Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Personalizing adjuvant therapy for patients with colorectal cancer

Abstract

The current standard-of-care adjuvant treatment for patients with colorectal cancer (CRC) comprises a fluoropyrimidine (5-fluorouracil or capecitabine) as a single agent or in combination with oxaliplatin, for either 3 or 6 months. Selection of therapy depends on conventional histopathological staging procedures, which constitute a blunt tool for patient stratification. Given the relatively marginal survival benefits that patients can derive from adjuvant treatment, improving the safety of chemotherapy regimens and identifying patients most likely to benefit from them is an area of unmet need. Patient stratification should enable distinguishing those at low risk of recurrence and a high chance of cure by surgery from those at higher risk of recurrence who would derive greater absolute benefits from chemotherapy. To this end, genetic analyses have led to the discovery of germline determinants of toxicity from fluoropyrimidines, the identification of patients at high risk of life-threatening toxicity, and enabling dose modulation to improve safety. Thus far, results from analyses of resected tissue to identify mutational or transcriptomic signatures with value as prognostic biomarkers have been rather disappointing. In the past few years, the application of artificial intelligence-driven models to digital images of resected tissue has identified potentially useful algorithms that stratify patients into distinct prognostic groups. Similarly, liquid biopsy approaches involving measurements of circulating tumour DNA after surgery are additionally useful tools to identify patients at high and low risk of tumour recurrence. In this Perspective, we provide an overview of the current landscape of adjuvant therapy for patients with CRC and discuss how new technologies will enable better personalization of therapy in this setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that potentially affect prognosis of colorectal cancer.
Fig. 2: Combination of digital biomarker and conventional histopathological prognostic indices.
Fig. 3: Combination of tissue-based biomarkers and ctDNA to improve patient management.

Similar content being viewed by others

References

  1. Gospodarowicz, M. K., Brierley, J. D. & Wittekind, C. (eds) TNM Classification of Malignant Tumours (Wiley, 2017).

  2. DeVita, V. T. Jr, Young, R. C. & Canellos, G. P. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35, 98–110 (1975).

    PubMed  Google Scholar 

  3. Woodhouse, J. R. & Ferry, D. R. The genetic basis of resistance to cancer chemotherapy. Ann. Med. 27, 157–167 (1995).

    CAS  PubMed  Google Scholar 

  4. Kerr, D. J., Kerr, A. M., Wheldon, T. E. & Kaye, S. B. In vitro chemosensitivity testing using the multicellular tumour spheroid model. Cancer Drug. Deliv. 4, 124–130 (1987).

    Google Scholar 

  5. Kerr, D. J. et al. The effect of the non-ionic surfactant Brij 30 on the cytotoxicity of adriamycin in monolayer, spheroid and clonogenic culture systems. Eur. J. Cancer Clin. Oncol. 23, 1315–1322 (1987).

    CAS  PubMed  Google Scholar 

  6. Kerr, D. J., Wheldon, T. E., Kerr, A. M., Freshney, R. I. & Kaye, S. B. The effect of adriamycin and 4′-deoxydoxorubicin on cell survival on human lung tumour cells grown in monolayer and as spheroids. Br. J. Cancer 54, 423–429 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Midgley, R. & Kerr, D. Colorectal cancer. Lancet 353, 391–399 (1999).

    CAS  PubMed  Google Scholar 

  8. Union for International Cancer Control. UICC 8th Edition Errata – 25th January 2022. UICC https://www.uicc.org/sites/default/files/atoms/files/UICC%20TNM%20Classification%208th%20ed.%20Errata%2025%20jan%202022.pdf (2022).

  9. Betge, J. et al. Intramural and extramural vascular invasion in colorectal cancer. Cancer 118, 628–638 (2012).

    PubMed  Google Scholar 

  10. Klaver, C. E. L. et al. Interobserver, intraobserver, and interlaboratory variability in reporting pT4a colon cancer. Virchows Arch. 476, 219–230 (2020).

    PubMed  Google Scholar 

  11. Lim, J. H. et al. Comparison of long-term survival outcomes of T4a and T4b colorectal cancer. Front. Oncol. 11, 780684 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Kojima, M. et al. Pathological diagnostic criterion of blood and lymphatic vessel invasion in colorectal cancer: a framework for developing an objective pathological diagnostic system using the Delphi method, from the Pathology Working Group of the Japanese Society for Cancer of the Colon and Rectum. J. Clin. Pathol. 66, 551–558 (2013).

    PubMed  Google Scholar 

  13. Messenger, D. E., Driman, D. K., McLeod, R. S., Riddell, R. H. & Kirsch, R. Current practice patterns among pathologists in the assessment of venous invasion in colorectal cancer. J. Clin. Pathol. 64, 983–989 (2011).

    PubMed  Google Scholar 

  14. Maguire, A. & Sheahan, K. Controversies in the pathological assessment of colorectal cancer. World J. Gastroenterol. 20, 9850–9861 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Harris, E. I. et al. Lymphovascular invasion in colorectal cancer: an interobserver variability study. Am. J. Surg. Pathol. 32, 1816–1821 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Compton, C. C. Optimal pathologic staging: defining stage II disease. Clin. Cancer Res. 13, 6862s–6870s (2007).

    PubMed  Google Scholar 

  17. Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomez, D. et al. Impact of adjuvant therapy toxicity on quality of life and emotional symptoms in patients with colon cancer: a latent class analysis. Clin. Transl. Oncol. 23, 657–662 (2021).

    CAS  PubMed  Google Scholar 

  19. Moertel, C. G. et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N. Engl. J. Med. 322, 352–358 (1990).

    CAS  PubMed  Google Scholar 

  20. Gray, R., Barnwell, J., McConkey, C., Williams, N. & Kerr, D. J. QUASAR: a randomised study of adjuvant chemotherapy versus observation including 3239 colorectal cancer patients QUASAR Collaborative Group. Lancet 370, 2020–2029 (2007).

    PubMed  Google Scholar 

  21. Twelves, C. et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 352, 2696–2704 (2005).

    CAS  PubMed  Google Scholar 

  22. Tomita, N. et al. Phase III randomised trial comparing 6 vs. 12-month of capecitabine as adjuvant chemotherapy for patients with stage III colon cancer: final results of the JFMC37-0801 study. Br. J. Cancer 120, 689–696 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. André, T. et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J. Clin. Oncol. 33, 4176–4187 (2015).

    PubMed  Google Scholar 

  24. Haller, D. G. et al. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J. Clin. Oncol. 29, 1465–1471 (2011).

    CAS  PubMed  Google Scholar 

  25. Schmoll, H.-J. et al. Phase III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: a planned safety analysis in 1,864 patients. J. Clin. Oncol. 25, 102–109 (2007).

    CAS  PubMed  Google Scholar 

  26. Gallois, C. et al. Prognostic impact of early treatment and oxaliplatin discontinuation in patients with stage III colon cancer: an ACCENT/IDEA pooled analysis of 11 adjuvant trials. J. Clin. Oncol. 41, 803–815 (2023).

    CAS  PubMed  Google Scholar 

  27. Douillard, J. Y. et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041–1047 (2000).

    CAS  PubMed  Google Scholar 

  28. Van Cutsem, E. et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J. Clin. Oncol. 27, 3117–3125 (2009).

    PubMed  Google Scholar 

  29. Alberts, S. R. et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 307, 1383–1393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rachel, S. K. et al. Adjuvant capecitabine plus bevacizumab versus capecitabine alone in patients with colorectal cancer (QUASAR 2): an open-label, randomised phase 3 trial. Lancet Oncol. 17, 1543–1557 (2016).

    Google Scholar 

  31. Taieb, J. et al. Adjuvant FOLFOX +/ cetuximab in full RAS and BRAF wildtype stage III colon cancer patients. Ann. Oncol. 28, 824–830 (2017).

    CAS  PubMed  Google Scholar 

  32. QASAR Collaborative Group Comparison of fluorouracil with additional levamisole, higher-dose folinic acid, or both, as adjuvant chemotherapy for colorectal cancer: a randomised trial. Lancet 355, 1588–1596 (2000).

    Google Scholar 

  33. Des Guetz, G., Nicolas, P., Perret, G.-Y., Morere, J.-F. & Uzzan, B. Does delaying adjuvant chemotherapy after curative surgery for colorectal cancer impair survival? A meta-analysis. Eur. J. Cancer 46, 1049–1055 (2010).

    PubMed  Google Scholar 

  34. André, T. et al. Effect of duration of adjuvant chemotherapy for patients with stage III colon cancer (IDEA collaboration): final results from a prospective, pooled analysis of six randomised, phase 3 trials. Lancet Oncol. 21, 1620–1629 (2020).

    PubMed  PubMed Central  Google Scholar 

  35. Iveson, T. J. et al. Duration of adjuvant doublet chemotherapy (3 or 6 months) in patients with high-risk stage II colorectal cancer. J. Clin. Oncol. 39, 631–641 (2021). Erratum in: J Clin Oncol. 39(15), 1691 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Argiles, G. et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1291–1305 (2020).

    CAS  PubMed  Google Scholar 

  37. Haller, D. G. et al. Impact of age and medical comorbidity on adjuvant treatment outcomes for stage III colon cancer: a pooled analysis of individual patient data from four randomized, controlled trials. Ann. Oncol. 26, 715–724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorenzo Dottorini, F. P. et al. Oxaliplatin in adjuvant colorectal cancer: is there a role in older patients? J. Clin. Oncol. 41, 3300–3303 (2023).

    PubMed  Google Scholar 

  39. Morton, D. et al. Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial. J. Clin. Oncol. 41, 1541–1552 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. FOxTROT Collaborative Group. Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: the pilot phase of a randomised controlled trial. Lancet Oncol. 13, 1152–1160 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    PubMed  Google Scholar 

  42. Verschoor, Y. L. et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study. J. Clin. Oncol. 40, 3511–3511 (2022).

    Google Scholar 

  43. Kanani, A., Veen, T. & Søreide, K. Neoadjuvant immunotherapy in primary and metastatic colorectal cancer. Br. J. Surg. 108, 1417–1425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. European Medicines Agency. Multidisciplinary: pharmacogenomics. European Medicines Agency, https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-pharmacogenomics (2008).

  45. Food and Drug Administration. Table of pharmacogenetic associations. FDA https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations (2022).

  46. Etienne-Grimaldi, M. C. et al. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur. J. Cancer 181, 3–17 (2023).

    CAS  PubMed  Google Scholar 

  47. López-Cortés, A. et al. Pharmacogenomics, biomarker network, and allele frequencies in colorectal cancer. Pharmacogenomics J. 20, 136–158 (2020).

    PubMed  Google Scholar 

  48. Hertz, D. L. Assessment of the clinical utility of pretreatment DPYD testing for patients receiving fluoropyrimidine chemotherapy. J. Clin. Oncol. 40, 3882–3892 (2022).

    CAS  PubMed  Google Scholar 

  49. European Medicines Agency. Fluorouracil and fluorouracil related substances (capecitabine, tegafur and flucytosine) containing medicinal products. European Medicines Agency, https://www.ema.europa.eu/en/medicines/human/referrals/fluorouracil-fluorouracil-related-substances-capecitabine-tegafur-flucytosine-containing-medicinal (2020).

  50. Tsiachristas, A. et al. Can upfront DPYD extended variant testing reduce toxicity and associated hospital costs of fluoropyrimidine chemotherapy? A propensity score matched analysis of 2022 UK patients. BMC Cancer 22, 458 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Henricks, L. M. et al. Effectiveness and safety of reduced-dose fluoropyrimidine therapy in patients carrying the DPYD*2A variant: a matched pair analysis. Int. J. Cancer 144, 2347–2354 (2019).

    CAS  PubMed  Google Scholar 

  52. Yoo, B. K. et al. Identification of genes conferring resistance to 5-fluorouracil. Proc. Natl Acad. Sci. USA 106, 12938–12943 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cervantes, A. et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 10–32 (2023).

    CAS  PubMed  Google Scholar 

  54. Meulendijks, D. et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 16, 1639–1650 (2015).

    CAS  PubMed  Google Scholar 

  55. Masashi Kanai, T. K. et al. Poor association between dihydropyrimidine dehydrogenase (DPYD) genotype and fluoropyrimidine-induced toxicity in an Asian population. Cancer Med. 12, 7808–7814 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Palles, C. et al. An evaluation of the diagnostic accuracy of a panel of variants in DPYD and a single variant in ENOSF1 for predicting common capecitabine related toxicities. Cancer 13, 1497 (2021).

    CAS  Google Scholar 

  57. Lee, L. Y. W. et al. ToxNav germline genetic testing and PROMinet digital mobile application toxicity monitoring: results of a prospective single-center clinical utility study-PRECISE study. Cancer Med. 8, 6305–6314 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Meulendijks, D. et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br. J. Cancer 116, 1415–1424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Benson, A. B. et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 1139–1167 (2022).

    CAS  Google Scholar 

  60. Hulshof, E. C., Deenen, M. J., Guchelaar, H. J. & Gelderblom, H. Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: ready for prime time. Eur. J. Cancer 141, 9–20 (2020).

    CAS  PubMed  Google Scholar 

  61. Hulshof, E. C. et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction between UGT1A1 and irinotecan. Eur. J. Hum. Genet. 31, 982–987 (2022).

    PubMed  Google Scholar 

  62. Karas, S. & Innocenti, F. All you need to know about UGT1A1 genetic testing for patients treated with irinotecan: a practitioner-friendly guide. JCO Oncol. Pract. 18, 270–277 (2022).

    PubMed  Google Scholar 

  63. Rao, D. et al. Excision repair cross-complementing group-1 (ERCC1) induction kinetics and polymorphism are markers of inferior outcome in patients with colorectal cancer treated with oxaliplatin. Oncotarget 10, 5510–5522 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Yin, M. et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin. Cancer Res. 17, 1632–1640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Krebs, M. G. et al. Practical considerations for the use of circulating tumour DNA in the treatment of patients with cancer: a narrative review. JAMA Oncol. 8, 1830–1839 (2022).

    PubMed  Google Scholar 

  66. Loft, M. et al. Clinical application of circulating tumour DNA in colorectal cancer. Lancet Gastroenterol. Hepatol. 8, 837–852 (2023).

    PubMed  Google Scholar 

  67. Benhaim, L. et al. Circulating tumor DNA is a prognostic marker of tumor recurrence in stage II and III colorectal cancer: multicentric, prospective cohort study (ALGECOLS). Eur. J. Cancer 159, 24––33 (2021).

    PubMed  Google Scholar 

  68. Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. 28, 507–517 (2022).

    CAS  PubMed  Google Scholar 

  69. Gong, J. et al. Clinical applications of minimal residual disease assessments by tumor-informed and tumor-uninformed circulating tumor DNA in colorectal cancer. Cancers 13, 4547 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra92 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Tie, J. et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 5, 1710–1717 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Tie, J. et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 68, 663–671 (2019).

    CAS  PubMed  Google Scholar 

  73. Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 5, 1124–1131 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Mason, M. C. et al. Preliminary analysis of liquid biopsy after hepatectomy for colorectal liver metastases. J. Am. Coll. Surg. 233, 82–89.e1 (2021).

    PubMed  PubMed Central  Google Scholar 

  75. Tie, J. et al. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study. PLoS Med. 18, e1003620 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, S. et al. Clinical implication of liquid biopsy in colorectal cancer patients treated with metastasectomy. Cancers 13, 2231 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, G. et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages II to III colorectal cancer. J. Hematol. Oncol. 14, 80 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Loupakis, F. et al. Detection of molecular residual disease using personalized circulating tumor DNA assay in patients with colorectal cancer undergoing resection of metastases. JCO Precis. Oncol. 5, 1166–1177 (2021).

    Google Scholar 

  79. Parikh, A. R. et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin. Cancer Res. 27, 5586–5594 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Taieb, J. et al. Prognostic value and relation with adjuvant treatment duration of ctDNA in stage III colon cancer: a post hoc analysis of the PRODIGE-GERCOR IDEA-France trial. Clin. Cancer Res. 27, 5638–5646 (2021).

    CAS  PubMed  Google Scholar 

  81. Øgaard, N. et al. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: a prospective cohort study. Eur. J. Cancer 163, 163–176 (2022).

    PubMed  Google Scholar 

  82. Kotani, D. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 29, 127–134 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Puccini, A. et al. ctDNA to guide treatment of colorectal cancer: ready for standard of care? Curr. Treat. Options Oncol. 24, 76–92 (2023).

    PubMed  Google Scholar 

  85. Chakrabarti, S. et al. Finding Waldo: the evolving paradigm of circulating tumor DNA (ctDNA)-guided minimal residual disease (MRD) assessment in colorectal cancer (CRC). Cancers 14, 3078 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Böckelman, C., Engelmann, B. E., Kaprio, T., Hansen, T. F. & Glimelius, B. Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncol. 54, 5–16 (2015).

    PubMed  Google Scholar 

  87. Lugli, A., Zlobec, I., Berger, M. D., Kirsch, R. & Nagtegaal, I. D. Tumour budding in solid cancers. Nat. Rev. Clin. Oncol. 18, 101–115 (2021).

    PubMed  Google Scholar 

  88. Knijn, N., van Exsel, U. E. M., de Noo, M. E. & Nagtegaal, I. D. The value of intramural vascular invasion in colorectal cancer – a systematic review and meta-analysis. Histopathology 72, 721–728 (2018).

    PubMed  Google Scholar 

  89. Binnewies, M. et al. Understanding the tumour immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Anderson, N. M. & Simon, M. C. The tumour microenvironment. Curr. Biol. 30, R921–R925 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van Pelt, G. W. et al. The tumour–stroma ratio in colon cancer: the biological role and its prognostic impact. Histopathology 73, 197–206 (2018).

    PubMed  Google Scholar 

  92. Angell, H. & Galon, J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25, 261–267 (2013).

    CAS  PubMed  Google Scholar 

  93. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

  94. La Thangue, N. B. & Kerr, D. J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 8, 587–596 (2011).

    PubMed  Google Scholar 

  95. Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumour samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Moscow, J. A., Fojo, T. & Schilsky, R. L. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 15, 183–192 (2018).

    PubMed  Google Scholar 

  97. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    CAS  PubMed  Google Scholar 

  98. Hutchins, G. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. 29, 1261–1270 (2011).

    PubMed  Google Scholar 

  99. Danielsen, H. E., Pradhan, M. & Novelli, M. Revisiting tumour aneuploidy – the place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 13, 291–304 (2016).

    CAS  PubMed  Google Scholar 

  100. Mouradov, D. et al. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am. J. Gastroenterol. 108, 1785–1793 (2013).

    CAS  PubMed  Google Scholar 

  101. Sinicrope, F. A. DNA mismatch repair and adjuvant chemotherapy in sporadic colon cancer. Nat. Rev. Clin. Oncol. 7, 174–177 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kerr, D. J. & Midgley, R. Defective mismatch repair in colon cancer: a prognostic or predictive biomarker? J. Clin. Oncol. 28, 3210–3212 (2010).

    CAS  PubMed  Google Scholar 

  103. Awan, R. et al. Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Sci. Rep. 7, 16852 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Pai, R. K. et al. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology 79, 391–405 (2021).

    PubMed  Google Scholar 

  105. Shapcott, M., Hewitt, K. J. & Rajpoot, N. Deep learning with sampling in colon cancer histology. Front. Bioeng. Biotechnol. 7, 52 (2019).

    PubMed  PubMed Central  Google Scholar 

  106. Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kleppe, A. et al. Chromatin organisation and cancer prognosis: a pan-cancer study. Lancet Oncol. 19, 356–369 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, L. et al. Prognostic value of nucleotyping, DNA ploidy and stroma in high-risk stage II colon cancer. Br. J. Cancer 123, 973–981 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, Z. et al. Automated assessment of DNA ploidy, chromatin organization, and stroma fraction to predict prognosis and adjuvant therapy response in patients with stage II colorectal carcinoma. Am. J. Cancer Res. 11, 6119–6132 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wulczyn, E. et al. Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digit. Med 4, 71 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Skrede, O.-J. et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).

    CAS  PubMed  Google Scholar 

  114. Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).

    CAS  PubMed  Google Scholar 

  115. Danielsen, H. E. et al. Prognostic markers for colorectal cancer: estimating ploidy and stroma. Ann. Oncol. 29, 616–623 (2018).

    CAS  PubMed  Google Scholar 

  116. Jiang, D. et al. Automated assessment of CD8+ T-lymphocytes and stroma fractions complement conventional staging of colorectal cancer. EBioMedicine 71, 103547 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gray, R. G. et al. Validation study of a quantitative multigene reverse transcriptase–polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J. Clin. Oncol. 29, 4611–4619 (2011).

    PubMed  Google Scholar 

  118. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kleppe, A. et al. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study. Lancet Oncol. 23, 1221–1232 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Seiergren (Oslo University Hospital) for help with creating the figures and acknowledge funding from the Chinese Science Council (to L.Y. and J.Y.) and The Norwegian Research Council (project number 334862, to A.K., H.E.D. and D.J.K.). We wish also to acknowledge the remarkable scientific contribution and leadership of our dear friend, colleague and coauthor H. Danielsen, who died recently.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to discussion of the content and wrote the manuscript. L.Y., A.K., H.E.D. and D.J.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David J. Kerr.

Ethics declarations

Competing interests

H.E.D. reports filing a patent application entitled “Histological image analysis” with International Patent Application Number PCT/EP2018/080828. A.K. and H.E.D. report filing a patent application entitled “Histological image analysis” with International Patent Application Number PCT/EP2020/076090. A.K., H.E.D. and D.J.K. are founders of DoMore Diagnostics. D.J.K. is a founder of Oxford Cancer Biomarkers. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks T. Yoshino and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, J., Kleppe, A. et al. Personalizing adjuvant therapy for patients with colorectal cancer. Nat Rev Clin Oncol 21, 67–79 (2024). https://doi.org/10.1038/s41571-023-00834-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00834-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer