 4617–4624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Franceschi, T. et al. Role of epithelial-mesenchymal transition factors in the histogenesis of uterine carcinomas. Virchows. Arch. 475, 85–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Senol, S. et al. Stromal clues in endometrial carcinoma: loss of expression of β-catenin, epithelial-mesenchymal transition regulators, and estrogen-progesterone receptor. Int. J. Gynecol. Pathol. 35, 238–248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, G. et al. Nuclear β-catenin localization and mutation of the CTNNB1 gene: a context-dependent association. Mod. Pathol. 31, 1553–1559 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hecht, J. L. & Mutter, G. L. Molecular and pathologic aspects of endometrial carcinogenesis. J. Clin. Oncol. 24, 4783–4791 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Teng, F. et al. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J. Hematol. Oncol. 9, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Winuthayanon, W. et al. Juxtacrine activity of estrogen receptor α in uterine stromal cells is necessary for estrogen-induced epithelial cell proliferation. Sci. Rep. 7, 8377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schwabe, R. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Walther-Antonio, M. R. S. et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 8, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, tourists, or invaders? Front. Immunol. 9, 208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Clarke, M. A. et al. Association of endometrial cancer risk with postmenopausal bleeding in women: a systematic review and meta-analysis. JAMA Intern. Med. 178, 1210–1222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. No Authors Listed. ACOG committee opinion no. 734: the role of transvaginal ultrasonography in evaluating the endometrium of women with postmenopausal bleeding. Obstet. Gynecol. 131, e124–e129 (2018).

    Article  Google Scholar 

  118. Breijer, M. C., Timmermans, A., van Doorn, H. C., Mol, B. W. & Opmeer, B. C. Diagnostic strategies for postmenopausal bleeding. Obstet. Gynecol. Int. 2010, 850812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gull, B., Karlsson, B., Milsom, I., Wikland, M. & Granberg, S. Transvaginal sonography of the endometrium in a representative sample of postmenopausal women. Ultrasound Obstet. Gynecol. 7, 322–327 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Smith-Bindman, R. et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 280, 1510–1517 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, D. O., Jung, M. H. & Kim, H. Y. Prospective comparison of biopsy results from curettage and hysteroscopy in postmenopausal uterine bleeding. J. Obstet. Gynaecol. Res. 37, 1423–1426 (2011).

    Article  PubMed  Google Scholar 

  122. Abbink, K. et al. HE4 is superior to CA125 in the detection of recurrent disease in high-risk endometrial cancer patients. Tumour Biol. 40, 1010428318757103 (2018).

    Article  PubMed  Google Scholar 

  123. Bignotti, E. et al. Diagnostic and prognostic impact of serum HE4 detection in endometrial carcinoma patients. Br. J. Cancer 104, 1418–1425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brennan, D. J. et al. Serum HE4 as a prognostic marker in endometrial cancer—a population based study. Gynecol. Oncol. 132, 159–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Saarelainen, S. K. et al. Predictive value of serum human epididymis protein 4 and cancer antigen 125 concentrations in endometrial carcinoma. Am. J. Obstet. Gynecol. 209, 142.e141–142.e146 (2013).

    Article  Google Scholar 

  126. Peungjesada, S., Bhosale, P. R., Balachandran, A. & Iyer, R. B. Magnetic resonance imaging of endometrial carcinoma. J. Comput. Assist. Tomogr. 33, 601–608 (2009).

    Article  PubMed  Google Scholar 

  127. Faria, S. C., Devine, C. E., Rao, B., Sagebiel, T. & Bhosale, P. Imaging and staging of endometrial cancer. Semin. Ultrasound CT MR 40, 287–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Kang, S. Y. et al. Prediction of recurrence by preoperative intratumoral FDG uptake heterogeneity in endometrioid endometrial cancer. Transl. Oncol. 10, 178–183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Akin, E. A., Kuhl, E. S. & Zeman, R. K. The role of FDG-PET/CT in gynecologic imaging: an updated guide to interpretation and challenges. Abdom. Radiol. 43, 2474–2486 (2018).

    Article  Google Scholar 

  130. Bokhman, J. V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 15, 10–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  131. Brinton, L. A. et al. Etiologic heterogeneity in endometrial cancer: evidence from a Gynecologic Oncology Group trial. Gynecol. Oncol. 129, 277–284 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gilks, C. B., Oliva, E. & Soslow, R. A. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am. J. Surg. Pathol. 37, 874–881 (2013).

    Article  PubMed  Google Scholar 

  133. de Boer, S. M. et al. Clinical consequences of upfront pathology review in the randomised PORTEC-3 trial for high-risk endometrial cancer. Ann. Oncol. 29, 424–430 (2018).

    Article  PubMed  Google Scholar 

  134. Kommoss, S. et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 29, 1180–1188 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Talhouk, A. et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer 113, 299–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raffone, A. et al. TCGA molecular groups of endometrial cancer: pooled data about prognosis. Gynecol. Oncol. 155, 374–383 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Lin, D. I. & Hecht, J. L. Targeted screening with combined age- and morphology-based criteria enriches detection of lynch syndrome in endometrial cancer. Int. J. Surg. Pathol. 24, 297–305 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Bruegl, A. S. et al. Clinical challenges associated with universal screening for lynch syndrome-associated endometrial cancer. Cancer Prev. Res. 10, 108–115 (2017).

    Article  CAS  Google Scholar 

  139. Watkins, J. C. et al. Universal screening for mismatch-repair deficiency in endometrial cancers to identify patients with Lynch syndrome and Lynch-like syndrome. Int. J. Gynecol. Pathol. 36, 115–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Goverde, A. et al. Cost-effectiveness of routine screening for Lynch syndrome in endometrial cancer patients up to 70 years of age. Gynecol. Oncol. 143, 453–459 (2016).

    Article  PubMed  Google Scholar 

  141. McAlpine, J. N., Temkin, S. M. & Mackay, H. J. Endometrial cancer: not your grandmother’s cancer. Cancer 122, 2787–2798 (2016).

    Article  PubMed  Google Scholar 

  142. Brooks, R. A. et al. Current recommendations and recent progress in endometrial cancer. CA Cancer J. Clin. 69, 258–279 (2019).

    PubMed  Google Scholar 

  143. Gien, L., Kwon, J., Oliver, T. K. & Fung-Kee-Fung, M. Adjuvant hormonal therapy for stage I endometrial cancer. Curr. Oncol. 15, 126–135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. MacKay, H. J., Freixinos, V. R. & Fleming, G. F. Therapeutic targets and opportunities in endometrial cancer: update on endocrine therapy and nonimmunotherapy targeted options. Am. Soc. Clin. Oncol. Educ. Book 40, 1–11 (2020).

    PubMed  Google Scholar 

  145. Green, A. K., Feinberg, J. & Makker, V. A review of immune checkpoint blockade therapy in endometrial cancer. Am. Soc. Clin. Oncol. Educ. Book 40, 1–7 (2020).

    PubMed  Google Scholar 

  146. Gaia, G. et al. Robotic-assisted hysterectomy for endometrial cancer compared with traditional laparoscopic and laparotomy approaches: a systematic review. Obstet. Gynecol. 116, 1422–1431 (2010).

    Article  PubMed  Google Scholar 

  147. Galaal, K., Donkers, H., Bryant, A. & Lopes, A. D. Laparoscopy versus laparotomy for the management of early stage endometrial cancer. Cochrane Database Syst. Rev. 10, CD006655 (2018).

    PubMed  Google Scholar 

  148. Janda, M. et al. Quality of life after total laparoscopic hysterectomy versus total abdominal hysterectomy for stage I endometrial cancer (LACE): a randomised trial. Lancet Oncol. 11, 772–780 (2010).

    Article  PubMed  Google Scholar 

  149. Walker, J. L. et al. Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2. J. Clin. Oncol. 27, 5331–5336 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. O’Malley, D. M., Smith, B. & Fowler, J. M. The role of robotic surgery in endometrial cancer. J. Surg. Oncol. 112, 761–768 (2015).

    Article  PubMed  Google Scholar 

  151. Rabinovich, A. Neo-adjuvant chemotherapy for advanced stage endometrial carcinoma: a glimmer of hope in select patients. Arch. Gynecol. Obstet. 293, 47–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Barlin, J. N., Ueda, S. M. & Bristow, R. E. Cytoreductive surgery for advanced and recurrent endometrial cancer: a review of the literature. Women’s Health 5, 403–411 (2009).

    PubMed  Google Scholar 

  153. Creasman, W. T. et al. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group study. Cancer 60, 2035–2041 (1987).

    Article  CAS  PubMed  Google Scholar 

  154. Lutman, C. V. et al. Pelvic lymph node count is an important prognostic variable for FIGO stage I and II endometrial carcinoma with high-risk histology. Gynecol. Oncol. 102, 92–97 (2006).

    Article  PubMed  Google Scholar 

  155. Todo, Y. et al. Survival effect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet 375, 1165–1172 (2010).

    Article  PubMed  Google Scholar 

  156. Abu-Rustum, N. R. et al. What is the incidence of isolated paraaortic nodal recurrence in grade 1 endometrial carcinoma? Gynecol. Oncol. 111, 46–48 (2008).

    Article  PubMed  Google Scholar 

  157. ASTEC Study Group. et al. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 373, 125–136 (2009).

    Article  Google Scholar 

  158. Benedetti Panici, P. et al. Systematic pelvic lymphadenectomy vs. no lymphadenectomy in early-stage endometrial carcinoma: randomized clinical trial. J. Natl Cancer Inst. 100, 1707–1716 (2008).

    Article  PubMed  Google Scholar 

  159. Frost, J. A., Webster, K. E., Bryant, A. & Morrison, J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst. Rev. 10, CD007585 (2017).

    PubMed  Google Scholar 

  160. NCCN Guidelines. Version1.2021. nccn.org. (2021).

  161. Metindir, J. & Dilek, G. B. The role of omentectomy during the surgical staging in patients with clinical stage I endometrioid adenocarcinoma. J. Cancer Res. Clin. Oncol. 134, 1067–1070 (2008).

    Article  PubMed  Google Scholar 

  162. Sundar, S. et al. BGCS uterine cancer guidelines: recommendations for practice. BGCS https://www.bgcs.org.uk/wp-content/uploads/2019/05/BGCS-Endometrial-Guidelines-2017.pdf (2019).

  163. Rodolakis, A. et al. European Society of Gynecological Oncology task force for fertility preservation: clinical recommendations for fertility-sparing management in young endometrial cancer patients. Int. J. Gynecol. Cancer 25, 1258–1265 (2015).

    Article  PubMed  Google Scholar 

  164. Gallos, I. D. et al. Regression, relapse, and live birth rates with fertility-sparing therapy for endometrial cancer and atypical complex endometrial hyperplasia: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. 207, 266.E1–266.E12 (2012).

    Article  Google Scholar 

  165. Hawkes, A. L. et al. Improving treatment for obese women with early stage cancer of the uterus: rationale and design of the levonorgestrel intrauterine device ± metformin ± weight loss in endometrial cancer (feMME) trial. Contemp. Clin. Trials 39, 14–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Zaino, R. J. et al. Histologic effects of medroxyprogesterone acetate on endometrioid endometrial adenocarcinoma: a Gynecologic Oncology Group study. Int. J. Gynecol. Pathol. 33, 543–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pal, N. et al. Treatment of low-risk endometrial cancer and complex atypical hyperplasia with the levonorgestrel-releasing intrauterine device. Obstet. Gynecol. 131, 109–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Matsuo, K. et al. Ovarian conservation and overall survival in young women with early-stage cervical cancer. Obstet. Gynecol. 129, 139–151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Johnson, N. & Cornes, P. Survival and recurrent disease after postoperative radiotherapy for early endometrial cancer: systematic review and meta-analysis. BJOG 114, 1313–1320 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Sorbe, B. et al. Intravaginal brachytherapy in FIGO stage I low-risk endometrial cancer: a controlled randomized study. Int. J. Gynecol. Cancer 19, 873–878 (2009).

    Article  PubMed  Google Scholar 

  171. Creutzberg, C. L. et al. Fifteen-year radiotherapy outcomes of the randomized PORTEC-1 trial for endometrial carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 81, e631–e638 (2011).

    Article  PubMed  Google Scholar 

  172. Creutzberg, C. L. et al. Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: multicentre randomised trial. PORTEC study group. post operative radiation therapy in endometrial carcinoma. Lancet 355, 1404–1411 (2000). Phase III study of postoperative radiotherapy versus surgery alone in stage 1 EC that shows that postoperative radiotherapy reduces locoregional recurrence but has no impact on OS.

    Article  CAS  PubMed  Google Scholar 

  173. Keys, H. M. et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol. 92, 744–751 (2004).

    Article  PubMed  Google Scholar 

  174. Harkenrider, M. M. et al. American brachytherapy task group report: adjuvant vaginal brachytherapy for early-stage endometrial cancer: a comprehensive review. Brachytherapy 16, 95–108 (2017).

    Article  PubMed  Google Scholar 

  175. Wortman, B. G. et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: improving patient selection for adjuvant therapy. Br. J. Cancer 119, 1067–1074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Randall, M. E. et al. Phase III trial: adjuvant pelvic radiation therapy versus vaginal brachytherapy plus paclitaxel/carboplatin in high-intermediate and high-risk early stage endometrial cancer. J. Clin. Oncol. 37, 1810–1818 (2019). This phase III trial of adjuvant pelvic radiation versus VBT plus paclitaxel and carboplatin chemotherapy in HIR and high-risk early-stage EC failed to show superiority of VBT plus chemotherapy compared with pelvic radiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. de Boer, S. M. et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 295–309 (2018). Phase III trial showing that adjuvant chemotherapy administered during and after radiation therapy in high-risk EC did not improve OS.

    Article  PubMed  PubMed Central  Google Scholar 

  178. De Boer, S. M. et al. Toxicity and quality of life after adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 17, 1114–1126 (2016).

    Article  PubMed  Google Scholar 

  179. Matei, D. et al. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. N. Engl. J. Med. 380, 2317–2326 (2019). Phase III trial showing that CTRT did not prolong relapse-free survival compared with chemotherapy alone in stage III or IVA EC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Geller, M. A. et al. A phase II trial of carboplatin and docetaxel followed by radiotherapy given in a “sandwich” method for stage III, IV, and recurrent endometrial cancer. Gynecol. Oncol. 121, 112–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hogberg, T. et al. Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer — results from two randomised studies. Eur. J. Cancer 46, 2422–2431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Randall, M. E. et al. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J. Clin. Oncol. 24, 36–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Kurra, V. et al. Typical and atypical metastatic sites of recurrent endometrial carcinoma. Cancer Imaging 13, 113–122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Miller, D. S. et al. Carboplatin and paclitaxel for advanced endometrial cancer: final overall survival and adverse event analysis of a phase III trial (NRG Oncology/GOG0209). J. Clin. Oncol. 38, 3841–3850 (2020). Phase III trial showing that paclitaxel and carboplatin chemotherapy was noninferior to paclitaxel–doxorubicin–cisplatin chemotherapy as first-line therapy for advanced EC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fleming, G. F. Second-line therapy for endometrial cancer: the need for better options. J. Clin. Oncol. 33, 3535–3540 (2015).

    Article  PubMed  Google Scholar 

  186. Nagao, S. et al. What is an appropriate second-line regimen for recurrent endometrial cancer? Ancillary analysis of the SGSG012/GOTIC004/Intergroup study. Cancer Chemother. Pharmacol. 76, 335–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Rubinstein, M. et al. Retreatment with carboplatin and paclitaxel for recurrent endometrial cancer: a retrospective study of the Memorial Sloan Kettering Cancer Center experience. Gynecol. Oncol. Rep. 28, 120–123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fader, A. N. et al. Randomized phase II trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J. Clin. Oncol. 36, 2044–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Aghajanian, C. et al. A phase II study of frontline paclitaxel/carboplatin/bevacizumab, paclitaxel/carboplatin/temsirolimus, or ixabepilone/carboplatin/bevacizumab in advanced/recurrent endometrial cancer. Gynecol. Oncol. 150, 274–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Leslie, K. K. et al. Mutated p53 portends improvement in outcomes when bevacizumab is combined with chemotherapy in advanced/recurrent endometrial cancer: an NRG Oncology study. Gynecol. Oncol. 161, 113–121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kokka, F., Brockbank, E., Oram, D., Gallagher, C. & Bryant, A. Hormonal therapy in advanced or recurrent endometrial cancer. Cochrane Database Syst. Rev. 12, CD007926 (2010).

    Google Scholar 

  192. Ethier, J. L., Desautels, D. N., Amir, E. & MacKay, H. Is hormonal therapy effective in advanced endometrial cancer? A systematic review and meta-analysis. Gynecol. Oncol. 147, 158–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Jerzak, K. J., Duska, L. & MacKay, H. J. Endocrine therapy in endometrial cancer: an old dog with new tricks. Gynecol. Oncol. 153, 175–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Fiorica, J. V. et al. Phase II trial of alternating courses of megestrol acetate and tamoxifen in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol. 92, 10–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Fleming, G. F. et al. Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: a Gynecologic Oncology Group study. Gynecol. Oncol. 132, 585–592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mirza, M. R. et al. LBA28 A randomised double-blind placebo-controlled phase II trial of palbociclib combined with letrozole (L) in patients (pts) with oestrogen receptor-positive (ER+) advanced/recurrent endometrial cancer (EC): NSGO-PALEO / ENGOT-EN3 trial. Ann. Oncol. 31, S1160 (2020).

    Article  Google Scholar 

  197. Slomovitz, B. M. et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J. Clin. Oncol. 33, 930–936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Soliman, P. T. et al. Everolimus, letrozole, and metformin in women with advanced or recurrent endometrioid endometrial cancer: a multi-center, single arm, phase II study. Clin. Cancer Res. 26, 581–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Heudel, P. et al. Victoria: a multicentric, randomized, open-label, phase I/II of mTOR inhibitor (VISTUSERTIB) combined with anastrozole in patients with hormone receptor-positive advanced/metastatic endometrial cancer—a CLIPP program INCA in collaboration with GINECO group. J. Clin. Oncol. 39, 5507 (2021).

    Article  Google Scholar 

  200. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020). Phase II trial that establishes monotherapy activity of the PD1 inhibitor pembrolizumab in MSI-H/MMRd solid tumours.

    Article  CAS  PubMed  Google Scholar 

  201. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Oaknin, A. et al. 935PD—Preliminary safety, efficacy, and PK/PD characterization from GARNET, a phase I clinical trial of the anti–PD-1 monoclonal antibody, TSR-042, in patients with recurrent or advanced MSI-H endometrial cancer. Ann. Oncol. 29, viii334 (2018). Phase I study that establishes monotherapy activity of the PD1 inhibitor dostarlimab in EC.

    Article  Google Scholar 

  203. Konstantinopoulos, P. A. et al. Phase II study of avelumab in patients with mismatch repair deficient and mismatch repair proficient recurrent/persistent endometrial cancer. J. Clin. Oncol. 37, 2786–2794 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Antill, Y. C., Kok, P. S. & Robledo, K. Activity of durvalumab in advanced endometrial cancer (AEC) according to mismatch repair (MMR) status: the phase II PHAEDRA trial (ANZGOG1601). J. Clin. Oncol. 37, 5501 (2019).

    Article  Google Scholar 

  205. Makker, V. et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J. Clin. Oncol. 38, 2981–2992 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Makker, V. et al. A multicenter, open-label, randomized, phase 3 study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer: study 309/KEYNOTE-775 [virtual abstract]. 2021 Society of Gynecologic Oncology Annual Meeting (2021). Phase III trial of lenvatinib and pembrolizumab in advanced EC that led to the FDA approval (non-MSI-H/MMRd) and EMA approval (all EC) of this combination therapy in patients previously treated with platinum-based chemotherapy in any setting.

  207. Shisler, R. et al. Life after endometrial cancer: a systematic review of patient-reported outcomes. Gynecol. Oncol. 148, 403–413 (2018).

    Article  PubMed  Google Scholar 

  208. Singh, P. & Oehler, M. K. Hormone replacement after gynaecological cancer. Maturitas 65, 190–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Parker, W. H. et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet. Gynecol. 113, 1027–1037 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Hirasawa, A. et al. Osteoporosis is less frequent in endometrial cancer survivors with hypertriglyceridemia. Jpn. J. Clin. Oncol. 45, 127–131 (2015).

    Article  PubMed  Google Scholar 

  211. Rocca, W. A., Grossardt, B. R., de Andrade, M., Malkasian, G. D. & Melton, L. J. 3rd Survival patterns after oophorectomy in premenopausal women: a population-based cohort study. Lancet Oncol. 7, 821–828 (2006).

    Article  PubMed  Google Scholar 

  212. Ward, K. K. et al. Cardiovascular disease is the leading cause of death among endometrial cancer patients. Gynecol. Oncol. 126, 176–179 (2012).

    Article  PubMed  Google Scholar 

  213. Douchi, T. et al. Bone mineral density in postmenopausal women with endometrial cancer. Maturitas 31, 165–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  214. Barakat, R. R., Bundy, B. N., Spirtos, N. M., Bell, J. & Mannel, R. S. Randomized double-blind trial of estrogen replacement therapy versus placebo in stage I or II endometrial cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 24, 587–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Shim, S. H., Lee, S. J. & Kim, S. N. Effects of hormone replacement therapy on the rate of recurrence in endometrial cancer survivors: a meta-analysis. Eur. J. Cancer 50, 1628–1637 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Maxwell, G. L., Tian, C., Risinger, J. I., Hamilton, C. A. & Barakat, R. R. Racial disparities in recurrence among patients with early-stage endometrial cancer: is recurrence increased in black patients who receive estrogen replacement therapy? Cancer 113, 1431–1437 (2008).

    Article  PubMed  Google Scholar 

  217. Pinkerton, J. V., Utian, W. H., Constantine, G. D., Olivier, S. & Pickar, J. H. Relief of vasomotor symptoms with the tissue-selective estrogen complex containing bazedoxifene/conjugated estrogens: a randomized, controlled trial. Menopause 16, 1116–1124 (2009).

    Article  PubMed  Google Scholar 

  218. Loprinzi, C. L., Barton, D. L. & Qin, R. Nonestrogenic management of hot flashes. J. Clin. Oncol. 29, 3842–3846 (2011).

    Article  PubMed  Google Scholar 

  219. Sideras, K. & Loprinzi, C. L. Nonhormonal management of hot flashes for women on risk reduction therapy. J. Natl Compr. Canc. Netw. 8, 1171–1179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cheung, L. W. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Liang, H. et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 22, 2120–2129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). This study shows for the first time that MMR status predicts clinical benefit from pembrolizumab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Stelloo, E. et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Mod. Pathol. 28, 836–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Stelloo, E. et al. Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis of the PORTEC cohorts. Clin. Cancer Res. 22, 4215–4224 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. van den Heerik, A. et al. PORTEC-4a: international randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int. J. Gynecol. Cancer 30, 2002–2007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Galluzzi, L., Buque, A., Keep, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Liu, J. F. et al. A phase II trial of the WEE1 inhibitor adavosertib (AZD1775) in recurrent uterine serous carcinoma [abstract]. J. Clin. Oncol. 38, 6009 (2020).

    Article  Google Scholar 

  228. de Jonge, M. M. et al. Frequent homologous recombination deficiency in high-grade endometrial carcinomas. Clin. Cancer Res. 25, 1087–1097 (2019).

    Article  PubMed  Google Scholar 

  229. Duska, L. R. et al. A surgical window trial evaluating medroxyprogesterone acetate with or without entinostat in patients with endometrial cancer and validation of biomarkers of cellular response. Clin. Cancer Res. 27, 2734–2741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Soliman, P. T. et al. Prospective evaluation of the molecular effects of metformin on the endometrium in women with newly diagnosed endometrial cancer: a window of opportunity study. Gynecol. Oncol. 143, 466–471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Doll, K. M., Snyder, C. R. & Ford, C. L. Endometrial cancer disparities: a race-conscious critique of the literature. Am. J. Obstet. Gynecol. 218, 474–482 (2018).

    Article  PubMed  Google Scholar 

  232. Spratt, D. E. et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2, 1070–1074 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Awad, E. et al. Minority participation in phase 1 gynecologic oncology clinical trials: three decades of inequity. Gynecol. Oncol. 157, 729–732 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

V.M. is supported in part through the NIH/NCI Cancer Center Support Grant P30 CA008748. S.N.W. is supported in part through the NIH/NCI Cancer Center Support Grant (NIH CA016672) and the NIH SPORE in Uterine Cancer (NIH 5P50CA098258-13).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (V.M.); Epidemiology (V.M.); Mechanisms/pathophysiology (I.R.-C. and D.A.L.); Diagnosis, screening and prevention (A.O.); Management (H.M.); Quality of life (D.A.); Outlook (S.N.W.); Overview of Primer (V.M.).

Corresponding author

Correspondence to Vicky Makker.

Ethics declarations

Competing interests

Outside the submitted work, V.M. reports research (all funding to institution)/consultant/advisory board member support from Merck, Eisai, Karyopharm, AstraZeneca, Clovis, Moreo, Takeda, Zymeworks, Genentech, GSK, Dicephera and Faeth. D.A.L. has held consulting/advisory role for Tesaro/GSK, Merck, receives research funding to his institution from Merck, Tesaro, Clovis Oncology, Regeneron, Agenus, Takeda, Immunogen, VBL Therapeutics, Genentech, Celsion, Ambry and Splash Pharmaceuticals. D.A.L. is a founder of Nirova BioSense, Inc. D.A.L. is currently a full-time employee of Merck. I.R.-C. reports honoraria (self) from AbbVie, Agenus, Advaxis, BMS, PharmaMar, Genmab, Pfizer, AstraZeneca, Roche, GSK, MSD, Deciphera, Mersena, Merck Sereno, Novartis, Amgen, Tesaro and Clovis; honoraria (institution) from GSK, MSD, Roche and BMS; advisory/consulting fees from AbbVie, Agenus, Advaxis, BMS, PharmaMar, Genmab, Pfizer, AstraZeneca, Roche/Genentech, GSK, MSD, Deciphera, Mersena, Merck Sereno, Novartis, Amgen, Tesaro and Clovis; research grant/funding (self) from MSD, Roche and BMS; research grant/funding (institution) from MSD, Roche, BMS, Novartis, AstraZeneca and Merck Sereno; and travel support from Roche, AstraZeneca and GSK. A.O. has served on advisory boards for Roche, AstraZeneca, PharmaMar, Clovis Oncology, Tesaro, Inmunogen, Genmab, Mersana Therapeutic, GSK and Deciphera Pharmaceutical and has received support for travel or accommodation from Roche, AstraZeneca and PharmaMar. H.M. has served on the advisory boards of Merck, Essai, GSK and AstraZeneca. D.A. has research grant support from Aska Pharmaceutical, Takeda and Tsumura; has served as consultant for AstraZeneca, Takeda, MSD, Myriad Genetics, AbbVie, Chugai and Ono; and has received honoraria from AbbVie, MSD, Aska Pharmaceutical, AstraZeneca, Takeda, Chugai, Ono, Taiho and Bayer. S.N.W. reports research support from ArQule, AstraZeneca, Bayer, Bio-Path, Clovis Oncology, Cotinga Pharmaceuticals, GSK/Tesaro, Mereo, Novartis, Roche/Genentech and Zentalis; and has served as consultant for Agenus, AstraZeneca, Circulogene, Clovis Oncology, Eisai, EQRX, GSK/Tesaro, Lilly, Merck, Novartis, Pfizer, Roche/Genentech and Zentalis.

Additional information

Peer review information

Nature Reviews Disease Primers thanks Amanda Fader, Kimberly Leslie, George Maxwell, Jone Trovik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makker, V., MacKay, H., Ray-Coquard, I. et al. Endometrial cancer. Nat Rev Dis Primers 7, 88 (2021). https://doi.org/10.1038/s41572-021-00324-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00324-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer