Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn

Abstract

Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting barriers to the activity of CAR T cells.
Fig. 2: Injected CAR T cells are highly enriched in central memory T cells compared to circulating T cells.
Fig. 3: CAR T cell persistence in selected trials.
Fig. 4: Lack of functional intratumoural CAR T cells limits antitumour activity.
Fig. 5: Possible strategies to improve the activity of CAR T cells in patients with solid tumours.

Similar content being viewed by others

References

  1. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).

    CAS  PubMed  Google Scholar 

  4. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    PubMed  Google Scholar 

  5. Parikh, R. H. & Lonial, S. Chimeric antigen receptor T-cell therapy in multiple myeloma: a comprehensive review of current data and implications for clinical practice. CA Cancer J. Clin. 73, 275–285 (2023).

    PubMed  Google Scholar 

  6. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Betof Warner, A., Corrie, P. G. & Hamid, O. Tumor-infiltrating lymphocyte therapy in melanoma: facts to the future. Clin. Cancer Res. 29, 1835–1854 (2023).

    PubMed  Google Scholar 

  8. Adami, A. & Maher, J. An overview of CAR T-cell clinical trial activity to 2021. Immunother. Adv. 1, ltab004 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Patel, U. et al. CAR T cell therapy in solid tumors: a review of current clinical trials. EJHaem 3, 24–31 (2022).

    PubMed  Google Scholar 

  10. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    CAS  PubMed  Google Scholar 

  11. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    CAS  PubMed  Google Scholar 

  12. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Knochelmann, H. M. et al. CAR T cells in solid tumors: blueprints for building effective therapies. Front. Immunol. 9, 1740 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Martinez, M. & Moon, E. K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 10, 128 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  16. Wagner, J., Wickman, E., DeRenzo, C. & Gottschalk, S. CAR T cell therapy for solid tumors: bright future or dark reality? Mol. Ther. 28, 2320–2339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tantalo, D. G. et al. Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. J. Immunother. Cancer 9, e002555 (2021).

    PubMed  PubMed Central  Google Scholar 

  18. Gumber, D. & Wang, L. D. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine 77, 103941 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez-Cantillo, G., Uruena, C., Camacho, B. A. & Ramirez-Segura, C. CAR-T cell performance: how to improve their persistence? Front. Immunol. 13, 878209 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Drougkas, K. et al. Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end? J. Cancer Res. Clin. Oncol. 149, 2709–2734 (2023).

    PubMed  Google Scholar 

  21. Maher, J. & Davies, D. M. CAR-based immunotherapy of solid tumours – a survey of the emerging targets. Cancers 15, 1171 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 1, 26–31 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

    PubMed  Google Scholar 

  32. Box, G. E. P. Science and statistics. J. Am. Stat. Assoc. 71, 791–799 (1976).

    Google Scholar 

  33. Duncan, B. B., Dunbar, C. E. & Ishii, K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol. Ther. Methods Clin. Dev. 27, 17–31 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Klampatsa, A. et al. Analysis and augmentation of the immunologic bystander effects of CAR T cell therapy in a syngeneic mouse cancer model. Mol. Ther. Oncolytics 18, 360–371 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Srivastava, S. et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell 39, 193–208.e10 (2021).

    CAS  PubMed  Google Scholar 

  36. Chmielewski, M. & Abken, H. CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 21, 3205–3219 (2017).

    CAS  PubMed  Google Scholar 

  37. Mhaidly, R. & Verhoeyen, E. Humanized mice are precious tools for preclinical evaluation of CAR T and CAR NK cell therapies. Cancers 12, 1915 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown, L. V., Gaffney, E. A., Ager, A., Wagg, J. & Coles, M. C. Quantifying the limits of CAR T-cell delivery in mice and men. J. R. Soc. Interface 18, 20201013 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moroz, M. A. et al. Comparative analysis of T cell imaging with human nuclear reporter genes. J. Nucl. Med. 56, 1055–1060 (2015).

    CAS  PubMed  Google Scholar 

  40. Skovgard, M. S. et al. Imaging CAR T-cell kinetics in solid tumors: translational implications. Mol. Ther. Oncolytics 22, 355–367 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao, Z. & Pure, E. Imaging of T-cell responses in the context of cancer immunotherapy. Cancer Immunol. Res. 9, 490–502 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Hoeck, J., Vanhove, C., De Smedt, S. C. & Raemdonck, K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug. Discov. Today 27, 793–807 (2022).

    PubMed  Google Scholar 

  43. Keu, K. V. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 9, eaag2196 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Sakemura, R. et al. Development of a clinically relevant reporter for chimeric antigen receptor T-cell expansion, trafficking, and toxicity. Cancer Immunol. Res. 9, 1035–1046 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sellmyer, M. A. et al. Imaging CAR T cell trafficking with eDHFR as a PET reporter gene. Mol. Ther. 28, 42–51 (2020).

    CAS  PubMed  Google Scholar 

  47. Moon, E. K. et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20, 4262–4273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, Z. et al. Disruption of desmoplastic stroma overcomes restrictions to T cell extravasation, immune exclusion and immunosuppression in solid tumors. Nat. Commun. 14, 5110 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Watanabe, K. et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 3, e99573 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Fisher, B. et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J. Clin. Oncol. 7, 250–261 (1989).

    CAS  PubMed  Google Scholar 

  52. Griffith, K. D. et al. In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J. Natl Cancer Inst. 81, 1709–1717 (1989).

    CAS  PubMed  Google Scholar 

  53. Pockaj, B. A. et al. Localization of 111Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73, 1731–1737 (1994).

    CAS  PubMed  Google Scholar 

  54. Meidenbauer, N. et al. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J. Immunol. 170, 2161–2169 (2003).

    CAS  PubMed  Google Scholar 

  55. Bernhard, H. et al. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol. Immunother. 57, 271–280 (2008).

    PubMed  Google Scholar 

  56. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Papa, S. et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study. J. Immunother. Cancer 11, e007162 (2023).

    PubMed  PubMed Central  Google Scholar 

  58. Ager, A., Watson, H. A., Wehenkel, S. C. & Mohammed, R. N. Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem. Soc. Trans. 44, 377–385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sackstein, R. The first step in adoptive cell immunotherapeutics: assuring cell delivery via glycoengineering. Front. Immunol. 9, 3084 (2018).

    CAS  PubMed  Google Scholar 

  61. Michaelides, S., Obeck, H., Kechur, D., Endres, S. & Kobold, S. Migratory engineering of T cells for cancer therapy. Vaccines 10, 1845 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. White, L. G., Goy, H. E., Rose, A. J. & McLellan, A. D. Controlling cell trafficking: addressing failures in CAR T and NK cell therapy of solid tumours. Cancers 14, 978 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Espie, D. & Donnadieu, E. CAR T-cell behavior and function revealed by real-time imaging. Semin. Immunopathol. 45, 229–239 (2023).

    PubMed  Google Scholar 

  64. Kantari-Mimoun, C. et al. CAR T-cell entry into tumor islets is a two-step process dependent on IFNγ and ICAM-1. Cancer Immunol. Res. 9, 1425–1438 (2021).

    CAS  PubMed  Google Scholar 

  65. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).

    CAS  PubMed  Google Scholar 

  66. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi, H., Song, H. & Jung, Y. W. The roles of CCR7 for the homing of memory CD8+ T cells into their survival niches. Immune Netw. 20, e20 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. Faint, J. M., Tuncer, C., Garg, A., Adams, D. H. & Lalor, P. F. Functional consequences of human lymphocyte cryopreservation: implications for subsequent interactions of cells with endothelium. J. Immunother. 34, 588–596 (2011).

    PubMed  Google Scholar 

  69. Watson, H. A. et al. L-selectin enhanced T cells improve the efficacy of cancer immunotherapy. Front. Immunol. 10, 1321 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, W. et al. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality. Oncoimmunology 4, e1051922 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    CAS  PubMed  Google Scholar 

  72. Chen, P. H. et al. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight 5, e134612 (2020).

    PubMed  PubMed Central  Google Scholar 

  73. Olson, N. E. et al. Exploration of tumor biopsy gene signatures to understand the role of the tumor microenvironment in outcomes to lisocabtagene maraleucel. Mol. Cancer Ther. 22, 406–418 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    PubMed  Google Scholar 

  78. Titov, A. et al. Knowns and unknowns about CAR-T cell dysfunction. Cancers 14, 1078 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sitaram, P., Uyemura, B., Malarkannan, S. & Riese, M. J. Beyond the cell surface: targeting intracellular negative regulators to enhance T cell anti-tumor activity. Int. J. Mol. Sci. 20, 5821 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Roselli, E., Faramand, R. & Davila, M. L. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. J. Clin. Invest. 131, e142030 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, N., Li, X., Chintala, N. K., Tano, Z. E. & Adusumilli, P. S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol. 51, 103–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Albelda, S. M. Tumor antigen heterogeneity: the “elephant in the room” of adoptive T-cell therapy for solid tumors. Cancer Immunol. Res. 8, 2 (2020).

    CAS  PubMed  Google Scholar 

  85. Lai, J. et al. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat. Immunol. 21, 914–926 (2020).

    CAS  PubMed  Google Scholar 

  86. D’Souza, R. R. et al. Overcoming tumor antigen heterogeneity in CAR-T cell therapy for malignant mesothelioma (MM). J. Cancer Metastasis Treat. 8, 28 (2022).

    Google Scholar 

  87. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    CAS  PubMed  Google Scholar 

  88. Plaks, V. et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood 138, 1081–1085 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rohaan, M. W. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N. Engl. J. Med. 387, 2113–2125 (2022).

    CAS  PubMed  Google Scholar 

  90. Creelan, B. C. et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat. Med. 27, 1410–1418 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Feuerer, M. et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat. Med. 9, 1151–1157 (2003).

    CAS  PubMed  Google Scholar 

  93. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao, E. et al. Bone marrow and the control of immunity. Cell Mol. Immunol. 9, 11–19 (2012).

    CAS  PubMed  Google Scholar 

  95. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Locke, F. L. et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 4898–4911 (2020).

    PubMed  PubMed Central  Google Scholar 

  98. Csaplar, M., Szollosi, J., Gottschalk, S., Vereb, G. & Szoor, A. Cytolytic activity of CAR T cells and maintenance of their CD4+ subset is critical for optimal antitumor activity in preclinical solid tumor models. Cancers 13, 4301 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Textor, A. et al. CD28 co-stimulus achieves superior CAR T cell effector function against solid tumors than 4-1BB co-stimulus. Cancers 13, 1050 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bottcher, J. P., Reis, E. & Sousa, C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. McLellan, A. D. & Ali Hosseini Rad, S. M. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol. Cell Biol. 97, 664–674 (2019).

    CAS  PubMed  Google Scholar 

  102. Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021).

    CAS  PubMed  Google Scholar 

  103. Robbins, P. F. et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173, 7125–7130 (2004).

    CAS  PubMed  Google Scholar 

  104. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jafarzadeh, L., Masoumi, E., Fallah-Mehrjardi, K., Mirzaei, H. R. & Hadjati, J. Prolonged persistence of chimeric antigen receptor (CAR) T cell in adoptive cancer immunotherapy: challenges and ways forward. Front. Immunol. 11, 702 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wittibschlager, V. et al. CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma. Int. J. Mol. Sci. 24, 5688 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kristensen, N. P. et al. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma. J. Clin. Invest. 132, e150535 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  PubMed  Google Scholar 

  110. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    CAS  PubMed  Google Scholar 

  111. Fichter, K. M., Setayesh, T. & Malik, P. Strategies for precise gene edits in mammalian cells. Mol. Ther. Nucleic Acids 32, 536–552 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    CAS  PubMed  Google Scholar 

  113. Minagawa, A. et al. Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell 23, 850–858.e4 (2018).

    CAS  PubMed  Google Scholar 

  114. Nagano, S. et al. High frequency production of T cell-derived iPSC clones capable of generating potent cytotoxic T cells. Mol. Ther. Methods Clin. Dev. 16, 126–135 (2020).

    CAS  PubMed  Google Scholar 

  115. Mazza, R. & Maher, J. Prospects for development of induced pluripotent stem cell-derived CAR-targeted immunotherapies. Arch. Immunol. Ther. Exp. 70, 2 (2021).

    Google Scholar 

  116. Netsrithong, R. & Wattanapanitch, M. Advances in adoptive cell therapy using induced pluripotent stem cell-derived T cells. Front. Immunol. 12, 759558 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Furukawa, Y. et al. Advances in allogeneic cancer cell therapy and future perspectives on “off-the-shelf” T cell therapy using iPSC technology and gene editing. Cells 11, 269 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. van der Stegen, S. J. C. et al. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat. Biomed. Eng. 6, 1284–1297 (2022).

    PubMed  PubMed Central  Google Scholar 

  119. Iriguchi, S. et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 430 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hosking, M. et al. Off-the-shelf iPSC-derived CAR-T cells containing seven functional edits overcome antigen heterogeneity, improve trafficking, and withstand immunosuppression associated with failed tumor treatment. Soc. Immunother [abstract 304]. Cancer 10 (Suppl. 2), A319 (2022).

    Google Scholar 

  121. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Smits, E. et al. RNA-based gene transfer for adult stem cells and T cells. Leukemia 18, 1898–1902 (2004).

    CAS  PubMed  Google Scholar 

  123. Zhao, Y. et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Barrett, D. M. et al. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum. Gene Ther. 24, 717–727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kenderian, S. S. et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29, 1637–1647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schutsky, K. et al. Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget 6, 28911–28928 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Hung, C. F. et al. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum. Gene Ther. 29, 614–625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Foster, J. B., Barrett, D. M. & Kariko, K. The emerging role of in vitro-transcribed mRNA in adoptive T cell immunotherapy. Mol. Ther. 27, 747–756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Soundara Rajan, T., Gugliandolo, A., Bramanti, P. & Mazzon, E. In vitro-transcribed mRNA chimeric antigen receptor T cell (IVT mRNA CAR T) therapy in hematologic and solid tumor management: a preclinical update. Int. J. Mol. Sci. 21, 6514 (2020).

    PubMed  PubMed Central  Google Scholar 

  130. Lin, L. et al. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia 35, 752–763 (2021).

    CAS  PubMed  Google Scholar 

  131. Moretti, A. et al. The past, present, and future of non-viral CAR T cells. Front. Immunol. 13, 867013 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    CAS  PubMed  Google Scholar 

  133. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Almasbak, H. et al. Transiently redirected T cells for adoptive transfer. Cytotherapy 13, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  135. Meister, H. et al. Multifunctional mRNA-based CAR T cells display promising antitumor activity against glioblastoma. Clin. Cancer Res. 28, 4747–4756 (2022).

    CAS  PubMed  Google Scholar 

  136. Peng, L. et al. Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Rep. 40, 111160 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Parayath, N. N. & Stephan, M. T. In situ programming of CAR T cells. Annu. Rev. Biomed. Eng. 23, 385–405 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cao, Y., Huang, H., Wang, Z. & Zhang, G. The inflammatory CXC chemokines, GROαhigh, IP-10low, and MIGlow, in tumor microenvironment can be used as new indicators for non-small cell lung cancer progression. Immunol. Invest. 46, 361–374 (2017).

    CAS  PubMed  Google Scholar 

  140. Newick, K. et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol. Res. 4, 541–551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Beavis, P. A. et al. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin. Immunol. 28, 64–72 (2016).

    CAS  PubMed  Google Scholar 

  142. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Moon, E. K. et al. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology 7, e1395997 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e14 (2021).

    CAS  PubMed  Google Scholar 

  145. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, L. et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther. 19, 751–759 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    CAS  PubMed  Google Scholar 

  148. Di, S. et al. Combined adjuvant of poly I:C improves antitumor effects of CAR-T cells. Front. Oncol. 9, 241 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Geng, D. et al. TLR5 ligand-secreting T cells reshape the tumor microenvironment and enhance antitumor activity. Cancer Res. 75, 1959–1971 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Alatrash, G. et al. Fucosylation enhances the efficacy of adoptively transferred antigen-specific cytotoxic T lymphocytes. Clin. Cancer Res. 25, 2610–2620 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mondal, N., Silva, M., Castano, A. P., Maus, M. V. & Sackstein, R. Glycoengineering of chimeric antigen receptor (CAR) T-cells to enforce E-selectin binding. J. Biol. Chem. 294, 18465–18474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mhaidly, R. & Mechta-Grigoriou, F. Fibroblast heterogeneity in tumor micro-environment: role in immunosuppression and new therapies. Semin. Immunol. 48, 101417 (2020).

    CAS  PubMed  Google Scholar 

  153. Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Romer, A. M. A., Thorseth, M. L. & Madsen, D. H. Immune modulatory properties of collagen in cancer. Front. Immunol. 12, 791453 (2021).

    PubMed  PubMed Central  Google Scholar 

  155. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, R. et al. Human hyaluronidase PH20 potentiates the antitumor activities of mesothelin-specific CAR-T cells against gastric cancer. Front. Immunol. 12, 660488 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao, Y. et al. Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent. Sci. 8, 603–614 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    CAS  PubMed  Google Scholar 

  159. Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bughda, R., Dimou, P., D’Souza, R. R. & Klampatsa, A. Fibroblast activation protein (FAP)-targeted CAR-T cells: launching an attack on tumor stroma. Immunotargets Ther. 10, 313–323 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Lee, I. K. et al. Monitoring therapeutic response to anti-FAP CAR T cells using [18F]AlF-FAPI-74. Clin. Cancer Res. 28, 5330–5342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, Y. et al. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J. Transl. Med. 21, 255 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu, X. J. et al. Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function ex vivo and in vivo. Oncotarget 7, 82354–82368 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Kaartinen, T. et al. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy 19, 689–702 (2017).

    CAS  PubMed  Google Scholar 

  166. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jung, I. Y. et al. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep. Med. 4, 101053 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    CAS  PubMed  Google Scholar 

  169. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Parente-Pereira, A. C. et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J. Clin. Immunol. 31, 710–718 (2011).

    CAS  PubMed  Google Scholar 

  172. Tschumi, B. O. et al. CART cells are prone to Fas- and DR5-mediated cell death. J. Immunother. Cancer 6, 71 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    PubMed  PubMed Central  Google Scholar 

  174. Yamada-Hunter, S. A. et al. Engineered CD47 protects T cells for enhanced antitumor immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.20.545790 (2023).

  175. Yu, T., Yu, S. K., Xiang, Y., Lu, K. H. & Sun, M. Revolution of CAR engineering for next-generation immunotherapy in solid tumors. Front. Immunol. 13, 936496 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Smole, A. et al. Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell 40, 1470–1487.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhong, X. S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    CAS  PubMed  Google Scholar 

  178. Muliaditan, T. et al. Synergistic T cell signaling by 41BB and CD28 is optimally achieved by membrane proximal positioning within parallel chimeric antigen receptors. Cell Rep. Med. 2, 100457 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hirabayashi, K. et al. Dual targeting CAR-T cells with optimal costimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2, 904–918 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Katsarou, A. et al. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci. Transl. Med. 13, eabh1962 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu, H. et al. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1-positive B-cell lymphoma. Clin. Cancer Res. 27, 473–484 (2021).

    PubMed  Google Scholar 

  182. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Helsen, C. W. et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 9, 3049 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Scheffel, M. J. et al. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol. Immunother. 67, 691–702 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Cho, H. I., Reyes-Vargas, E., Delgado, J. C. & Celis, E. A potent vaccination strategy that circumvents lymphodepletion for effective antitumor adoptive T-cell therapy. Cancer Res. 72, 1986–1995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Slaney, C. Y. et al. Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin. Cancer Res. 23, 2478–2490 (2017).

    CAS  PubMed  Google Scholar 

  190. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Rossig, C. et al. Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia 31, 1087–1095 (2017).

    CAS  PubMed  Google Scholar 

  192. Xin, G. et al. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors. Proc. Natl Acad. Sci. USA 114, 740–745 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ansah, E. O., Baah, A. & Agyenim, E. B. Vaccine boosting CAR-T cell therapy: current and future strategies. Adv. Cell Gene. Ther. 2023, 8030440 (2023).

    Google Scholar 

  194. Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ma, L. et al. Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity. Cell 186, 3148–3165.e20 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    CAS  PubMed  Google Scholar 

  197. Birtel, M. et al. A TCR-like CAR promotes sensitive antigen recognition and controlled T-cell expansion upon mRNA vaccination. Cancer Res. Commun. 2, 827–841 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Mackensen, A., Haanen, J. B. A. G. & Koenecke, C. BNT211-01: a phase I trial to evaluate safety and efficacy of CLDN6 CAR T cells and CLDN6-encoding mRNA vaccine-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumours. Ann. Oncol. 33, S1404–S1405 (2022).

    Google Scholar 

  199. Mackensen, A. et al. CLDN6 CAR-T cell therapy of relapsed/refractory solid tumors ± a CLDN6-encoding mRNA vaccine: dose escalation data from the BNT211-01 phase 1 trial using an automated product [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 2518 (2023).

    Google Scholar 

  200. Mai, D. et al. Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells. Proc. Natl Acad. Sci. USA 120, e2218632120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Ligtenberg, M. A. et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J. Immunol. 196, 759–766 (2016).

    CAS  PubMed  Google Scholar 

  203. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Golumba-Nagy, V., Kuehle, J., Hombach, A. A. & Abken, H. CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol. Ther. 26, 2218–2230 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Xiong, Y. et al. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. Nat. Cancer 4, 1001–1015 (2023).

    CAS  PubMed  Google Scholar 

  206. Wang, E. et al. Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol. Res. 3, 815–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Viaud, S. et al. Switchable control over in vivo CAR T expansion, B cell depletion, and induction of memory. Proc. Natl Acad. Sci. USA 115, E10898–E10906 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Richman, S. A. et al. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo. Mol. Ther. 28, 1600–1613 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Uribe-Herranz, M. et al. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. Mol. Ther. 31, 686–700 (2023).

    CAS  PubMed  Google Scholar 

  212. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  213. Nishio, N. et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 74, 5195–5205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Siurala, M. et al. Adenoviral delivery of tumor necrosis factor-α and interleukin-2 enables successful adoptive cell therapy of immunosuppressive melanoma. Mol. Ther. 24, 1435–1443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Havunen, R. et al. Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol. Ther. Oncolytics 4, 77–86 (2017).

    CAS  PubMed  Google Scholar 

  216. Rezaei, R. et al. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther. 29, 647–660 (2022).

    CAS  PubMed  Google Scholar 

  217. Sterner, R. M. & Kenderian, S. S. Myeloid cell and cytokine interactions with chimeric antigen receptor-T-cell therapy: implication for future therapies. Curr. Opin. Hematol. 27, 41–48 (2020).

    CAS  PubMed  Google Scholar 

  218. Chen, A., Liu, S., Park, D., Kang, Y. & Zheng, G. Depleting intratumoral CD4+CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Res. 67, 1291–1298 (2007).

    CAS  PubMed  Google Scholar 

  219. Cinier, J. et al. Recruitment and expansion of Tregs cells in the tumor environment – how to target them? Cancers 13, 1850 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Minutolo, N. G., Hollander, E. E. & Powell, D. J. Jr. The emergence of universal immune receptor T cell therapy for cancer. Front. Oncol. 9, 176 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. Minutolo, N. G. et al. Quantitative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J. Am. Chem. Soc. 142, 6554–6568 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    CAS  PubMed  Google Scholar 

  224. Blanco, B., Ramirez-Fernandez, A. & Alvarez-Vallina, L. Engineering immune cells for in vivo secretion of tumor-specific T cell-redirecting bispecific antibodies. Front. Immunol. 11, 1792 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Upadhyay, R. et al. A critical role for Fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov. 11, 599–613 (2021).

    CAS  PubMed  Google Scholar 

  226. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kuhn, N. F. et al. CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nat. Commun. 11, 6171 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Conde, E. et al. Epitope spreading driven by the joint action of CART cells and pharmacological STING stimulation counteracts tumor escape via antigen-loss variants. J. Immunother. Cancer 9, e003351 (2021).

    PubMed  PubMed Central  Google Scholar 

  229. Xin, G. et al. Pathogen-boosted adoptive cell transfer therapy induces endogenous antitumor immunity through antigen spreading. Cancer Immunol. Res. 8, 7–18 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The input of A. Bott (Capstan Therapeutics) and J. Fraietta, B. Levine, E. Noguera-Ortega, M. Sellmyer, D. Powell, E. Puré and Z. Xiao (all from the University of Pennsylvania), along with the administrative assistance of M. McNichol are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Albelda.

Ethics declarations

Competing interests

S.A. has acted as a scientific adviser to Bio4t2 LLC and Verismo Therapeutics, has received research support from Capstan, Novartis and Tmunity and is a founder of Capstan Therapeutics.

Peer review

Peer-review information

Nature Reviews Clinical Oncology thanks H. Abken, J. Maher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albelda, S.M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 21, 47–66 (2024). https://doi.org/10.1038/s41571-023-00832-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00832-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing