Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NIR-II light in clinical oncology: opportunities and challenges

Abstract

Novel strategies utilizing light in the second near-infrared region (NIR-II; 900–1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.

Key points

  • Extending the clinical imaging spectrum to the second near-infrared (NIR-II) window offers greatly improved visualization of multiple features of cancer, providing a promising approach for enhancing surgical quality and facilitating oncological research.

  • The efficacy of phototherapy can be substantially improved through the use of NIR-II irradiation, with the potential to improve therapeutic selectivity for cancer and facilitate the development of innovative combination therapies.

  • Early phase clinical studies of NIR-II image-guided surgery and phototherapy for solid tumours have demonstrated promising potential to improve resection rates, reduce complications and prolong survival.

  • Facilitating clinical application will be the primary objective for the future development of NIR-II techniques; a cyclical flow from bench to bedside and back again is necessary to promote this clinical translation.

  • Emerging NIR-II techniques should aim to complement and enhance existing approaches rather than replace them; exploiting incremental value is essential to translating these novel approaches into clinical practice.

  • Advances in NIR-II techniques might greatly facilitate a paradigm shift in cancer imaging, surgery and phototherapy, ultimately improving patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental principles and applications of NIR-II imaging and phototherapy.
Fig. 2: Key advances in NIR-II imaging and phototherapy of cancer.
Fig. 3: NIR-II image-guided surgery and PTT.

Similar content being viewed by others

References

  1. 20 years of precision medicine in oncology. Lancet 397, 1781 (2021).

  2. Dell’Oglio, P. et al. Precision surgery: the role of intra-operative real-time image guidance – outcomes from a multidisciplinary European consensus conference. Am. J. Nucl. Med. Mol. Imaging 12, 74–80 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. Wahida, A. et al. The coming decade in precision oncology: six riddles. Nat. Rev. Cancer 23, 43–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Rowe, S. P. & Pomper, M. G. Molecular imaging in oncology: current impact and future directions. CA Cancer J. Clin. 72, 333–352 (2022).

    Article  PubMed  Google Scholar 

  5. Wang, K. et al. Fluorescence image-guided tumour surgery. Nat. Rev. Bioeng. 1, 161–179 (2023).

    Article  Google Scholar 

  6. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  7. Mieog, J. S. D. et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat. Rev. Clin. Oncol. 19, 9–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Kang, H., Kang, M.-W., Kashiwagi, S. & Choi, H. S. NIR fluorescence imaging and treatment for cancer immunotherapy. J. Immunother. Cancer 10, e004936 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chi, C. et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 4, 1072–1084 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  12. Hu, Z., Chen, W.-H., Tian, J. & Cheng, Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol. Med. 26, 469–482 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article  PubMed  Google Scholar 

  15. Xu, C. & Pu, K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z., He, K., Chi, C., Hu, Z. & Tian, J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur. J. Nucl. Med. Mol. Imaging 49, 2531–2543 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, C., Chen, G., Zhang, Y., Wu, F. & Wang, Q. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 142, 14789–14804 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, Z. et al. Perfecting and extending the near-infrared imaging window. Light. Sci. Appl. 10, 197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723–730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. Engl. 54, 14758–14762 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. He, S., Song, J., Qu, J. & Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47, 4258–4278 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Dai, H. et al. NIR-II organic nanotheranostics for precision oncotherapy. Small 17, e2102646 (2021).

    Article  PubMed  Google Scholar 

  25. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, S., Li, B. & Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 6, 1302–1316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei, Z. & Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem. Int. Ed. Engl. 60, 16294–16308 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).

    Article  PubMed  Google Scholar 

  30. Qu, Q. et al. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J. Nanobiotechnol. 20, 143 (2022).

    Article  CAS  Google Scholar 

  31. Yang, J. et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today 38, 101120 (2021).

    Article  CAS  Google Scholar 

  32. Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu, Y., Bhattarai, P., Dai, Z. & Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, Q. et al. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 11, 5657–5669 (2018).

    Article  CAS  Google Scholar 

  36. Feng, Z. et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 9, 5706–5719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Y. et al. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-II fluorescence imaging-guided photothermal therapy. Nano Today 41, 101333 (2021).

    Article  CAS  Google Scholar 

  38. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  Google Scholar 

  39. Shi, X. et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients. IEEE Trans. Biomed. Eng. 69, 1889–1900 (2022).

    Article  PubMed  Google Scholar 

  40. Viozzi, I., Overduin, C. G., Rijpma, A., Rovers, M. M. & Laan, M. T. MR-guided LITT therapy in patients with primary irresectable glioblastoma: a prospective, controlled pilot study. J. Neurooncol. 164, 405–412 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vogl, T. J., Straub, R., Eichler, K., Söllner, O. & Mack, M. G. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy – local tumor control rate and survival data. Radiology 230, 450–458 (2004).

    Article  PubMed  Google Scholar 

  42. Schwarzmaier, H.-J. et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur. J. Radiol. 59, 208–215 (2006).

    Article  PubMed  Google Scholar 

  43. Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, S. et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv. Mater. 30, 1802546 (2018).

    Article  Google Scholar 

  45. Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lauwerends, L. J. et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 22, e186–e195 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, X. et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann. Surg. 274, 97–106 (2021).

    Article  PubMed  Google Scholar 

  48. Zhang, Z. et al. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient. Photodiagnosis Photodyn. Ther. 40, 103098 (2022).

    Article  PubMed  Google Scholar 

  49. Tsuchikama, K. & An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9, 33–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, W., Liu, R., Zhou, Y. & Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Rel. 240, 332–348 (2016).

    Article  CAS  Google Scholar 

  52. Cao, C. et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses. Clin. Transl. Med. 11, e604 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, C. et al. New and effective EGFR-targeted fluorescence imaging technology for intraoperative rapid determination of lung cancer in freshly isolated tissue. Eur. J. Nucl. Med. Mol. Imaging 50, 494–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. MI, J. et al. Comparative study of indocyanine green fluorescence imaging in lung cancer with near-infrared-I/II windows. Ann. Surg. Oncol. 31, 2451–2460 (2024).

    Article  PubMed  Google Scholar 

  55. Miller, S. E. et al. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J. Neurooncol. 139, 135–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenthal, E. L. et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin. Cancer Res. 23, 4744–4752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lamberts, L. E. et al. Tumor-specific uptake of fluorescent bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin. Cancer Res. 23, 2730–2741 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Lu, G. et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol. Hepatol. 5, 753–764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Jongh, S. J. et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer. J. Nucl. Med. 61, 655–661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cao, C. et al. First clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas. IEEE Trans. Biomed. Eng. 69, 2404–2413 (2022).

    Article  PubMed  Google Scholar 

  61. Wu, Y. et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol. 10, 1042546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Slooter, M. D. et al. Defining indocyanine green fluorescence to assess anastomotic perfusion during gastrointestinal surgery: systematic review. BJS Open. 5, zraa074 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Walsh, E. M. et al. Fluorescence imaging of nerves during surgery. Ann. Surg. 270, 69–76 (2019).

    Article  PubMed  Google Scholar 

  64. Rob, L., Halaska, M. & Robova, H. Nerve-sparing and individually tailored surgery for cervical cancer. Lancet Oncol. 11, 292–301 (2010).

    Article  PubMed  Google Scholar 

  65. Qu, Q. et al. Visualisation of pelvic autonomic nerves using NIR-II fluorescence imaging. Eur. J. Nucl. Med. Mol. Imaging 49, 4752–4754 (2022).

    Article  PubMed  Google Scholar 

  66. Wang, S. et al. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study. Lancet Digit. Health 4, e309–e319 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Dong, D. et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann. Oncol. 30, 431–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, S. et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 53, 1800986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cahill, R. A. et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br. J. Surg. 108, 5–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Kitaguchi, D. et al. Artificial intelligence for the recognition of key anatomical structures in laparoscopic colorectal surgery. Br. J. Surg. 110, 1355–1358 (2023).

    Article  PubMed  Google Scholar 

  71. Shen, B. et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur. J. Nucl. Med. Mol. Imaging 48, 3482–3492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xiao, A. et al. Intraoperative glioma grading using neural architecture search and multi-modal imaging. IEEE Trans. Med. Imaging 41, 2570–2581 (2022).

    Article  PubMed  Google Scholar 

  73. Sun, T. et al. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 13, 7345–7354 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Zeng, Y. et al. Inhibiting osteolytic breast cancer bone metastasis by bone-targeted nanoagent via remodeling the bone tumor microenvironment combined with NIR-II photothermal therapy. Small 19, e2301003 (2023).

    Article  PubMed  Google Scholar 

  75. Patel, P., Patel, N. V. & Danish, S. F. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system. J. Neurosurg. 125, 853–860 (2016).

    Article  PubMed  Google Scholar 

  76. Feller, J. et al. A phase II study to evaluate outpatient, transrectally-delivered, MRI-guided laser focal therapy of prostate cancer: 9 year interim results (NCT02243033) [abstract MP78-17]. J. Urol. 201(4S), e1149 (2019).

    Google Scholar 

  77. Eggener, S. E., Yousuf, A., Watson, S., Wang, S. & Oto, A. Phase II evaluation of magnetic resonance imaging guided focal laser ablation of prostate cancer. J. Urol. 196, 1670–1675 (2016).

    Article  PubMed  Google Scholar 

  78. US Food & Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193375.pdf (2020).

  79. US Food & Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/pdf21/K211269.pdf (2022).

  80. US Food & Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201466.pdf (2021).

  81. Mohammadi, A. M. & Schroeder, J. L. Laser interstitial thermal therapy in treatment of brain tumors – the NeuroBlate system. Expert. Rev. Med. Devices 11, 109–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Belykh, E. et al. Laser application in neurosurgery. Surg. Neurol. Int. 8, 274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sloan, A. E. et al. Results of the NeuroBlate System first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J. Neurosurg. 118, 1202–1219 (2013).

    Article  PubMed  Google Scholar 

  84. Zhou, H.-J. & Ren, T.-B. Recent progress of cyanine fluorophores for NIR-II sensing and imaging. Chem. Asian J. 17, e202200147 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, H. et al. Near-infrared-II nanomaterials for fluorescence imaging and photodynamic therapy. Adv. Opt. Mater. 9, 2002177 (2021).

    Article  CAS  Google Scholar 

  86. Li, C. et al. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem. Soc. Rev. 52, 4392–4442 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, S., Xu, W., Li, X., Pang, D.-W. & Xiong, H. BOIMPY-based NIR-II fluorophore with high brightness and long absorption beyond 1000 nm for in vivo bioimaging: synergistic steric regulation strategy. ACS Nano 16, 17424–17434 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Sun, Y. et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc. Natl Acad. Sci. USA 116, 1968–1973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ren, Y. et al. An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale 12, 11510–11517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, P. et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9, 2898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lou, H. et al. A novel NIR-II nanoprobe for precision imaging of micro-meter sized tumor metastases of multi-organs and skin flap. Chem. Eng. J. 449, 137848 (2022).

    Article  CAS  Google Scholar 

  92. Sheng, Z. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 30, 1800766 (2018).

    Article  Google Scholar 

  93. Yu, W. et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci. Bull. 64, 410–416 (2019).

    Article  CAS  Google Scholar 

  94. Feng, Z. et al. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification. Nat. Commun. 14, 5017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Feng, Z. et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine. Adv. Mater. 33, e2008123 (2021).

    Article  PubMed  Google Scholar 

  96. Isoda, K. et al. Toxicity of gold nanoparticles in mice due to nanoparticle/drug interaction induces acute kidney damage. Nanoscale Res. Lett. 15, 141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cornu, R., Béduneau, A. & Hélène Martin, H. Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology 430, 152344 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Yao, Y., Zang, Y., Qu, J., Tang, M. & Zhang, T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int. J. Nanomed. 14, 8787–8804 (2019).

    Article  CAS  Google Scholar 

  99. Sun, Y. et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem. Sci. 8, 3489–3493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Q. et al. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater. Chem. Front. 3, 650–655 (2019).

    Article  CAS  Google Scholar 

  101. Sun, Y. et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem. Sci. 7, 6203–6207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang, Q. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 29, https://doi.org/10.1002/adma.201605497 (2017).

  103. Dai, H. et al. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Su, Y., Yu, B., Wang, S., Cong, H. & Shen, Y. NIR-II bioimaging of small organic molecule. Biomaterials 271, 120717 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Ding, F., Zhan, Y., Lu, X. & Sun, Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem. Sci. 9, 4370–4380 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miao, Q. & Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30, e1801778 (2018).

    Article  PubMed  Google Scholar 

  107. Guo, X. et al. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody. EBioMedicine 89, 104476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, Y. et al. In situ albumin-hitchhiking NIR-II probes for accurate detection of micrometastases. Nano Lett. 23, 5731–5737 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Zhu, Y.-Y. et al. Development of a rare earth nanoprobe enables in vivo real-time detection of sentinel lymph node metastasis of breast cancer using NIR-IIb imaging. Cancer Res. 83, 3428–3441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, X. et al. Activatable NIR-II organic fluorescent probes for bioimaging. Theranostics 12, 3345–3371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, M., Li, B., Zhang, H. & Zhang, F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. 12, 3448–3459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ling, S. et al. Tumor microenvironment-activated NIR-II nanotheranostic system for precise diagnosis and treatment of peritoneal metastasis. Angew. Chem. Int. Ed. Engl. 59, 7219–7223 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Shen, H. et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemiluminescence imaging. J. Am. Chem. Soc. 144, 15391–15402 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, Z. et al. Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivo-activated H2S imaging. Proc. Natl Acad. Sci. USA 120, e2205186120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chang, B. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Li, M. et al. Near-infrared-II ratiometric fluorescence probes for non-invasive detection and precise navigation surgery of metastatic sentinel lymph nodes. Theranostics 12, 7191–7202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Liao, N. et al. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging. Angew. Chem. Int. Ed. Engl. 60, 20888–20896 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, S. et al. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 19, 2418–2427 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hong, G. et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841–1846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, D. et al. Organic dots with large π-conjugated planar for cholangiography beyond 1500 nm in rabbits: a non-radioactive strategy. ACS Nano 15, 5011–5022 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Yu, X. et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window. Nano Today 39, 101235 (2021).

    Article  CAS  Google Scholar 

  125. Fan, X. et al. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv. Sci. 8, 2003972 (2021).

    Article  CAS  Google Scholar 

  126. Chang, Y. et al. Bright Tm3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-IIb and c bioimaging. Nat. Commun. 14, 1079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. He, M. et al. Protein-enhanced NIR-IIb emission of indocyanine green for functional bioimaging. ACS Appl. Bio Mater. 3, 9126–9134 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Wu, D. et al. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics 10, 3636–3651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Du, J. et al. Highly stable and bright NIR-II AIE dots for intraoperative identification of ureter. ACS Appl. Mater. Interfaces 12, 8040–8049 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, F. et al. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. https://doi.org/10.1038/s41566-024-01391-5 (2024).

    Article  Google Scholar 

  132. Wang, L. G. & Gibbs, S. L. Improving precision surgery: a review of current intraoperative nerve tissue fluorescence imaging. Curr. Opin. Chem. Biol. 76, 102361 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. He, K. et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics 8, 304–313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. He, K. et al. Intraoperative near-infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy. Eur. J. Nucl. Med. Mol. Imaging 49, 2929–2937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, L. G. et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci. Transl. Med. 12, eaay0712 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Feng, Z. et al. In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-II window. Nano Res. 12, 3059–3068 (2019).

    Article  CAS  Google Scholar 

  138. Barth, C. W. et al. Nerve-sparing gynecologic surgery enabled by a near-infrared nerve-specific fluorophore using existing clinical fluorescence imaging systems. Small, https://doi.org/10.1002/smll.202300011 (2023).

  139. Hingorani, D. V. et al. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics 8, 4226–4237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Glasgow, H. L. et al. Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. Proc. Natl Acad. Sci. USA 113, 12774–12779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dip, F., Falco, J., White, K. & Rosenthal, R. Fluorescence imaging to visualize the recurrent laryngeal nerve during thyroidectomy procedures: analysis of 65 cases and 81 nerves. Surg. Endosc. 38, 1406–1413 (2024).

    Article  PubMed  Google Scholar 

  142. Dip, F. et al. Nerve autofluorescence under near-ultraviolet light: cutting-edge technology for intra-operative neural tissue visualization in 17 patients. Surg. Endosc. 36, 4079–4089 (2022).

    Article  PubMed  Google Scholar 

  143. Suo, Y. et al. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv. Healthc. Mater. 8, e1900974 (2019).

    Article  PubMed  Google Scholar 

  144. Wang, T., Chen, Y., Wang, B. & Wu, M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Qi, J. et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 30, e1706856 (2018).

    Article  PubMed  Google Scholar 

  146. Zhan, Y. et al. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe. Angew. Chem. Int. Ed. Engl. 60, 2637–2642 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Fan, X. et al. NIR-II and visible fluorescence hybrid imaging-guided surgery via aggregation-induced emission fluorophores cocktails. Mater. Today Bio 16, 100399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, F. et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl Acad. Sci. USA 118, e2023888118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu, S. et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl Acad. Sci. USA 114, 962–967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li, B. et al. Noninvasive gastrointestinal tract imaging using BSA-Ag2Te quantum dots as a CT/NIR-II fluorescence dual-modal imaging probe in vivo. ACS Biomater. Sci. Eng. 9, 449–457 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, N. et al. DNA-functionalized liposomes in vivo fusion for NIR-II/MRI guided pretargeted ferroptosis therapy of metastatic breast cancer. ACS Appl. Mater. Interfaces 14, 20603–20615 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, W.-L. et al. Novel dual-mode NIR-II/MRI nanoprobe targeting PD-L1 accurately evaluates the efficacy of immunotherapy for triple-negative breast cancer. Int. J. Nanomed. 18, 5141–5157 (2023).

    Article  CAS  Google Scholar 

  154. Zheng, Z. et al. Biodegradable silica-based nanotheranostics for precise MRI/NIR-II fluorescence imaging and self-reinforcing antitumor therapy. Small 17, e2006508 (2021).

    Article  PubMed  Google Scholar 

  155. Cai, M., Zhang, Z., Shi, X., Hu, Z. & Tian, J. NIR-II/NIR-I fluorescence molecular tomography of heterogeneous mice based on gaussian weighted neighborhood fused lasso method. IEEE Trans. Med. Imaging 39, 2213–2222 (2020).

    Article  PubMed  Google Scholar 

  156. Shi, X., Guo, L., Liu, J., Tian, J. & Hu, Z. NIR-IIb fluorescence molecular tomography of glioblastomas based on heterogeneous mouse models and adaptive projection match pursuit method. IEEE Trans. Biomed. Eng. 70, 2258–2269 (2023).

    Article  PubMed  Google Scholar 

  157. Cao, C. et al. Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography. Biomed. Opt. Express 13, 6284–6299 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhang, Q. et al. Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via NIR-II fluorescence and PET bimodal imaging. Small 15, e1903382 (2019).

    Article  PubMed  Google Scholar 

  159. Shi, X. et al. PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe. Eur. J. Nucl. Med. Mol. Imaging 49, 4325–4337 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, X. et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol. Oncol. 14, 1089–1100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cao, X. et al. Cherenkov excited short-wavelength infrared fluorescence imaging in vivo with external beam radiation. J. Biomed. Opt. 24, 1–4 (2018).

    Article  PubMed  Google Scholar 

  162. Meng, X. et al. Cherenkov excited luminescence imaging induced by megavolt X-ray beams in the second near-infrared window. Opt. Commun. 452, 417–421 (2019).

    Article  CAS  Google Scholar 

  163. Mc Larney, B. E. et al. Detection of shortwave-infrared cerenkov luminescence from medical isotopes. J. Nucl. Med. 64, 177–182 (2023).

    Article  Google Scholar 

  164. Zhen, X., Pu, K. & Jiang, X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small 17, e2004723 (2021).

    Article  PubMed  Google Scholar 

  165. Jiang, Y. et al. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31, e1808166 (2019).

    Article  PubMed  Google Scholar 

  166. Huang, J. & Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed. Engl. 59, 11717–11731 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Li, Z. et al. NIR-II functional materials for photoacoustic theranostics. Bioconjug. Chem. 33, 67–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).

    Article  PubMed  Google Scholar 

  169. Jin, L. & Liang, Y. Fiber laser technologies for photoacoustic microscopy. Vis. Comput. Ind. Biomed. Art. 4, 11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chen, J., Chen, L., Zeng, F. & Wu, S. Aminopeptidase N activatable nanoprobe for tracking lymphatic metastasis and guiding tumor resection surgery via optoacoustic/NIR-II fluorescence dual-mode imaging. Anal. Chem. 94, 8449–8457 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Ouyang, J. et al. Nanoaggregate probe for breast cancer metastasis through multispectral optoacoustic tomography and aggregation-induced NIR-I/II fluorescence imaging. Angew. Chem. 59, 10111–10121 (2020).

    Article  CAS  Google Scholar 

  172. Chen, Y.-S., Zhao, Y., Yoon, S. J., Gambhir, S. S. & Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 14, 465–472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen, T. et al. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 13, 3268–3277 (2020).

    Article  CAS  Google Scholar 

  174. Dai, Y. et al. NIR-II excitation phototheranostic nanomedicine for fluorescence/photoacoustic tumor imaging and targeted photothermal-photonic thermodynamic therapy. Small 17, e2102527 (2021).

    Article  PubMed  Google Scholar 

  175. Nguyen, A., Kumar, S. & Kulkarni, A. A. Nanotheranostic strategies for cancer immunotherapy. Small Methods 6, e2200718 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhou, T. et al. A hepatocellular carcinoma targeting nanostrategy with hypoxia-ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence. ACS Nano 14, 12679–12696 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Sun, W. et al. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials 217, 119264 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Wang, Q. et al. All‐in‐one phototheranostics: single laser triggers NIR‐II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mat. 29, 1901480 (2019).

    Article  Google Scholar 

  179. Ji, Y. et al. Near-infrared fluorescence imaging in immunotherapy. Adv. Drug. Deliv. Rev. 167, 121–134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Du, Y., Qi, Y., Jin, Z. & Tian, J. Noninvasive imaging in cancer immunotherapy: the way to precision medicine. Cancer Lett. 466, 13–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Li, J. et al. Synchronously manipulating absorption and extinction coefficient of semiconducting polymers via precise dual-acceptor engineering for NIR-II excited photothermal theranostics. Angew. Chem. 62, e202301617 (2023).

    Article  CAS  Google Scholar 

  182. Li, C. et al. Fluorination enhances NIR-II emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy. Adv. Mater. 35, e2208229 (2023).

    Article  PubMed  Google Scholar 

  183. Jiang, Y. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhou, Z. et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small 16, e2004173 (2020).

    Article  PubMed  Google Scholar 

  185. Li, L. et al. An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics. Adv. Mater. 32, e2003471 (2020).

    Article  PubMed  Google Scholar 

  186. Li, W. et al. NIR-II fluorescence imaging-guided oxygen self-sufficient nano-platform for precise enhanced photodynamic therapy. Small 18, e2205647 (2022).

    Article  PubMed  Google Scholar 

  187. Yang, Y. et al. Coupling probiotics with 2D CoCuMo-LDH nanosheets as a tumor-microenvironment-responsive platform for precise NIR-II photodynamic therapy. Adv. Mater. 35, e2211205 (2023).

    Article  PubMed  Google Scholar 

  188. Zhang, W. et al. Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy. Biomaterials 243, 119934 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Cui, J. et al. ‘Trojan Horse’ phototheranostics: fine-engineering NIR-II AIEgen camouflaged by cancer cell membrane for homologous-targeting multimodal imaging-guided phototherapy. Adv. Mater. 35, e2302639 (2023).

    Article  PubMed  Google Scholar 

  190. Cao, Y. et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13, 1499–1510 (2019).

    CAS  PubMed  Google Scholar 

  191. Zhuang, J. et al. Efficient NIR-II type-I AIE photosensitizer for mitochondria-targeted photodynamic therapy through synergistic apoptosis-ferroptosis. ACS Nano 17, 9110–9125 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Liu, Y., Liang, Y., Lei, P., Zhang, Z. & Chen, Y. Multifunctional superparticles for magnetically targeted NIR-II imaging and photodynamic therapy. Adv. Sci. 10, e2203669 (2023).

    Article  Google Scholar 

  193. Jiang, Y., Huang, J., Xu, C. & Pu, K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 12, 742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ma, Y. et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13, 11967–11980 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Wen, M. et al. Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. 58, 17425–17432 (2019).

    Article  CAS  Google Scholar 

  196. Lan, P. et al. NIR-II responsive molybdenum dioxide nanosystem manipulating cellular immunogenicity for enhanced tumor photoimmunotherapy. Nano Lett. 22, 4741–4749 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Yan, D. et al. Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-II aggregation-induced emission luminogen. Angew. Chem. Int. Ed. Engl. 61, e202202614 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Chen, M.-M. et al. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window. Chem. Sci. 12, 10848–10854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang, Y. et al. NIR-II driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxia-induced radiotherapy tolerance. Angew. Chem. 58, 15069–15075 (2019).

    Article  CAS  Google Scholar 

  200. Cheng, D. et al. 131I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. J. Mater. Chem. B 9, 9316–9323 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Liu, Y. et al. One-dimensional Fe2 P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. Engl. 58, 2407–2412 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Yang, C. et al. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small 16, e2001518 (2020).

    Article  PubMed  Google Scholar 

  203. Dai, Y. et al. An activatable phototheranostic nanoplatform for tumor specific NIR-II fluorescence imaging and synergistic NIR-II photothermal-chemodynamic therapy. Small 19, e2206053 (2023).

    Article  PubMed  Google Scholar 

  204. Chen, T. et al. Singlet oxygen generation in dark-hypoxia by catalytic microenvironment-tailored nanoreactors for NIR-II fluorescence-monitored chemodynamic therapy. Angew. Chem. Int. Ed. Engl. 60, 15006–15012 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Liu, X., Wang, J., Wu, Y., Wu, M. & Song, J. Ultrasound activated probe for disease imaging and therapy in-vivo. Adv. Drug. Deliv. Rev. 205, 115158 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Liu, Y. et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials 251, 120075 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Hampton, T. Bench to bedside and back again may be key to clinical breakthroughs. JAMA 318, 16–17 (2017).

    Article  PubMed  Google Scholar 

  209. Mitchell, M. J., Jain, R. K. & Langer, R. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17, 659–675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Xue, D. et al. Structural and functional NIR-II fluorescence bioimaging in urinary system via clinically approved dye methylene blue. Engineering 22, 149–158 (2023).

    Article  CAS  Google Scholar 

  211. Hernot, S., van Manen, L., Debie, P., Mieog, J. S. D. & Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 20, e354–e367 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Barth, C. W. & Gibbs, S. L. Fluorescence image-guided surgery – a perspective on contrast agent development. Proc. SPIE Int. Soc. Opt. Eng. 11222, 112220J (2020).

    PubMed  PubMed Central  Google Scholar 

  213. Bozinov, O., Yang, Y., Oertel, M. F., Neidert, M. C. & Nakaji, P. Laser interstitial thermal therapy in gliomas. Cancer Lett. 474, 151–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 17, 7979–8003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Roy, S., Bag, N., Bardhan, S., Hasan, I. & Guo, B. Recent progress in NIR-II fluorescence imaging-guided drug delivery for cancer theranostics. Adv. Drug. Deliv. Rev. 197, 114821 (2023).

    Article  CAS  PubMed  Google Scholar 

  216. Zheng, Y. et al. All-in-one mitochondria-targeted NIR-II fluorophores for cancer therapy and imaging. Chem. Sci. 12, 1843–1850 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Tao, W. & Farokhzad, O. C. Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122, 5405–5407 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Nagengast, W. B. et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 68, 7–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Chen, J. et al. Multiplexed endoscopic imaging of Barrett’s neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut 70, 1010–1013 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. He, P. et al. An exploratory human study of superstable homogeneous lipiodol-indocyanine green formulation for precise surgical navigation in liver cancer. Bioeng. Transl. Med. 8, e10404 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Wang, J. et al. A c-MET-targeted topical fluorescent probe cMBP-ICG improves oral squamous cell carcinoma detection in humans. Ann. Surg. Oncol. 30, 641–651 (2023).

    Article  PubMed  Google Scholar 

  222. Kossatz, S. et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat. Biomed. Eng. 4, 272–285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).

    Article  PubMed  Google Scholar 

  224. Li, B., Zhao, M., Lin, J., Huang, P. & Chen, X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem. Soc. Rev. 51, 7692–7714 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Mu, J. et al. The chemistry of organic contrast agents in the NIR-II window. Angew. Chem. Int. Ed. Engl. 61, e202114722 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Zhang, H., Meng, Z., Ru, J., Meng, Y. & Wang, K. Application and prospects of AI-based radiomics in ultrasound diagnosis. Vis. Comput. Ind. Biomed. Art. 6, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ng, C. W., Li, J. & Pu, K. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 28, 1804688 (2018).

    Article  Google Scholar 

  228. Xie, Z. et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 49, 8065–8087 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Song, G. et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat. Biomed. Eng. 4, 325–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yu, X. et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy. J. Mater. Chem. B 7, 6623–6629 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Parikh, B. B. & Neil, E. C. Evolving strategies to potentially further optimize surgical interventions in brain cancer. Curr. Oncol. Rep. 22, 32 (2020).

    Article  PubMed  Google Scholar 

  232. Missios, S., Bekelis, K. & Barnett, G. H. Renaissance of laser interstitial thermal ablation. Neurosurg. Focus. 38, E13 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the National Natural Science Foundation of China (62027901, 81930053 and 81227901 to J. Tian, 92359301 to J.D., 92259302 to J.J., 92259303 to J.W., 92059207 to Z.H.) and the CAS Youth Interdisciplinary Team (JCTD-2021-08 to Z.H.), as well as research support from the National Key Laboratory of Kidney Diseases (China).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., Y.D. and X.S. researched data for the article and wrote the manuscript. All authors made a substantial contribution to discussions of content and reviewed and/or edited the manuscript prior to submission.

Corresponding authors

Correspondence to Jiafu Ji, Jun Wang, Jiahong Dong, Zhenhua Hu or Jie Tian.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks K. Pu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Competing interests

The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aggregation-induced emission

A photophysical phenomenon whereby certain organic fluorescent dyes have enhanced electron-donating and donor–acceptor abilities and, thus, increased emission efficiency when aggregated compared to when they are in a dispersed state.

Ambient interference

Background fluorescence originating from sources outside the field of view; for example, the reflected light from shadowless lamps and the light emitted by nearby light-emitting diode monitors.

Autofluorescence

Intrinsic emission of light by biological structures when excited by external light, primarily within the visible spectrum.

Back-table imaging systems

Imaging systems typically comprising a lightproof imaging chamber and movable frame, intended for pathological examination of fresh tissue samples in the operating room during the surgical procedure.

Cerenkov radiation

A form of electromagnetic energy emitted by charged subatomic particles travelling faster than light in a dielectric medium such as biological tissue.

Enhanced permeability and retention

Phenomenon in which non-targeted high molecular weight compounds accumulate in tissues with high levels of vascular permeability, such as tumours with a characteristically abnormal vasculature.

Lifetime imaging

A quantitative imaging approach that captures and analyses the duration of fluorescence emission.

Maximum permissible exposure

The highest power or energy density of a light source that is considered safe, with negligible probability of causing damage to the eye or skin.

Open-field imaging systems

Imaging systems tailored for use during open surgery, enhancing visualization of tissues with decimetre-scale size of the field of view and metres-long working distances.

Photoacoustic imaging

A biomedical imaging modality that utilizes the photoacoustic effect to produce wideband ultrasonic emission through transient thermoelastic expansion, and that is expected to combine the strengths of deep ultrasound penetration with high optical contrast.

Photon scattering

During bio-optical imaging, scattering occurs when the directional motion of photons is altered owing to their interaction with tissue or other materials, potentially affecting image quality and imaging depth.

Pyrolysis

The thermal decomposition of materials, often in an inert atmosphere, resulting in volatile products.

Quantum yield

The ratio of the number of photons emitted relative to the number of photons absorbed.

Quenching

Decreased fluorescence intensity owing to various features of fluorophores, such as excited state reactions, energy transfer, complex formation and collisional deactivation.

Ratiometric imaging

An imaging method that involves measuring fluorescence intensities at multiple emission wavelengths, which can differ under different physiological conditions, to monitor changes in the surrounding tissue microenvironment.

Ultrasound-triggered cavitation

Phenomenon in which high-frequency sound waves create tiny bubbles in a liquid, which then rapidly collapse, releasing energy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Du, Y., Shi, X. et al. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00892-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00892-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer