Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions

Abstract

Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1–4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial–mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.

Key points

  • Several small-molecule pan-fibroblast growth factor receptor (FGFR) inhibitors (such as erdafitinib and futibatinib) and FGFR1–3 inhibitors (such as pemigatinib and infigratinib) have been approved for the treatment of patients with various cancers that harbour FGFR alterations detected using their companion diagnostics.

  • Objective response rates of patients with solid tumours receiving approved FGFR inhibitors are ~20–40%, whereas patients with FGFR1-rearranged myeloid or lymphoid neoplasms receiving pemigatinib have a complete response rate of 77%.

  • Gatekeeper, molecular-brake and other secondary FGFR alterations, activation of bypass signalling and TP53 alterations can all lead to resistance to FGFR inhibitors, and hyperphosphataemia owing to off-tumour inhibition of FGFR1 can lead to dose reduction or treatment discontinuation.

  • Prospective data indicate that the activity of selective FGFR2 or FGFR3 inhibitors is unaffected by gatekeeper mutations and that these agents are less likely to induce hyperphosphataemia; these more-selective agents are expected to form the third generation of FGFR inhibitors for patients with FGFR2/3-altered cancers.

  • The anti-FGFR2b antibody bemarituzumab is currently being tested in combination with chemotherapy in phase III trials in patients with gastric or gastro-oesophageal junction adenocarcinoma harbouring FGFR2 amplifications and/or overexpression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of FGFR signalling and mechanisms of oncogenic activation.
Fig. 2: FGFR inhibitors and drug-binding pockets.
Fig. 3: Epithelial–mesenchymal plasticity and resistance to FGFR2 isoform-specific therapeutic antibodies.

Similar content being viewed by others

References

  1. Katoh, M. & Nakagama, H. FGF receptors: cancer biology and therapeutics. Med. Res. Rev. 34, 280–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Babina, I. S. & Turner, N. C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 17, 318–332 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Krook, M. A. et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer 124, 880–892 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Hung, K. L. et al. Targeted profiling of human extrachromosomal DNA by CRISPR–CATCH. Nat. Genet. 54, 1746–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, Y. M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reeser, J. W. et al. Validation of a targeted RNA sequencing assay for kinase fusion detection in solid tumors. J. Mol. Diagn. 19, 682–696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain, P. et al. Novel FGFR2-INA fusion identified in two low-grade mixed neuronal-glial tumors drives oncogenesis via MAPK and PI3K/mTOR pathway activation. Acta Neuropathol. 136, 167–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin, A. et al. Detection of known and novel FGFR fusions in non-small cell lung cancer by comprehensive genomic profiling. J. Thorac. Oncol. 14, 54–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y. J. et al. Calcified chondroid mesenchymal neoplasms with FN1-receptor tyrosine kinase gene fusions including FGFR2, FGFR1, MERTK, NTRK1, and TEK: a molecular and clinicopathologic analysis. Mod. Pathol. 34, 1373–1383 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Gu, W. et al. Comprehensive identification of FGFR1-4 alterations in 5557 Chinese patients with solid tumors by next-generation sequencing. Am. J. Cancer Res. 11, 3893–3906 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tao, Z. et al. Profiling receptor tyrosine kinase fusions in chinese breast cancers. Front. Oncol. 11, 741142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Georgantzoglou, N., Shen, G., Jour, G. & Linos, K. A case of FN1-fused calcified chondroid mesenchymal neoplasm of the hand with novel FGFR3 partner gene. Genes Chromosomes Cancer 62, 237–241 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Katoh, M. & Katoh, M. Precision medicine for human cancers with Notch signaling dysregulation. Int. J. Mol. Med. 45, 279–297 (2020).

    CAS  PubMed  Google Scholar 

  15. Helsten, T. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 22, 259–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, Y. et al. A comprehensive pan-cancer study of fibroblast growth factor receptor aberrations in Chinese cancer patients. Ann. Transl. Med. 8, 1290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 16, 105–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Katoh, M. FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis. Int. J. Mol. Med. 38, 3–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porta, C., Giglione, P., Liguigli, W. & Paglino, C. Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol. 11, 39–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Hilberg, F. et al. Triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases. J. Pharmacol. Exp. Ther. 364, 494–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Goyal, L. et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N. Engl. J. Med. 388, 228–239 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Javle, M. et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 6, 803–815 (2021).

    Article  PubMed  Google Scholar 

  25. Gotlib, J. et al. A phase 2 study of pemigatinib (FIGHT-203; INCB054828) in patients with myeloid/lymphoid neoplasms (MLNs) with fibroblast growth factor receptor 1 (FGFR1) rearrangement. Blood 138, 385 (2021).

    Article  Google Scholar 

  26. Katoh, M. WNT and FGF gene clusters. Int. J. Oncol. 21, 1269–1273 (2002).

    CAS  PubMed  Google Scholar 

  27. Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, X. The FGF metabolic axis. Front. Med. 13, 511–530 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor. Rev. 16, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 37, 1081–1096 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L. et al. Structural basis for FGF hormone signalling. Nature 618, 862–870 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, H. et al. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. eLife 6, e21137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marsiglia, W. M. et al. A conserved allosteric pathway in tyrosine kinase regulation. Structure 27, 1308–1315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chioni, A. M. & Grose, R. P. Biological significance and targeting of the FGFR axis in cancer. Cancers 13, 5681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, A., Lamothe, B., Lee, A., Schlessinger, J. & Lax, I. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc. Natl Acad. Sci. USA 99, 6684–6689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haugsten, E. M., Malecki, J., Bjørklund, S. M., Olsnes, S. & Wesche, J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol. Biol. Cell 19, 3390–3403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, C. et al. Sprouty 2 disturbs FGFR3 degradation in thanatophoric dysplasia type II: a severe form of human achondroplasia. Cell Signal. 20, 1471–1477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Porębska, N. et al. Targeting cellular trafficking of fibroblast growth factor receptors as a strategy for selective cancer treatment. J. Clin. Med. 8, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Dai, S., Zhou, Z., Chen, Z., Xu, G. & Chen, Y. Fibroblast growth factor receptors (FGFRs): structures and small molecule inhibitors. Cells 8, 614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rouanne, M. et al. Novel therapeutic targets in advanced urothelial carcinoma. Crit. Rev. Oncol. Hematol. 98, 106–115 (2016).

    Article  PubMed  Google Scholar 

  42. Bahleda, R. et al. Multicenter phase I study of erdafitinib (JNJ-42756493), oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced or refractory solid tumors. Clin. Cancer Res. 25, 4888–4897 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Patel, V. G., Oh, W. K. & Galsky, M. D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 70, 404–423 (2020).

    Article  PubMed  Google Scholar 

  44. Ardizzone, A. et al. Role of fibroblast growth factors receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers 12, 3825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgescu, M. M., Islam, M. Z., Li, Y., Traylor, J. & Nanda, A. Novel targetable FGFR2 and FGFR3 alterations in glioblastoma associate with aggressive phenotype and distinct gene expression programs. Acta Neuropathol. Commun. 9, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schittenhelm, J. et al. FGFR3 overexpression is a useful detection tool for FGFR3 fusions and sequence variations in glioma. Neurooncol. Pract. 8, 209–221 (2021).

    PubMed  Google Scholar 

  47. Sobhani, N., Fan, C., Flores-Villanueva, P. O., Generali, D. & Li, Y. The fibroblast growth factor receptors in breast cancer: from oncogenesis to better treatments. Int. J. Mol. Sci. 21, 2011 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  48. Santolla, M. F. & Maggiolini, M. The FGF/FGFR system in breast cancer: oncogenic features and therapeutic perspectives. Cancers 12, 3029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Francavilla, C. & O’Brien, C. S. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol. 12, 210373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahipal, A., Tella, S. H., Kommalapati, A., Anaya, D. & Kim, R. FGFR2 genomic aberrations: achilles heel in the management of advanced cholangiocarcinoma. Cancer Treat. Rev. 78, 1–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Vogel, A., Segatto, O., Stenzinger, A. & Saborowski, A. FGFR2 inhibition in cholangiocarcinoma. Annu. Rev. Med. 74, 293–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Ilyas, S. I. et al. Cholangiocarcinoma — novel biological insights and therapeutic strategies. Nat. Rev. Clin. Oncol. 20, 470–486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jogo, T. et al. Circulating tumor DNA analysis detects FGFR2 amplification and concurrent genomic alterations associated with FGFR inhibitor efficacy in advanced gastric cancer. Clin. Cancer Res. 27, 5619–5627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zingg, D. et al. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature 608, 609–617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, H. et al. Advances of fibroblast growth factor/receptor signaling pathway in hepatocellular carcinoma and its pharmacotherapeutic targets. Front. Pharmacol. 12, 650388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gadaleta, R. M. & Moschetta, A. Dark and bright side of targeting fibroblast growth factor receptor 4 in the liver. J. Hepatol. 75, 1440–1451 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Tao, Z., Cui, Y., Xu, X. & Han, T. FGFR redundancy limits the efficacy of FGFR4-selective inhibitors in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 119, e2208844119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, Z. et al. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases. Cancer Biol. Med. 18, 490–501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pacini, L., Jenks, A. D., Lima, N. C. & Huang, P. H. Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells 10, 1154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pollock, P. M. et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26, 7158–7162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo, F., Zhang, H., Jia, Z., Cui, M. & Tian, J. Chemoresistance and targeting of growth factors/cytokines signalling pathways: towards the development of effective therapeutic strategy for endometrial cancer. Am. J. Cancer Res. 8, 1317–1331 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu, D. L., Tuo, X. M., Rong, Y., Zhang, K. & Guo, Y. Fibroblast growth factor receptor signaling as therapeutic targets in female reproductive system cancers. J. Cancer 11, 7264–7275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. André, F. & Cortés, J. Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res. Treat. 150, 1–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Papadopoulos, K. P. et al. A phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br. J. Cancer 117, 1592–1599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perera, T. P. S. et al. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol. Cancer Ther. 16, 1010–1020 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Meric-Bernstam, F. et al. Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase i dose-expansion study. Cancer Discov. 12, 402–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Grünewald, S. et al. Rogaratinib: a potent and selective pan-FGFR inhibitor with broad antitumor activity in FGFR-overexpressing preclinical cancer models. Int. J. Cancer 145, 1346–1357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tyhonas, J. S. et al. Discovery of KIN-3248, an irreversible, next generation FGFR inhibitor for the treatment of advanced tumors harboring FGFR2 and/or FGFR3 gene alterations. J. Med. Chem. 3, 1734–1746 (2024).

    Article  Google Scholar 

  71. Liu, P. C. C. et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE 15, e0231877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Gavine, P. R. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 72, 2045–2056 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Nakanishi, Y. et al. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther. 13, 2547–2558 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen, M. H. et al. Discovery of orally bioavailable FGFR2/FGFR3 dual inhibitors via structure-guided scaffold repurposing approach. ACS Med. Chem. Lett. 14, 312–318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Subbiah, V. et al. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. Cancer Discov. 13, 2012–2031 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ballard, J. A. et al. Preclinical characterization of LOXO-435 (LOX-24350), a potent and highly isoform-selective FGFR3 inhibitor. Mol. Cancer Ther. 20, P141 (2021).

    Article  Google Scholar 

  78. Weiss, A. et al. FGF401, a first-in-class highly selective and potent FGFR4 inhibitor for the treatment of FGF19-driven hepatocellular cancer. Mol. Cancer Ther. 18, 2194–2206 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Hatlen, M. A. et al. Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma. Cancer Discov. 9, 1686–1695 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Tan, L. et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc. Natl Acad. Sci. USA 111, E4869–E4877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. FDA. Approval of erdafitinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212018s000lbl.pdf (2019).

  82. FDA. Approval of eutibatinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214801s000lbl.pdf (2022).

  83. FDA. Approval of infigratinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214622s000lbl.pdf (2021).

  84. FDA. Approval of pemigatinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213736s002lbl.pdf (2022).

  85. Siefker-Radtke, A. O. et al. Management of fibroblast growth factor inhibitor treatment-emergent adverse events of interest in patients with locally advanced or metastatic urothelial carcinoma. Eur. Urol. Open. Sci. 50, 1–9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. FDA. FDA approves erdafitinib for locally advanced or metastatic urothelial carcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-erdafitinib-locally-advanced-or-metastatic-urothelial-carcinoma (2024).

  87. National Comprehensive Cancer Network. NCCN Guidelines. Bladder cancer, version 3.2023, https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (2023).

  88. NICE. Inspection of erdafitinib. https://www.nice.org.uk/guidance/indevelopment/gid-ta10937 (2023).

  89. Pant, S. et al. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): an international, single-arm, phase 2 study. Lancet Oncol. 24, 925–935 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Goyal, L. et al. Primary results of phase 2 FOENIX-CCA2: the irreversible FGFR1-4 inhibitor futibatinib in intrahepatic cholangiocarcinoma (iCCA) with FGFR2 fusions/rearrangements. Cancer Res. 81, CT010 (2021).

    Article  Google Scholar 

  91. Alekseev, O., Ojuok, E. & Cousins, S. Multifocal serous retinopathy with pemigatinib therapy for metastatic colon adenocarcinoma. Int. J. Retin. Vitreous 7, 34 (2021).

    Article  Google Scholar 

  92. Oladipupo, S. S. et al. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc. Natl Acad. Sci. USA 111, 13379–13384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. National Comprehensive Cancer Network. NCCN Guidelines. Biliary tract cancers, version 2.2023, https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf (2023).

  94. European Medicines Agency. Pemazyre (Pemigatinib). 12/09/2023, https://www.ema.europa.eu/en/medicines/human/EPAR/pemazyre (2023).

  95. European Medicines Agency. Lytgobi (Futibatinib). 18/07/2023, https://www.ema.europa.eu/en/medicines/human/EPAR/lytgobi (2023).

  96. National Comprehensive Cancer Network. NCCN Guidelines. Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions, https://www.nccn.org/professionals/physician_gls/pdf/mlne.pdf (2023).

  97. Loriot, Y. et al. Erdafitinib or chemotherapy in advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 389, 1961–1971 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Janssen. Press release for erdafitinib. investor.jnj.com, https://www.investor.jnj.com/files/doc_news/2023/09/BALVERSA-Filing-Press-Release_FINAL.pdf (2023).

  99. Catenacci, D. V. T. et al. Phase I escalation and expansion study of bemarituzumab (FPA144) in patients with advanced solid tumors and FGFR2b-selected gastroesophageal adenocarcinoma. J. Clin. Oncol. 38, 2418–2426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wainberg, Z. A. et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 23, 1430–1440 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Wainberg, Z. A. et al. Bemarituzumab as first-line treatment for locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma: final analysis of the randomized phase 2 FIGHT trial. Gastric Cancerhttps://doi.org/10.1007/s10120-024-01466-w (2024).

  102. Schuler, M. et al. Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 20, 1454–1466 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Voss, M. H. et al. A phase I, open-label, multicenter, dose-escalation study of the oral selective FGFR inhibitor debio 1347 in patients with advanced solid tumors harboring FGFR gene alterations. Clin. Cancer Res. 25, 2699–2707 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kommalapati, A. et al. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers 13, 2968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Han, X. et al. Conditional deletion of Fgfr1 in the proximal and distal tubule identifies distinct roles in phosphate and calcium transport. PLoS ONE 11, e0147845 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kim, R. D. et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 9, 1696–1707 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Chan, S. L. et al. A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. J. Exp. Clin. Cancer Res. 41, 189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cowell, J. K. et al. Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas. Int. J. Cancer 141, 1822–1829 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pal, S. K. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 8, 812–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goyal, L. et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov. 9, 1064–1079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Varghese, A. M. et al. Noninvasive detection of polyclonal acquired resistance to FGFR inhibition in patients with cholangiocarcinoma harboring FGFR2 alterations. JCO Precis. Oncol. 5, 44–50 (2021).

    Article  Google Scholar 

  113. Silverman, I. M. et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov. 11, 326–339 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Jiang, K. et al. GZD824 overcomes FGFR1-V561F/M mutant resistance in vitro and in vivo. Cancer Med. 10, 4874–4884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Valery, M. et al. Targetable molecular alterations in the treatment of biliary tract cancers: an overview of the available treatments. Cancers 15, 4446 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Facchinetti, F. et al. Resistance to selective FGFR inhibitors in FGFR-driven urothelial cancer. Cancer Discov. 13, 1998–2011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guercio, B. J. et al. Clinical and genomic landscape of FGFR3-altered urothelial carcinoma and treatment outcomes with erdafitinib: a real-world experience. Clin. Cancer Res. 29, 4586–4595 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Wu, Q. et al. Landscape of clinical resistance mechanisms to FGFR inhibitors in FGFR2-altered cholangiocarcinoma. Clin. Cancer Res. 30, 198–208 (2024).

    Article  PubMed  Google Scholar 

  119. Mohammadi, M., Schlessinger, J. & Hubbard, S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86, 577–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Rizzo, A., Ricci, A. D. & Brandi, G. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: evidence to date and future perspectives. Expert Opin. Investig. Drugs 30, 317–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Murugesan, K. et al. Pan-tumor landscape of fibroblast growth factor receptor 1–4 genomic alterations. ESMO Open 7, 100641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schram, A. M. et al. Clinical activity of lirafugratinib (RLY-4008), a highly selective FGFR2 inhibitor, in patients with advanced FGFR2-altered solid tumors: the ReFocus study. Mol. Cancer Ther. 22, IA006 (2023).

    Article  Google Scholar 

  123. Iyer, G. et al. A first-in-human phase 1 study of LOXO-435, a potent, highly isoform-selective FGFR3 inhibitor in advanced solid tumors with FGFR3 alterations (trial in progress). Cancer Res. 83, CT119 (2023).

    Article  Google Scholar 

  124. Herrera-Abreu, M. T. et al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discov. 3, 1058–1071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, Q. et al. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 12, 1378–1395 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  126. Siefker-Radtke, A. O. et al. Analysis of circulating tumor DNA (ctDNA) from the phase II BLC2001 trial of erdafitinib in locally advanced or metastatic urothelial carcinoma (mUC) to identify markers of intrinsic resistance to fibroblast growth factor receptor (FGFR)-targeted therapy. Ann. Oncol. 31, S584 (2020).

    Google Scholar 

  127. Cleary, J. M. et al. FGFR2 extracellular domain in-frame deletions are therapeutically targetable genomic alterations that function as oncogenic drivers in cholangiocarcinoma. Cancer Discov. 11, 2488–2505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Malchers, F. et al. Mechanisms of primary drug resistance in FGFR1-amplified lung cancer. Clin. Cancer Res. 23, 5527–5536 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, X. Y. et al. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. Theranostics 12, 260–276 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tavolari, S. & Brandi, G. Mutational landscape of cholangiocarcinoma according to different etiologies: a review. Cells 12, 1216 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Subbiah, V. et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 33, 522–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  136. Mata, D. A. et al. Genetic and epigenetic landscape of IDH-wildtype glioblastomas with FGFR3–TACC3 fusions. Acta Neuropathol. Commun. 8, 186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  138. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. He, M. et al. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target. Ther. 7, 181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma, L. et al. Discovery of a selective and orally bioavailable FGFR2 degrader for treating gastric cancer. J. Med. Chem. 66, 7438–7453 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Du, G. et al. Discovery of a potent degrader for fibroblast growth factor receptor 1/2. Angew. Chem. Int. Ed. Engl. 60, 15905–15911 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maalej, K. M. et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol. Cancer 22, 20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sullivan, P. M. et al. FGFR4-targeted chimeric antigen receptors combined with anti-myeloid polypharmacy effectively treat orthotopic rhabdomyosarcoma. Mol. Cancer Ther. 21, 1608–1621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tian, M. et al. Preclinical development of a chimeric antigen receptor T cell therapy targeting FGFR4 in rhabdomyosarcoma. Cell Rep. Med. 4, 101212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sun, H. D. et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am. J. Physiol. Endocrinol. Metab. 292, E964–E976 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Sommer, A. et al. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 76, 6331–6339 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Kamath, A. V. et al. Preclinical pharmacokinetics of MFGR1877A, a human monoclonal antibody to FGFR3, and prediction of its efficacious clinical dose for the treatment of t(4;14)-positive multiple myeloma. Cancer Chemother. Pharmacol. 69, 1071–1078 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Bartz, R. et al. Preclinical development of U3-1784, a novel FGFR4 antibody against cancer, and avoidance of its on-target toxicity. Mol. Cancer Ther. 18, 1832–1843 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fu, Z. et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kollmannsberger, C. et al. A phase 1 study of LY3076226, a fibroblast growth factor receptor 3 (FGFR3) antibody-drug conjugate, in patients with advanced or metastatic cancer. Invest. New Drugs 39, 1613–1623 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Kim, S. B. et al. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody-drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol. 14, 591–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wickstroem, K. et al. Preclinical combination studies of an FGFR2 targeted thorium-227 conjugate and the ATR inhibitor BAY 1895344. Int. J. Radiat. Oncol. Biol. Phys. 105, 410–422 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Nasr, D. et al. Radioimmunoconjugates in the age of modern immuno-oncology. Life Sci. 310, 121126 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Harding, T. C. et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci. Transl. Med. 5, 178ra39 (2013).

    Article  PubMed  Google Scholar 

  157. Tolcher, A. W. et al. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann. Oncol. 27, 526–532 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Morgensztern, D. et al. An open-label phase IB study to evaluate GSK3052230 in combination with paclitaxel and carboplatin, or docetaxel, in FGFR1-amplified non-small cell lung cancer. Lung Cancer 136, 74–79 (2019).

    Article  PubMed  Google Scholar 

  159. van Brummelen, E. M. J. et al. A phase Ib study of GSK3052230, an FGF ligand trap in combination with pemetrexed and cisplatin in patients with malignant pleural mesothelioma. Invest. New Drugs 38, 457–467 (2020).

    Article  PubMed  Google Scholar 

  160. Gonçalves, D. et al. In vitro and in vivo characterization of recifercept, a soluble fibroblast growth factor receptor 3, as treatment for achondroplasia. PLoS ONE 15, e0244368 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ishiwata, T. Role of fibroblast growth factor receptor-2 splicing in normal and cancer cells. Front. Biosci. 23, 626–639 (2018).

    Article  CAS  Google Scholar 

  162. Epstein, R. J., Tian, L. J. & Gu, Y. F. 2b or not 2b: how opposing FGF receptor splice variants are blocking progress in precision oncology. J. Oncol. 2021, 9955456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Taylor, J. G. VI et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest. 119, 3395–3407 (2009).

    CAS  PubMed  Google Scholar 

  164. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yao, J. et al. Synthesis and evaluation of novel 99mTc-labeled FGFR2-targeting peptides. Mol. Pharm. 21, 895–903 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Lin, C. C. et al. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Mol. Cell 82, 1089–1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hart, K. C., Robertson, S. C. & Donoghue, D. J. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol. Biol. Cell 12, 931–942 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Szybowska, P., Kostas, M., Wesche, J., Wiedlocha, A. & Haugsten, E. M. Cancer mutations in FGFR2 prevent a negative feedback loop mediated by the ERK1/2 pathway. Cells 8, 518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Turner, N. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70, 2085–2094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sircoulomb, F. et al. ZNF703 gene amplification at 8p12 specifies luminal B breast cancer. EMBO Mol. Med. 3, 153–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rutkovsky, A. C. et al. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 19, 491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Condorelli, R. et al. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 30, 365–373 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Yao, Q. et al. Epigenetic alterations in keratinocyte carcinoma. J. Invest. Dermatol. 141, 1207–1218 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. DeSalvo, J. et al. ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. J. Clin. Invest. 131, e141908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lötsch, D. et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 142, 339–360 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mouron, S. et al. FGFR1 amplification or overexpression and hormonal resistance in luminal breast cancer: rationale for a triple blockade of ER, CDK4/6, and FGFR1. Breast Cancer Res. 23, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat. Commun. 10, 1373 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Coombes, R. C. et al. Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat. Commun. 13, 3246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mayer, I. A. et al. A phase Ib trial of fulvestrant + CDK4/6 inhibitor (CDK4/6i) palbociclib + pan-FGFR tyrosine kinase inhibitor (TKI) erdafitinib in FGFR-amplified/ ER+/ HER2- negative metastatic breast cancer (MBC). Cancer Res. 81, PD1–PD03 (2021).

    Article  Google Scholar 

  182. Giacomini, A. et al. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol. Rev. 101, 569–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cheng, C. et al. Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer. Nat. Cancer 3, 565–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Chan, J. M. et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 377, 1180–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chiodelli, P. et al. FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer. Cancer Lett. 526, 217–224 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Cristescu, R. et al. Transcriptomic determinants of response to pembrolizumab monotherapy across solid tumor types. Clin. Cancer Res. 28, 1680–1689 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Petroni, G., Buqué, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug. Discov. 21, 440–462 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Jing, W. et al. FGFR3 destabilizes PD-L1 via NEDD4 to control T-cell-mediated bladder cancer immune surveillance. Cancer Res. 82, 114–129 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Ouyang, Y. et al. FGFR3 alterations in bladder cancer stimulate serine synthesis to induce immune-inert macrophages that suppress T-cell recruitment and activation. Cancer Res. 83, 4030–4046 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Katoh, M. & Katoh, M. WNT signaling and cancer stemness. Essays Biochem. 66, 319–331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  194. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ruan, R. et al. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol. Cancer 22, 60 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Siefker-Radtke, A. O. et al. Erdafitinib versus pembrolizumab in pretreated patients with advanced or metastatic urothelial cancer with select FGFR alterations: cohort 2 of the randomized phase III THOR trial. Ann. Oncol. 35, 107–117 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Song, Y. et al. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment. J. Immunother. Cancer 11, e006643 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Okato, A. et al. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression. J. Clin. Invest. 134, e169241 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rose, T. L. et al. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br. J. Cancer 125, 1251–1260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Siefker-Radtke, A. O. et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): final results from the phase 2 Norse study. J. Clin. Oncol. 41, 4504 (2023).

    Article  Google Scholar 

  201. Koshkin, V. S. et al. Futibatinib plus pembrolizumab in patients (pts) with advanced or metastatic urothelial carcinoma (mUC): preliminary safety results from a phase 2 study. J. Clin. Oncol. 40, 501 (2022).

    Article  Google Scholar 

  202. Rosenberg, J. E. et al. Safety and efficacy of rogaratinib in combination with atezolizumab in cisplatin-ineligible patients (pts) with locally advanced or metastatic urothelial cancer (UC) and FGFR mRNA overexpression in the phase Ib/II FORT-2 study. J. Clin. Oncol. 39, 4521 (2021).

    Article  Google Scholar 

  203. Powles, T. B. et al. Erdafitinib (ERDA) or ERDA plus cetrelimab (CET) for patients with metastatic or locally advanced urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): first phase (Ph) II results from the NORSE study. Ann. Oncol. 32, S1303 (2021).

    Article  Google Scholar 

  204. Deshmukh, A. P. et al. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 118, e2102050118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Oh, S. C. et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat. Commun. 9, 1777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Dong, D. et al. FZD5 prevents epithelial-mesenchymal transition in gastric cancer. Cell Commun. Signal. 19, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ho, S. W. T. et al. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 72, 226–241 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhao, Y. et al. Downregulated ESRP1/2 promotes lung metastasis of bladder carcinoma through altering FGFR2 splicing and macrophage polarization. Front. Immunol. 14, 1161273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ashok, C. et al. E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis 10, 58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Groulx, J. F., Boudjadi, S. & Beaulieu, J. F. MYC regulates α6 integrin subunit expression and splicing under its pro-proliferative ITGA6A form in colorectal cancer cells. Cancers 10, 42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gemmill, R. M. et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 300, 66–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Reinke, L. M., Xu, Y. & Cheng, C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J. Biol. Chem. 287, 36435–36442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Brown, W. S., Tan, L., Smith, A., Gray, N. S. & Wendt, M. K. Covalent targeting of fibroblast growth factor receptor inhibits metastatic breast cancer. Mol. Cancer Ther. 15, 2096–2106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sengal, A. T. et al. Spatial expression of the FGFR2b splice isoform and its prognostic significance in endometrioid endometrial carcinoma. J. Pathol. Clin. Res. 8, 521–537 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yashiro, M. et al. Clinical difference between fibroblast growth factor receptor 2 subclass, type IIIb and type IIIc, in gastric cancer. Sci. Rep. 11, 4698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Minashi, K. et al. Cancer-related FGFR2 overexpression and gene amplification in Japanese patients with gastric cancer. Jpn J. Clin. Oncol. 51, 1523–1533 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Neumann, O. et al. Genomic architecture of FGFR2 fusions in cholangiocarcinoma and its implication for molecular testing. Br. J. Cancer 127, 1540–1549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Katoh, M. The integration of genomics testing and functional proteomics in the era of personalized medicine. Expert Rev. Proteom. 14, 1055–1058 (2017).

    Article  CAS  Google Scholar 

  220. Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 607, 732–740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Sternberg, C. N. et al. FORT-1: phase II/III study of rogaratinib versus chemotherapy in patients with locally advanced or metastatic urothelial carcinoma selected based on FGFR1/3 mRNA expression. J. Clin. Oncol. 41, 629–639 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Velmahos, C. S., Badgeley, M. & Lo, Y. C. Using deep learning to identify bladder cancers with FGFR-activating mutations from histology images. Cancer Med. 10, 4805–4813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Loeffler, C. M. L. et al. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur. Urol. Focus 8, 472–479 (2022).

    Article  PubMed  Google Scholar 

  225. Mohammadi, M. et al. Structures of the tyrosine-kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants-in-aid from Masaru Katoh’s Fund for Knowledge-Base and Global Network Projects (Masuko Katoh and Masaru Katoh) and Fondazione Donato-Venturi (G.B.).

Author information

Authors and Affiliations

Authors

Contributions

Masuko Katoh and Masaru Katoh researched data for the manuscript, made substantial contributions to discussions of content, and wrote the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Masaru Katoh.

Ethics declarations

Competing interests

Y.L. has acted as a consultant and/or adviser for Astellas, AstraZeneca, Bristol Myers Squibb, Gilead, Janssen, Merck KGaA, Pfizer, Roche, Seattle Genetics and Taiho and has received research grants from Celsius, Janssen and Sanofi. G.B. has acted as an adviser for Incyte, Lilly and Taiho and has received research grants from Incyte and Ipsen. Z.A.W. has been a consultant for Amgen, Arcus, Astellas, AstraZeneca, Bayer, Bristol Myers Squibb, Daiichi Sankyo, Gilead, Ipsen, Merck, Novartis and Seagen, has received research grants from Arcus, Bristol Myers Squibb and Plexxikon, and has served on the data and safety monitoring boards of Compass, Daiichi Sankyo, Mirati and Pfizer.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks J. Garcia-Donas who co-reviewed with T. Grazioso, Jacek Otlewski who co-reviewed with Malgorzata Zakrzewska, Sumanta Pal, Roberto Ronca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioportal: https://www.cbioportal.org

ClinicalTrials.gov: https://clinicaltrials.gov

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoh, M., Loriot, Y., Brandi, G. et al. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 21, 312–329 (2024). https://doi.org/10.1038/s41571-024-00869-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00869-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer