Primer | Published:

Medulloblastoma

Abstract

Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002). This study is the first to demonstrate that MB is molecularly distinct from other embryonal brain tumour entities such as AT/RT and PNET.

  2. 2.

    Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

  3. 3.

    Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLOS ONE 3, e3088 (2008).

  4. 4.

    Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

  5. 5.

    Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

  6. 6.

    Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

  7. 7.

    Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012). This consensus paper proposes the recognition of four distinct MB subgroups, changing the way MB is studied in the research setting and treated clinically.

  8. 8.

    Louis, D. N. et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

  9. 9.

    Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

  10. 10.

    Oyharcabal-Bourden, V. et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. J. Clin. Oncol. 23, 4726–4734 (2005).

  11. 11.

    Packer, R. J. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24, 4202–4208 (2006).

  12. 12.

    Gandola, L. et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 27, 566–571 (2009).

  13. 13.

    Jakacki, R. I. et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 30, 2648–2653 (2012).

  14. 14.

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20, iv1–iv86 (2018).

  15. 15.

    Kaatsch, P., Grabow, D. & Spix, C. German Childhood Cancer Registry — Annual Report 2016. Kinderkrebsregister http://www.kinderkrebsregister.de/dkkr-gb/latest-publications/annual-reports/annual-report-2016.html (2016).

  16. 16.

    Giordana, M. T., Schiffer, P., Lanotte, M., Girardi, P. & Chio, A. Epidemiology of adult medulloblastoma. Int. J. Cancer 80, 689–692 (1999).

  17. 17.

    Khanna, V. et al. Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J. Neurooncol. 135, 433–441 (2017).

  18. 18.

    Johnston, D. L. et al. Incidence of medulloblastoma in Canadian children. J. Neurooncol. 120, 575–579 (2014).

  19. 19.

    Waszak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018). This study describes germline predisposition to MB according to molecular subgroup in a series of >1,000 patients with MB, estimating that 6% of all MB diagnoses are attributable to heritable pathogenetic variants in six genes.

  20. 20.

    Ezzat, S. et al. Pediatric brain tumors in a low/middle income country: does it differ from that in developed world? J. Neurooncol. 126, 371–376 (2016).

  21. 21.

    Makino, K., Nakamura, H., Yano, S. & Kuratsu, J. & Kumamoto Brain Tumor Group. Population-based epidemiological study of primary intracranial tumors in childhood. Childs Nerv. Syst. 26, 1029–1034 (2010).

  22. 22.

    Brugieres, L. et al. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J. Clin. Oncol. 30, 2087–2093 (2012).

  23. 23.

    Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

  24. 24.

    Smith, M. J. et al. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J. Clin. Oncol. 32, 4155–4161 (2014).

  25. 25.

    Twigg, S. R. F. et al. A recurrent mosaic mutation in SMO, encoding the hedgehog signal transducer Smoothened, is the major cause of Curry-Jones syndrome. Am. J. Hum. Genet. 98, 1256–1265 (2016).

  26. 26.

    Tommerup, N. & Nielsen, F. A familial reciprocal translocation t(3;7) (p21.1;p13) associated with the Greig polysyndactyly-craniofacial anomalies syndrome. Am. J. Med. Genet. 16, 313–321 (1983).

  27. 27.

    Erez, A. et al. GLI3 is not mutated commonly in sporadic medulloblastomas. Cancer 95, 28–31 (2002).

  28. 28.

    Cohen, S. B. Familial polyposis coli and its extracolonic manifestations. J. Med. Genet. 19, 193–203 (1982).

  29. 29.

    Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 13, 1237–1240 (1987).

  30. 30.

    Petrella, R., Hirschhorn, K. & German, J. Triple autosomal trisomy in a pregnancy at risk for Bloom’s syndrome. Am. J. Med. Genet. 40, 316–318 (1991).

  31. 31.

    Taeubner, J. et al. Diagnostic challenges in a child with early onset desmoplastic medulloblastoma and homozygous variants in MSH2 and MSH6. Eur. J. Hum. Genet. 26, 440–444 (2018).

  32. 32.

    de Chadarevian, J. P., Vekemans, M. & Bernstein, M. Fanconi’s anemia, medulloblastoma, Wilms’ tumor, horseshoe kidney, and gonadal dysgenesis. Arch. Pathol. Lab. Med. 109, 367–369 (1985).

  33. 33.

    Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. Cancer Cell 25, 393–405 (2014). This report establishes the concept of a genotype–phenotype correlation within SHH-MB regarding age and response to smoothened inhibition in a large cohort of patients.

  34. 34.

    Distel, L., Neubauer, S., Varon, R., Holter, W. & Grabenbauer, G. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med. Pediatr. Oncol. 41, 44–48 (2003).

  35. 35.

    Bianchi, C., Giammusso, V., Berti, N. & Vassallo, A. Medulloblastoma in a patient with xeroderma pigmentosum [Italian]. Pathologica 71, 697–701 (1979).

  36. 36.

    Evans, G., Burnell, L., Campbell, R., Gattamaneni, H. R. & Birch, J. Congenital anomalies and genetic syndromes in 173 cases of medulloblastoma. Med. Pediatr. Oncol. 21, 433–434 (1993).

  37. 37.

    Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41, 465–472 (2009).

  38. 38.

    Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011). This study is the first exome-level sequencing study of MB, identifying novel recurrent mutations targeting chromatin-modifying genes.

  39. 39.

    Batora, N. V. et al. Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience 264, 171–185 (2014).

  40. 40.

    Jones, D. T., Northcott, P. A., Kool, M. & Pfister, S. M. The role of chromatin remodeling in medulloblastoma. Brain Pathol. 23, 193–199 (2013).

  41. 41.

    Northcott, P. A. et al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).

  42. 42.

    Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017). This report summarizes the genomic landscape of MB across nearly 500 patient tumours according to molecular subgroups and associated subtypes, representing a definitive summary of the prevalence and subgroup distribution of recurrently altered genes and pathways.

  43. 43.

    Clifford, S. C. et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666–2670 (2006).

  44. 44.

    Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

  45. 45.

    Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

  46. 46.

    Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

  47. 47.

    Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

  48. 48.

    Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010). This report molecularly and experimentally establishes that WNT-MBs and SHH-MBs arise from distinct progenitor populations in the developing hindbrain, provoking the notion that MB subgroups are defined by their disparate developmental origins.

  49. 49.

    Oh, S. et al. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 7, 28169–28182 (2016).

  50. 50.

    Helming, K. C., Wang, X. & Roberts, C. W. M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 26, 309–317 (2014).

  51. 51.

    Dominguez, I., Sonenshein, G. E. & Seldin, D. C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell. Mol. Life Sci. 66, 1850–1857 (2009).

  52. 52.

    Duncan, J. S. & Litchfield, D. W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33–47 (2008).

  53. 53.

    Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

  54. 54.

    Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

  55. 55.

    Saha, N., Robev, D., Mason, E., Himanen, J. P. & Nikolov, D. B. Therapeutic potential of targeting the Eph/ephrin signaling complex. Int. J. Biochem. Cell Biol. 105, 123–133 (2018).

  56. 56.

    Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016). This publication establishes a potential biological explanation for the favourable treatment response of patients with WNT-MB.

  57. 57.

    Northcott, P. A., Rutka, J. T. & Taylor, M. D. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg. Focus 28, E6 (2010).

  58. 58.

    Remke, M. et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917–929 (2013).

  59. 59.

    Lindsey, J. C. et al. TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol. 127, 307–309 (2014).

  60. 60.

    Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754 (2017).

  61. 61.

    Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

  62. 62.

    Schwalbe, E. C. et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 18, 958–971 (2017).

  63. 63.

    Robinson, G. W. et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 19, 768–784 (2018).

  64. 64.

    Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This first whole-genome sequencing study of MB identifies catastrophic genomic rearrangements, known as chromothripsis, in patients harbouring germline TP53 mutations.

  65. 65.

    Lindsey, J. C. et al. TP53 mutations in favorable-risk Wnt/Wingless-subtype medulloblastomas. J. Clin. Oncol. 29, e344–e346; author reply e347–e348 (2011).

  66. 66.

    Pfaff, E. et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J. Clin. Oncol. 28, 5188–5196 (2010).

  67. 67.

    Zhukova, N. et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 31, 2927–2935 (2013).

  68. 68.

    Ramaswamy, V. et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 131, 821–831 (2016).

  69. 69.

    Petrirena, G. J. et al. Recurrent extraneural sonic hedgehog medulloblastoma exhibiting sustained response to vismodegib and temozolomide monotherapies and inter-metastatic molecular heterogeneity at progression. Oncotarget 9, 10175–10183 (2018).

  70. 70.

    Lou, E. et al. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib. Cancer Biol. Ther. 12, 1–7 (2016).

  71. 71.

    Robinson, G. W. et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33, 2646–2654 (2015).

  72. 72.

    Gajjar, A. et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin. Cancer Res. 19, 6305–6312 (2013).

  73. 73.

    Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

  74. 74.

    Robinson, G. W. et al. Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget 8, 69295–69302 (2017).

  75. 75.

    Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410 (2018).

  76. 76.

    Forget, A. et al. Aberrant ERBB4-SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell 34, 379–395 (2018).

  77. 77.

    Satow, R., Kurisaki, A., Chan, T. C., Hamazaki, T. S. & Asashima, M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 11, 763–774 (2006).

  78. 78.

    Tanaka, S. S. et al. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLOS ONE 8, e57428 (2013).

  79. 79.

    Beby, F. & Lamonerie, T. The homeobox gene Otx2 in development and disease. Exp. Eye Res. 111, 9–16 (2013).

  80. 80.

    Simeone, A. Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J. 17, 6790–6798 (1998).

  81. 81.

    Boulay, G. et al. OTX2 activity at distal regulatory elements shapes the chromatin landscape of group 3 medulloblastoma. Cancer Discov. 7, 288–301 (2017).

  82. 82.

    Garancher, A. et al. NRL and CRX define photoreceptor identity and reveal subgroup-specific dependencies in medulloblastoma. Cancer Cell 33, 435–449 (2018).

  83. 83.

    Bunt, J. et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer 131, E21–E32 (2012).

  84. 84.

    Bunt, J. et al. OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels. Acta Neuropathol. 125, 385–394 (2013).

  85. 85.

    Bai, R. Y., Staedtke, V., Lidov, H. G., Eberhart, C. G. & Riggins, G. J. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res. 72, 5988–6001 (2012).

  86. 86.

    Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

  87. 87.

    Wu, Y. et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J. Mol. Cell. Cardiol. 44, 47–58 (2008).

  88. 88.

    Davis, C. A. et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol. Cell. Biol. 26, 2626–2636 (2006).

  89. 89.

    Tigan, A. S., Bellutti, F., Kollmann, K., Tebb, G. & Sexl, V. CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 35, 3083–3091 (2016).

  90. 90.

    Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6, 353–367 (2016).

  91. 91.

    Cook Sangar, M. L. et al. Inhibition of CDK4/6 by palbociclib significantly extends survival in medulloblastoma patient-derived xenograft mouse models. Clin. Cancer Res. 23, 5802–5813 (2017).

  92. 92.

    Hanaford, A. R. et al. DiSCoVERing innovative therapies for rare tumors: combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clin. Cancer Res. 22, 3903–3914 (2016).

  93. 93.

    Faria, C. C. et al. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget 6, 21718–21729 (2015).

  94. 94.

    Shih, D. J. et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).

  95. 95.

    Griesinger, A. M. et al. Characterization of distinct immunophenotypes across pediatric brain tumor types. J. Immunol. 191, 4880–4888 (2013).

  96. 96.

    Lee, C. et al. M1 macrophage recruitment correlates with worse outcome in SHH medulloblastomas. BMC Cancer 18, 535 (2018).

  97. 97.

    Martin, A. M. et al. PD-L1 expression in medulloblastoma: an evaluation by subgroup. Oncotarget 9, 19177–19191 (2018).

  98. 98.

    Margol, A. S. et al. Tumor-associated macrophages in SHH subgroup of medulloblastomas. Clin. Cancer Res. 21, 1457–1465 (2015).

  99. 99.

    Bockmayr, M. et al. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology 7, e1462430 (2018).

  100. 100.

    Wilne, S. et al. Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol. 8, 685–695 (2007).

  101. 101.

    Chang, C. H., Housepian, E. M. & Herbert, C. Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology 93, 1351–1359 (1969).

  102. 102.

    Garzia, L. et al. A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 173, 1549 (2018). This report uses a combination of human and mouse studies to substantiate the presence of circulating tumour cells in the blood of patients with MB that can spread to the leptomeningeal space to form leptomeningeal metastases.

  103. 103.

    Ellison, D. W. Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol. 120, 305–316 (2010).

  104. 104.

    Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).

  105. 105.

    Hovestadt, V. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125, 913–916 (2013).

  106. 106.

    Schwalbe, E. C. et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 125, 359–371 (2013).

  107. 107.

    Schwalbe, E. C. et al. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures. Sci. Rep. 7, 13421 (2017).

  108. 108.

    Korshunov, A. et al. DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathol. 134, 965–967 (2017).

  109. 109.

    Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

  110. 110.

    Goschzik, T. et al. Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol. Appl. Neurobiol. 41, 135–144 (2015).

  111. 111.

    Pietsch, T. et al. Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol. 128, 137–149 (2014).

  112. 112.

    Chiang, J. C. & Ellison, D. W. Molecular pathology of paediatric central nervous system tumours. J. Pathol. 241, 159–172 (2017).

  113. 113.

    Pfister, S. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117, 457–464 (2009).

  114. 114.

    Korshunov, A. et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 120, 253–260 (2010).

  115. 115.

    Korshunov, A. et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 124, 875–881 (2012).

  116. 116.

    Spence, T. et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol. 128, 291–303 (2014).

  117. 117.

    Panwalkar, P. et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 134, 705–714 (2017).

  118. 118.

    Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

  119. 119.

    Kratz, C. P. et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).

  120. 120.

    Foulkes, W. D. et al. Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin. Cancer Res. 23, e62–e67 (2017).

  121. 121.

    von Bueren, A. O. et al. Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J. Clin. Oncol. 34, 4151–4160 (2016).

  122. 122.

    Lannering, B. et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 30, 3187–3193 (2012).

  123. 123.

    Albright, A. L. et al. Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 38, 265–271 (1996).

  124. 124.

    Thompson, E. M. et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol. 17, 484–495 (2016).

  125. 125.

    Gajjar, A. et al. Medulloblastoma with brain stem involvement: the impact of gross total resection on outcome. Pediatr. Neurosurg. 25, 182–187 (1996).

  126. 126.

    Thompson, E. M., Bramall, A., Herndon, J. E. 2nd, Taylor, M. D. & Ramaswamy, V. The clinical importance of medulloblastoma extent of resection: a systematic review. J. Neurooncol. 139, 523–539 (2018).

  127. 127.

    Schreiber, J. E. et al. Posterior fossa syndrome and long-term neuropsychological outcomes among children treated for medulloblastoma on a multi-institutional, prospective study. Neuro Oncol. 19, 1673–1682 (2017).

  128. 128.

    Rutkowski, S. et al. Biological material collection to advance translational research and treatment of children with CNS tumours: position paper from the SIOPE Brain Tumour Group. Lancet Oncol. 19, e419–e428 (2018).

  129. 129.

    Mack, S. C. & Northcott, P. A. Genomic analysis of childhood brain tumors: methods for genome-wide discovery and precision medicine become mainstream. J. Clin. Oncol. 35, 2346–2354 (2017).

  130. 130.

    Bloom, H. J. Medulloblastoma in children: increasing survival rates and further prospects. Int. J. Radiat. Oncol. Biol. Phys. 8, 2023–2027 (1982).

  131. 131.

    Ashley, D. M. et al. Induction chemotherapy and conformal radiation therapy for very young children with nonmetastatic medulloblastoma: Children’s Oncology Group study P9934. J. Clin. Oncol. 30, 3181–3186 (2012).

  132. 132.

    Deutsch, M. et al. Results of a prospective randomized trial comparing standard dose neuraxis irradiation (3,600 cGy/20) with reduced neuraxis irradiation (2,340 cGy/13) in patients with low-stage medulloblastoma. A Combined Children’s Cancer Group-Pediatric Oncology Group Study. Pediatr. Neurosurg. 24, 167–176; discussion 176–177 (1996).

  133. 133.

    St Clair, W. H. et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 58, 727–734 (2004).

  134. 134.

    Merchant, T. E. et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 70, 782–787 (2008).

  135. 135.

    Moxon-Emre, I. et al. Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J. Clin. Oncol. 32, 1760–1768 (2014).

  136. 136.

    Vatner, R. E. et al. Endocrine deficiency as a function of radiation dose to the hypothalamus and pituitary in pediatric and young adult patients with brain tumors. J. Clin. Oncol. 36, 2854–2862 (2018).

  137. 137.

    Pulsifer, M. B. et al. Cognitive and adaptive outcomes after proton radiation for pediatric patients with brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 102, 391–398 (2018).

  138. 138.

    Yock, T. I. et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol. 17, 287–298 (2016).

  139. 139.

    Giantsoudi, D. et al. Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. Int. J. Radiat. Oncol. Biol. Phys. 95, 287–296 (2016).

  140. 140.

    Sabin, N. D. et al. Imaging changes in very young children with brain tumors treated with proton therapy and chemotherapy. AJNR Am. J. Neuroradiol. 34, 446–450 (2013).

  141. 141.

    Gentile, M. S. et al. Brainstem injury in pediatric patients with posterior fossa tumors treated with proton beam therapy and associated dosimetric factors. Int. J. Radiat. Oncol. Biol. Phys. 100, 719–729 (2018).

  142. 142.

    Evans, A. E. et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg. 72, 572–582 (1990).

  143. 143.

    Kortmann, R. D. et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int. J. Radiat. Oncol. Biol. Phys. 46, 269–279 (2000).

  144. 144.

    Taylor, R. E. et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol. 21, 1581–1591 (2003).

  145. 145.

    Rieken, S. et al. Outcome and prognostic factors of radiation therapy for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 81, e7–e13 (2011).

  146. 146.

    von Bueren, A. O. et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro Oncol. 13, 669–679 (2011).

  147. 147.

    Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

  148. 148.

    Dhall, G. et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer 50, 1169–1175 (2008).

  149. 149.

    Lafay-Cousin, L. et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr. Blood Cancer 63, 1527–1534 (2016).

  150. 150.

    Rutkowski, S. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28, 4961–4968 (2010).

  151. 151.

    Atalar, B. et al. Treatment outcome and prognostic factors for adult patients with medulloblastoma: the Rare Cancer Network (RCN) experience. Radiother. Oncol. 127, 96–102 (2018).

  152. 152.

    Kann, B. H. et al. Adjuvant chemotherapy and overall survival in adult medulloblastoma. Neuro Oncol. 19, 259–269 (2017).

  153. 153.

    Beier, D. et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro Oncol. 20, 400–410 (2018).

  154. 154.

    Friedrich, C. et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: a prospective observational multicentre study. Eur. J. Cancer 49, 893–903 (2013).

  155. 155.

    Sabel, M. et al. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J. Neurooncol. 129, 515–524 (2016).

  156. 156.

    Johnston, D. L. et al. Survival following tumor recurrence in children with medulloblastoma. J. Pediatr. Hematol. Oncol. 40, e159–e163 (2018).

  157. 157.

    Morrissy, A. S. et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016).

  158. 158.

    Hill, R. M. et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27, 72–84 (2015).

  159. 159.

    McManamy, C. S. et al. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol. 62, 627–632 (2003).

  160. 160.

    Eberhart, C. G. & Burger, P. C. Anaplasia and grading in medulloblastomas. Brain Pathol. 13, 376–385 (2003).

  161. 161.

    McManamy, C. S. et al. Nodule formation and desmoplasia in medulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol. 17, 151–164 (2007).

  162. 162.

    Ellison, D. W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

  163. 163.

    Morfouace, M. et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25, 516–529 (2014).

  164. 164.

    Michalski, J. M. et al. Results of COG ACNS0331: a phase III trial of involved-field radiotherapy (IFRT) and low dose craniospinal irradiation (LD-CSI) with chemotherapy in average-risk medulloblastoma: a report from the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 96, 937–938 (2016).

  165. 165.

    Veneroni, L. et al. Quality of life in long-term survivors treated for metastatic medulloblastoma with a hyperfractionated accelerated radiotherapy (HART) strategy. Childs Nerv. Syst. 33, 1969–1976 (2017).

  166. 166.

    Yoo, H. J. et al. Neurocognitive function and health-related quality of life in pediatric Korean survivors of medulloblastoma. J. Korean Med. Sci. 31, 1726–1734 (2016).

  167. 167.

    King, A. A. et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: a report from the Childhood Cancer Survivor Study. Neuro Oncol. 19, 689–698 (2017).

  168. 168.

    Kieffer, V. et al. Intellectual, educational, and situation-based social outcome in adult survivors of childhood medulloblastoma. Dev. Neruorehabil. 22, 19–26 (2018).

  169. 169.

    Ris, M. D., Packer, R., Goldwein, J., Jones-Wallace, D. & Boyett, J. M. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children’s Cancer Group study. J. Clin. Oncol. 19, 3470–3476 (2001).

  170. 170.

    Spiegler, B. J., Bouffet, E., Greenberg, M. L., Rutka, J. T. & Mabbott, D. J. Change in neurocognitive functioning after treatment with cranial radiation in childhood. J. Clin. Oncol. 22, 706–713 (2004).

  171. 171.

    Riggs, L. et al. Changes to memory structures in children treated for posterior fossa tumors. J. Int. Neuropsychol. Soc. 20, 168–180 (2014).

  172. 172.

    Scantlebury, N. et al. White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor. Neuropsychology 30, 425–438 (2016).

  173. 173.

    Glass, J. O. et al. Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro Oncol. 19, 1408–1418 (2017).

  174. 174.

    Law, N. et al. Executive function in paediatric medulloblastoma: the role of cerebrocerebellar connections. J. Neuropsychol. 11, 174–200 (2017).

  175. 175.

    Palmer, S. L. et al. Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. J. Clin. Oncol. 31, 3494–3500 (2013).

  176. 176.

    Gudrunardottir, T. et al. Consensus paper on post-operative pediatric cerebellar mutism syndrome: the Iceland Delphi results. Childs Nerv. Syst. 32, 1195–1203 (2016).

  177. 177.

    Law, N. et al. Clinical and neuroanatomical predictors of cerebellar mutism syndrome. Neuro Oncol. 14, 1294–1303 (2012).

  178. 178.

    Liu, J. F. et al. Development of a pre-operative scoring system for predicting risk of post-operative paediatric cerebellar mutism syndrome. Br. J. Neurosurg. 32, 18–27 (2018).

  179. 179.

    Moxon-Emre, I. et al. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J. Neurosurg. Pediatr. 18, 29–40 (2016).

  180. 180.

    Decker, A. L. et al. Smaller hippocampal subfield volumes predict verbal associative memory in pediatric brain tumor survivors. Hippocampus 27, 1140–1154 (2017).

  181. 181.

    Wong, C. S. & Van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 4, 273–284 (2004).

  182. 182.

    Panagiotakos, G. et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLOS ONE 2, e588 (2007).

  183. 183.

    Monje, M. L. et al. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann. Neurol. 62, 515–520 (2007).

  184. 184.

    Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

  185. 185.

    Khong, P. L. et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J. Clin. Oncol. 24, 884–890 (2006).

  186. 186.

    Nieman, B. J. et al. White and gray matter abnormalities after cranial radiation in children and mice. Int. J. Radiat. Oncol. Biol. Phys. 93, 882–891 (2015).

  187. 187.

    Grill, J. et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int. J. Radiat. Oncol. Biol. Phys. 45, 137–145 (1999).

  188. 188.

    Mulhern, R. K. et al. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: a Pediatric Oncology Group study. J. Clin. Oncol. 16, 1723–1728 (1998).

  189. 189.

    Barahmani, N. et al. Glutathione S-transferase M1 and T1 polymorphisms may predict adverse effects after therapy in children with medulloblastoma. Neuro Oncol. 11, 292–300 (2009).

  190. 190.

    Brackett, J. et al. Antioxidant enzyme polymorphisms and neuropsychological outcomes in medulloblastoma survivors: a report from the Childhood Cancer Survivor Study. Neuro Oncol. 14, 1018–1025 (2012).

  191. 191.

    Kennedy, C. et al. Quality of survival and growth in children and young adults in the PNET4 European controlled trial of hyperfractionated versus conventional radiation therapy for standard-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 88, 292–300 (2014).

  192. 192.

    Camara-Costa, H. et al. Neuropsychological outcome of children treated for standard risk medulloblastoma in the PNET4 european randomized controlled trial of hyperfractionated versus standard radiation therapy and maintenance chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 978–985 (2015).

  193. 193.

    Kahalley, L. S. et al. Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J. Clin. Oncol. 34, 1043–1049 (2016).

  194. 194.

    Zureick, A. H. et al. Left hippocampal dosimetry correlates with visual and verbal memory outcomes in survivors of pediatric brain tumors. Cancer 124, 2238–2245 (2018).

  195. 195.

    Antonini, T. N. et al. Attention, processing speed, and executive functioning in pediatric brain tumor survivors treated with proton beam radiation therapy. Radiother. Oncol. 124, 89–97 (2017).

  196. 196.

    Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol. 11, 201–210 (2009).

  197. 197.

    Bull, K. S., Kennedy, C. R., Bailey, S., Ellison, D. W. & Clifford, S. C. Improved health-related quality of life outcomes associated with SHH subgroup medulloblastoma in SIOP-UKCCSG PNET3 trial survivors. Acta Neuropathol. 128, 151–153 (2014).

  198. 198.

    Moxon-Emre, I. et al. Intellectual outcome in molecular subgroups of medulloblastoma. J. Clin. Oncol. 34, 4161–4170 (2016).

  199. 199.

    Conklin, H. M. et al. Computerized cognitive training for amelioration of cognitive late effects among childhood cancer survivors: a randomized controlled trial. J. Clin. Oncol. 33, 3894–3902 (2015).

  200. 200.

    Riggs, L. et al. Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro Oncol. 19, 440–450 (2017).

  201. 201.

    Phi, J. H. et al. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol. 135, 939–953 (2018).

  202. 202.

    Pei, Y. et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29, 311–323 (2016).

  203. 203.

    Prince, E. W. et al. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget 7, 53881–53894 (2016).

  204. 204.

    Matheson, C. J., Casalvieri, K. A., Backos, D. S. & Reigan, P. Development of potent pyrazolopyrimidinone-based WEE1 inhibitors with limited single-agent cytotoxicity for cancer therapy. ChemMedChem 13, 1681–1694 (2018).

  205. 205.

    Harris, P. S. et al. Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol. Cancer 13, 72 (2014).

  206. 206.

    Lee, C. et al. Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nat. Commun. 10, 332 (2019).

  207. 207.

    Orlando, D. et al. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma. Cancer Res. 78, 3337–3349 (2018).

  208. 208.

    Nellan, A. et al. Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J. Immunother. Cancer 6, 30 (2018).

  209. 209.

    Ellison, D. W. et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005). This report is the first to indicate an excellent prognosis for patients with MB with somatic CTNNB1 mutations, which would subsequently be recognized as the favourable-outcome WNT subgroup.

  210. 210.

    Fattet, S. et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J. Pathol. 218, 86–94 (2009).

  211. 211.

    Clifford, S. C. et al. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 6, 38827–38839 (2015).

  212. 212.

    Markant, S. L. & Wechsler-Reya, R. J. Review: personalized mice: modelling the molecular heterogeneity of medulloblastoma. Neuropathol. Appl. Neurobiol. 38, 228–240 (2012).

  213. 213.

    Lau, J. et al. Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv. Syst. 28, 521–532 (2012).

  214. 214.

    Wu, X., Northcott, P. A., Croul, S. & Taylor, M. D. Mouse models of medulloblastoma. Chin. J. Cancer 30, 442–449 (2011).

  215. 215.

    Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse Patched mutants. Science 277, 1109–1113 (1997).

  216. 216.

    Wetmore, C., Eberhart, D. E. & Curran, T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for Patched. Cancer Res. 61, 513–516 (2001).

  217. 217.

    Hatton, B. A. et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 68, 1768–1776 (2008).

  218. 218.

    Dey, J. et al. A distinct Smoothened mutation causes severe cerebellar developmental defects and medulloblastoma in a novel transgenic mouse model. Mol. Cell. Biol. 32, 4104–4115 (2012).

  219. 219.

    Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

  220. 220.

    Swartling, F. J. et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24, 1059–1072 (2010).

  221. 221.

    Lee, Y. et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26, 6442–6447 (2007).

  222. 222.

    Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

  223. 223.

    Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

  224. 224.

    Oliver, T. G. et al. Loss of Patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).

  225. 225.

    Kim, J. Y. et al. Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in Patched heterozygous mice. Dev. Biol. 263, 50–66 (2003).

  226. 226.

    Vanner, R. J. et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 26, 33–47 (2014).

  227. 227.

    Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

  228. 228.

    Kawauchi, D. et al. Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene 36, 5231–5242 (2017).

  229. 229.

    Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012).

  230. 230.

    Poschl, J. et al. Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathol. 128, 123–136 (2014).

  231. 231.

    Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).

  232. 232.

    Eberhart, C. G. et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94, 552–560 (2002).

  233. 233.

    Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340–351 (2012).

Download references

Reviewer information

Nature Reviews Disease Primers thanks C. Dufour, E. Ferretti, L. Gandola, T. MacDonald, I. Slavc, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Introduction (P.A.N. and S.M.P.); Epidemiology (D.M. and C.P.K.); Mechanisms/pathophysiology (P.A.N., S.L.P., M.D.T., S.C.C. and S.M.P.); Diagnosis, screening and prevention (D.W.E., S.C.C., M.D.T. and S.M.P.); Management (G.W.R., S.R., M.D.T. and A.G.); Quality of life (D.J.M., G.W.R., S.R. and A.G.); Outlook (S.M.P. and P.A.N.); Overview of Primer (S.M.P.).

Competing interests

All authors declare no competing interests.

Correspondence to Stefan M. Pfister.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

  • TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma

    • Malte Hellwig
    • , Marlen C. Lauffer
    • , Michael Bockmayr
    • , Michael Spohn
    • , Daniel J. Merk
    • , Luke Harrison
    • , Julia Ahlfeld
    • , Annabel Kitowski
    • , Julia E. Neumann
    • , Jasmin Ohli
    • , Dörthe Holdhof
    • , Judith Niesen
    • , Melanie Schoof
    • , Marcel Kool
    • , Cornelia Kraus
    • , Christiane Zweier
    • , Dan Holmberg
    •  & Ulrich Schüller

    Acta Neuropathologica (2019)

Fig. 1: Location of MB.
Fig. 2: MB predisposition.
Fig. 3: Histone-modifying genes and epigenetic alterations in MB.
Fig. 4: WNT subgroup.
Fig. 5: SHH subgroup.
Fig. 6: Group 3.
Fig. 7: Group 4.
Fig. 8: MRI of MB.
Fig. 9: Histopathology.
Fig. 10: Current molecular risk-adapted management algorithm.