Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer

Abstract

The improved survival outcomes of patients with non-small-cell lung cancer (NSCLC), largely owing to the improved control of systemic disease provided by immune-checkpoint inhibitors and novel targeted therapies, have highlighted the challenges posed by central nervous system (CNS) metastases as a devastating yet common complication, with up to 50% of patients developing such lesions during the course of the disease. Early-generation tyrosine-kinase inhibitors (TKIs) often provide robust systemic disease control in patients with oncogene-driven NSCLCs, although these agents are usually unable to accumulate to therapeutically relevant concentrations in the CNS owing to an inability to cross the blood–brain barrier. However, the past few years have seen a paradigm shift with the emergence of several novel or later-generation TKIs with improved CNS penetrance. Such agents have promising levels of activity against brain metastases, as demonstrated by data from preclinical and clinical studies. In this Review, we describe current preclinical and clinical evidence of the intracranial activity of TKIs targeting various oncogenic drivers in patients with NSCLC, with a focus on newer agents with enhanced CNS penetration, leptomeningeal disease and the need for intrathecal treatment options. We also discuss evolving assessment criteria and regulatory considerations for future clinical investigations.

Key points

  • Central nervous system (CNS) metastasis and leptomeningeal disease are clinical challenges in the treatment of patients with advanced-stage non-small-cell lung cancers (NSCLCs) that are often associated with inferior outcomes.

  • Targeted therapies have improved the outcomes of several molecularly defined subgroups of patients with oncogene-driven NSCLCs, although certain small-molecule inhibitors confer only limited levels of CNS benefit, often owing to an inability to cross the blood–brain barrier.

  • Preclinical evaluations of Kpuu  (the unbound drug partition coefficient) are commonly used to assess the CNS penetrance of novel agents during drug development.

  • Several newer tyrosine-kinase inhibitors have improved CNS efficacy, including osimertinib in EGFR-mutant NSCLCs and alectinib and lorlatinib in ALK-rearranged NSCLCs, with many others in clinical development.

  • Response Assessment in Neuro-Oncology criteria for response assessment in patients with brain or leptomeningeal metastases are different from RECIST, and future clinical trials should incorporate those criteria into the study design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the blood–brain barrier and blood–tumour barrier.
Fig. 2: Radiographic appearance and intrathecal administration strategies for patients with leptomeningeal disease.

Similar content being viewed by others

References

  1. Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 22, 2865–2872 (2004).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  PubMed  Google Scholar 

  3. D’Antonio, C. et al. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther. Adv. Med. Oncol. 6, 101–114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sorensen, J. B., Hansen, H. H., Hansen, M. & Dombernowsky, P. Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J. Clin. Oncol., https://doi.org/10.1200/JCO.1988.6.9.1474 (2016).

  5. Rangachari, D. et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer 88, 108–111 (2015).

    Article  PubMed  Google Scholar 

  6. Coelho, J. C. et al. Non-small-cell lung cancer with CNS metastasis: disparities from a real-world analysis (GBOT-LACOG 0417). JCO Glob. Oncol. https://doi.org/10.1200/GO.21.00333 (2022).

  7. Sperduto, P. W. et al. Estimating survival in patients with lung cancer and brain metastases: an update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA). JAMA Oncol. 3, 827–831 (2017).

    Article  PubMed  Google Scholar 

  8. Sperduto, P. W. et al. Graded Prognostic Assessment (GPA) for patients with lung cancer and brain metastases: initial report of the small cell lung cancer GPA and update of the non-small cell lung cancer GPA including the effect of programmed death ligand 1 and other prognostic factors. Int. J. Radiat. Oncol. Biol. Phys. 114, 60–74 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zimmermann, S., Dziadziuszko, R. & Peters, S. Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases. Cancer Treat. Rev. 40, 716–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Besse, B. et al. Bevacizumab in patients with nonsquamous non–small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin. Cancer Res. 21, 1896–1903 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, J. et al. Concurrent nivolumab and ipilimumab with brain stereotactic radiosurgery for brain metastases from non-small cell lung cancer: a phase I trial. J. Clin. Oncol. 38, 2531 (2020).

    Article  Google Scholar 

  13. Goldberg, S. B. et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 21, 655–663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hou, X. et al. Efficacy, safety, and health-related quality of life with camrelizumab plus pemetrexed and carboplatin as first-line treatment for advanced nonsquamous NSCLC with brain metastases (CAP-BRAIN): a multicenter, open-label, single-arm, phase 2 study. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2023.01.083 (2023).

  15. Non-small cell lung cancer. National Comprehensive Cancer Network (NCCN) (2023).

  16. Heon, S. et al. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin. Cancer Res. 18, 4406–4414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johung, K. L. et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J. Clin. Oncol. 34, 123–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Sperduto, P. W. et al. The effect of gene alterations and tyrosine kinase inhibition on survival and cause of death in patients with adenocarcinoma of the lung and brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 96, 406–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bohn, J.-P., Pall, G., Stockhammer, G. & Steurer, M. Targeted therapies for the treatment of brain metastases in solid tumors. Target. Oncol. 11, 263–275 (2016).

    Article  PubMed  Google Scholar 

  20. Welsh, J. W. et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J. Clin. Oncol. 31, 895–902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reungwetwattana, T. et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non-small-cell lung cancer. J. Clin. Oncol. 36, 3290–3297 (2018).

    Article  CAS  Google Scholar 

  22. Shaw, A. T. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 18, 1590–1599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Mo, F., Pellerino, A., Soffietti, R. & Rudà, R. Blood–brain barrier in brain tumors: biology and clinical relevance. Int. J. Mol. Sci. 22, 12654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steeg, P. S. The blood–tumour barrier in cancer biology and therapy. Nat. Rev. Clin. Oncol. 18, 696–714 (2021).

    Article  PubMed  Google Scholar 

  26. Lockman, P. R. et al. Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gril, B. et al. HER2 antibody–drug conjugate controls growth of breast cancer brain metastases in hematogenous xenograft models, with heterogeneous blood–tumor barrier penetration unlinked to a passive marker. Neuro Oncol. 22, 1625–1636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahn, H. K. et al. ALK inhibitor crizotinib combined with intrathecal methotrexate treatment for non-small cell lung cancer with leptomeningeal carcinomatosis. Lung Cancer 76, 253–254 (2012).

    Article  PubMed  Google Scholar 

  29. Angeli, E. & Bousquet, G. Brain metastasis treatment: the place of tyrosine kinase inhibitors and how to facilitate their diffusion across the blood–brain barrier. Pharmaceutics 13, 1446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sánchez‐Dengra, B., Gonzalez‐Alvarez, I., Bermejo, M. & Gonzalez‐Alvarez, M. Physiologically based pharmacokinetic (Pbpk) modeling for predicting brain levels of drug in rat. Pharmaceutics 13, 1402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Singh Badhan, R. K., Chenel, M. & Penny, J. I. Development of a physiologically-based pharmacokinetic model of the rat central nervous system. Pharmaceutics 6, 97 (2014).

    Article  Google Scholar 

  32. De Lange, E. C. M. Utility of CSF in translational neuroscience. J. Pharmacokinet. Pharmacodyn. 40, 315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varadharajan, S. et al. Exploring in silico prediction of the unbound brain-to-plasma drug concentration ratio: model validation, renewal, and interpretation. J. Pharm. Sci. 104, 1197–1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wilcox, J. A. & Boire, A. A. Leveraging molecular and immune-based therapies in leptomeningeal metastases. CNS Drugs 37, 45–67 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N. Engl. J. Med. 386, 241–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Bartsch, R. et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat. Med. 28, 1840–1847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kabraji, S. et al. Preclinical and clinical efficacy of trastuzumab deruxtecan in breast cancer brain metastases. Clin. Cancer Res. 29, 174–182 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Doebele, R. C. et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 118, 4502–4511 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Owen, S. & Souhami, L. The management of brain metastases in non-small cell lung cancer. Front. Oncol. 4, 248 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Vries, N. A. et al. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest. N. Drugs 30, 443–449 (2012).

    Article  CAS  Google Scholar 

  41. Luo, S., Chen, L., Chen, X. & Xie, X. Evaluation on efficacy and safety of tyrosine kinase inhibitors plus radiotherapy in NSCLC patients with brain metastases. Oncotarget 6, 16725–16734 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grommes, C. et al. ‘Pulsatile’ high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 13, 1364–1369 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arbour, K. C. et al. Twice weekly pulse and daily continuous-dose erlotinib as initial treatment for patients with epidermal growth factor receptor-mutant lung cancers and brain metastases. Cancer 124, 105–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, H. A. et al. Phase 1 study of twice weekly pulse dose and daily low-dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers. Ann. Oncol. 28, 278–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Ballard, P. et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 22, 5130–5140 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Colclough, N. et al. Preclinical comparison of the blood–brain barrier permeability of osimertinib with other EGFR TKIs. Clin. Cancer Res. 27, 189–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Y.-L. et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J. Clin. Oncol. 36, 2702–2709 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, Q. et al. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.5b01073 (2015).

  49. Yang, Z. et al. AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases. Sci. Transl. Med. 8 (2016).

  50. Li, X. et al. Enhanced efficacy of AZD3759 and radiation on brain metastasis from EGFR mutant non-small cell lung cancer. Int. J. Cancer 143, 212–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Ahn, M.-J. et al. Phase I study of AZD3759, a CNS penetrable EGFR inhibitor, for the treatment of non-small-cell lung cancer (NSCLC) with brain metastasis (BM) and leptomeningeal metastasis (LM). J. Clin. Oncol. 34, 9003 (2016).

    Article  Google Scholar 

  52. Wu, Y.-L. et al. Randomized phase 3 study of first-line AZD3759 (zorifertinib) versus gefitinib or erlotinib in EGFR-mutant (EGFR m+) non-small-cell lung cancer (NSCLC) with central nervous system (CNS) metastasis. J. Clin. Oncol. 41, 9001–9001 (2023).

    Article  Google Scholar 

  53. Conti, C. et al. BLU-701 is a Highly Potent, Brain-Penetrant and WT-Sparing Next-generation EGFR TKI for the Treatment of Sensitizing (ex19del, L858R) and C797S Resistance Mutations (Blueprint Medicines Corporation, 2021).

  54. Zapata, A., Chefer, V. I. & Shippenberg, T. S. Microdialysis in rodents. Curr. Protoc. Neurosci. 7, Unit 7.2 (2009).

  55. BDTX-1535 goes after osimertinib resistance. Cancer Discov. 11, 2952–2953 (2021).

  56. Lucas, M. C. et al. 27MO BDTX-1535, a CNS penetrant, irreversible inhibitor of intrinsic and acquired resistance EGFR mutations, demonstrates preclinical efficacy in NSCLC and GBM PDX models. Ann. Oncol. 33, S14 (2022).

    Article  Google Scholar 

  57. Remon, J., Hendriks, L. E. L., Cardona, A. F. & Besse, B. EGFR exon 20 insertions in advanced non-small cell lung cancer: a new history begins. Cancer Treat. Rev. 90, 102105 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Leal, J. L. et al. EGFR exon 20 insertion mutations: clinicopathological characteristics and treatment outcomes in advanced non-small cell lung cancer. Clin. Lung Cancer 22, e859–e869 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Syed, Y. Y. Amivantamab: first approval. Drugs 81, 1349–1353 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Zhou, C. et al. Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with EGFR exon 20 insertion-positive metastatic non-small cell lung cancer. JAMA Oncol. 7, e214761 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yun, J. et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR–MET bispecific antibody, in diverse models of egfr exon 20 insertion-driven NSCLC. Cancer Discov. 10, 1194–1209 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Riely, G. J. et al. Activity and safety of mobocertinib (TAK-788) in previously treated non-small cell lung cancer with EGFR exon 20 insertion mutations from a phase I/II trial. Cancer Discov. 11, 1688–1699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pearson, P. G. et al. Abstract 3261: LNG-451, a potent inhibitor of EGFR exon 20 insertion mutations with high CNS exposure. Cancer Res. 82, 3261 (2022).

    Article  Google Scholar 

  65. Wang, M. et al. 987P — Sunvozertinib for NSCLC patients with EGFR exon 20 insertion mutations: preliminary analysis of WU-KONG6, the first pivotal study. in ESMO Congress S448–S554 (Annals of Oncology, 2022).

  66. Junttila, M. R. et al. Abstract 1466: ORIC-114, a brain penetrant, orally bioavailable, irreversible inhibitor selectively targets EGFR and HER2 exon20 insertion mutants and regresses intracranial NSCLC xenograft tumors. Cancer Res. 81, 1466–1466 (2021).

    Article  Google Scholar 

  67. Cornelissen, R. et al. Poziotinib in treatment-naive NSCLC harboring HER2 exon 20 mutations: ZENITH20-4, a multicenter, multicohort, open-label, phase 2 trial (cohort 4). J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2023.03.016 (2023).

  68. Koivunen, J. P. et al. EML4–ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 4275–4283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Costa, D. B. et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J. Clin. Oncol. 33, 1881–1888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29, e443–e445 (2011).

    Article  PubMed  Google Scholar 

  71. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 379, 2027–2039 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Shaw, A. T. et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 383, 2018–2029 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Chow, L. Q. M. et al. ASCEND-7: efficacy and safety of ceritinib treatment in patients with ALK-positive non-small cell lung cancer metastatic to the brain and/or leptomeninges. Clin. Cancer Res. 1838, 2021 (2022).

    Google Scholar 

  75. Soria, J.-C. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389, 917–929 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Kodama, T., Tsukaguchi, T., Yoshida, M., Kondoh, O. & Sakamoto, H. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett. 351, 215–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Kodama, T. et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother. Pharmacol. 74, 1023–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Gadgeel, S. et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann. Oncol. 29, 2214–2222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mok, T. et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 31, 1056–1064 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Camidge, D. R. et al. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the phase III ALTA-1L trial. J. Clin. Oncol. 38, 3592–3603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Horn, L. et al. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer. JAMA Oncol. 7, 1617 (2021).

    Article  PubMed  Google Scholar 

  82. Landi, L. & Cappuzzo, F. Achievements and future developments of ALK-TKIs in the management of CNS metastases from ALK-positive NSCLC. Transl. Lung Cancer Res. 5, 579–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zou, H. Y. et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc. Natl Acad. Sci. USA 112, 3493–3498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, S., Pithavala, Y. K., Martini, J.-F. & Chen, J. Evaluation of lorlatinib cerebrospinal fluid concentrations in relation to target concentrations for ALK inhibition. J. Clin. Pharmacol. https://doi.org/10.1002/jcph.2056 (2022).

  85. Solomon, B. J. et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir. Med. 11, 354–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Dagogo-Jack, I. et al. Phase II study of lorlatinib in patients with anaplastic lymphoma kinase-positive lung cancer and CNS-specific relapse. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00522 (2022).

  87. Murray, B. W. et al. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol. Cancer Ther. 20, 1499–1507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pelish, H. E. et al. Abstract 1468: NUV-655 (NVL-655) is a selective, brain-penetrant ALK inhibitor with antitumor activity against the lorlatinib-resistant G1202R/L1196M compound mutation. Cancer Res. 81, 1468 (2021).

    Article  Google Scholar 

  89. Ernani, V. & Stinchcombe, T. E. Management of brain metastases in non-small-cell lung cancer. J. Oncol. Pract. 15, 563–570 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ou, S.-H. I. & Zhu, V. W. CNS metastasis in ROS1 + NSCLC: an urgent call to action, to understand, and to overcome. Lung Cancer 130, 201–207 (2019).

    Article  PubMed  Google Scholar 

  91. Wu, Y.-L. et al. Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 36, 1405–1411 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Azelby, C. M., Sakamoto, M. R. & Bowles, D. W. ROS1 targeted therapies: current status. Curr. Oncol. Rep. 23, 94 (2021).

    Article  PubMed  Google Scholar 

  93. Fischer, H. et al. Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro Oncol. 22, 819–829 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frampton, J. E. Entrectinib: a review in NTRK + solid tumours and ROS1 + NSCLC. Drugs 81, 697–708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Menichincheri, M. et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J. Med. Chem. 59, 3392–3408 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Frampton, J. E. Entrectinib: a review in NTRK + solid tumours and ROS1 + NSCLC. Drugs 81, 697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. De Braud, F. G. M. et al. Entrectinib in locally advanced/metastatic ROS1 and NTRK fusion-positive non-small cell lung cancer (NSCLC): updated integrated analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann. Oncol. 30, v609 (2019).

    Article  Google Scholar 

  98. Doebele, R. C. et al. TRIDENT-1: a global, multicenter, open-label phase II study investigating the activity of repotrectinib in advanced solid tumors harboring ROS1 or NTRK1-3 rearrangements. J. Clin. Oncol. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS9637 (2020).

  99. Ou, S. H. I. et al. Efficacy of taletrectinib (AB-106/DS-6051b) in ROS1 + NSCLC: an updated pooled analysis of U.S. and Japan phase 1 studies. JTO Clin. Res. Rep. 2 (2021).

  100. Schneider, J. L. et al. A phase 2 study of lorlatinib in patients with ROS1-rearranged lung cancer with brain-only progression on crizotinib. JTO Clin. Res. Rep. 3, 100347 (2022).

    PubMed  PubMed Central  Google Scholar 

  101. Cascetta, P. et al. RET inhibitors in non-small-cell lung cancer. Cancers (Basel) 13, 4415 (2021).

  102. Gillespie, C. S. et al. Genomic alterations and the incidence of brain metastases in advanced and metastatic non-small cell lung cancer: a systematic review and meta-analysis. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2023.06.017 (2023).

  103. Drilon, A. et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J. Thorac. Oncol. 13, 1595–1601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Drilon, A. et al. Selpercatinib in patients with RET fusion-positive non-small-cell lung cancer: updated safety and efficacy from the Registrational LIBRETTO-001 phase I/II trial. J. Clin. Oncol. 41, 385–394 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Murciano-Goroff, Y. R. et al. Central nervous system disease in patients with RET fusion-positive NSCLC treated with selpercatinib. J. Thorac. Oncol. 18, 620–627 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Gainor, J. F. et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 22, 959–969 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, Q. et al. Efficacy and safety of pralsetinib in patients with advanced RET fusion‐positive non-small cell lung cancer. Cancer https://doi.org/10.1002/cncr.34897 (2023).

  108. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, D. et al. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann. Oncol. 31, 1207–1215 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Drilon, A. et al. Efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase fusion-positive lung cancers. JCO Precis. Oncol. 6, e2100418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu, F. et al. NTRK fusion in non-small cell lung cancer: diagnosis, therapy, and TRK inhibitor resistance. Front Oncol 12, 864666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nagasaka, M. et al. TRUST-II: a global phase II study for taletrectinib in ROS1 fusion-positive lung cancer and other solid tumors. J. Clin. Oncol. 40, TPS8601 (2022).

    Article  Google Scholar 

  113. Besse, B. et al. Abstract P02-01: repotrectinib in patients with NTRK fusion-positive advanced solid tumors: update from the registrational phase 2 TRIDENT-1 trial. Mol. Cancer Ther. 20, P02-01 (2021).

    Article  Google Scholar 

  114. Negrao, M. V. et al. Molecular landscape of BRAF-mutant NSCLC reveals an association between clonality and driver mutations and identifies targetable non-V600 driver mutations. J. Thorac. Oncol. 15, 1611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Leonetti, A. et al. BRAF in non-small cell lung cancer (NSCLC): pickaxing another brick in the wall. Cancer Treat. Rev. 66, 82–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Planchard, D. et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 18, 1307–1316 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Davies, M. A. et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 18, 863–873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mathieu, L. N. et al. FDA approval summary: capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations.Clin. Cancer Res. 28, 249–254 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Paik, P. K. et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med. 383, 931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Offin, M. et al. CNS metastases in patients with MET exon 14-altered lung cancers and outcomes with crizotinib. JCO Precis. Oncol. 4, 871–876 (2020).

    Article  Google Scholar 

  121. Drusbosky, L. M., Dawar, R., Rodriguez, E. & Ikpeazu, C. V. Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer. J. Hematol. Oncol. 14, 129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Garon, E. B. et al. Abstract CT082: capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM). Cancer Res. 80, CT082 (2020).

    Article  Google Scholar 

  123. Viteri, S. et al. 1286 P activity of tepotinib in brain metastases (BM): preclinical models and clinical data from patients (pts) with MET exon 14 (METex14) skipping NSCLC. Ann. Oncol. 31, S831 (2020).

    Article  Google Scholar 

  124. Le, X. et al. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice. Clin. Cancer Res. 28, 1117–1126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hartmaier, R. J. et al. Osimertinib + savolitinib to overcome acquired MET-mediated resistance in epidermal growth factor receptor-mutated, MET-amplified non-small cell lung cancer: TATTON. Cancer Discov. 13, 98–113 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, D. H. et al. ABN401 in patients with NSCLC with MET exon 14 (MET ex14) skipping: result from the pilot expansion study. J. Clin. Oncol. 41, e21148 (2023).

    Article  Google Scholar 

  127. Judd, J. et al. Characterization of KRAS mutation subtypes in non-small cell lung cancer. Mol. Cancer Ther. 20, 2577–2584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reita, D. et al. Direct targeting KRAS mutation in non-small cell lung cancer: focus on resistance. Cancers 14, 1321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sabari, J. K. et al. Activity of adagrasib (MRTX849) in brain metastases: preclinical models and clinical data from patients with KRASG12C-mutant non-small cell lung cancer. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-0383 (2022).

  130. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ramalingam, S. S. et al. Efficacy of sotorasib in KRAS p.G12C-mutated NSCLC with stable brain metastases: a post-hoc analysis of CodeBreaK 100. J. Thorac. Oncol. 16, S1123 (2012).

    Article  Google Scholar 

  133. Sabari, J. K. et al. Activity of adagrasib (MRTX849) in brain metastases: preclinical models and clinical data from patients with KRASG12C-mutant non-small cell lung cancer. Clin. Cancer Res. 28, 3318–3328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Negrao, M. V. et al. Intracranial efficacy of adagrasib in patients from the KRYSTAL-1 trial with KRASG12C-mutated non-small-cell lung cancer who have untreated CNS metastases. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.00046 (2023).

  135. Sabari, J. K. et al. Activity of adagrasib (MRTX849) in patients with KRASG12C-mutated NSCLC and active, untreated CNS metastases in the KRYSTAL-1 trial. J. Clin. Oncol. 40, LBA9009 (2022).

    Article  Google Scholar 

  136. Yang, J. C. H. et al. Osimertinib in patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer and leptomeningeal metastases: the BLOOM study. J. Clin. Oncol. 38, 538–547 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Ahn, M.-J. et al. Osimertinib for patients (pts) with leptomeningeal metastases (LM) associated with EGFRm advanced NSCLC: the AURA LM study. Ann. Oncol. 30, ii48 (2019).

    Article  Google Scholar 

  138. Byrnes, D. M. et al. Incidence of neurological complications secondary to intrathecal chemotherapy used as either prophylaxis or treatment of leptomeningeal carcinomatosis. Blood 128, 5973 (2016).

    Article  Google Scholar 

  139. Fan, C. et al. Efficacy and safety of intrathecal pemetrexed combined with dexamethasone for treating tyrosine kinase inhibitor-failed leptomeningeal metastases from EGFR-mutant NSCLC — a prospective, open-label, single-arm phase 1/2 clinical trial (unique identifier: ChiCTR1800016615). J. Thorac. Oncol. 16, 1359–1368 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Zagouri, F. et al. Intrathecal administration of trastuzumab for the treatment of meningeal carcinomatosis in HER2-positive metastatic breast cancer: a systematic review and pooled analysis. Breast Cancer Res. Treat. 139, 13–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Figura, N. B. et al. Intrathecal trastuzumab in the management of HER2 + breast leptomeningeal disease: a single institution experience. Breast Cancer Res. Treat. 169, 391–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Figura, N. B. et al. Clinical outcomes of breast leptomeningeal disease treated with intrathecal trastuzumab, intrathecal chemotherapy, or whole brain radiation therapy. Breast Cancer Res. Treat. 175, 781–788 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Groves, M. D. et al. A multicenter phase II trial of intrathecal topotecan in patients with meningeal malignancies. Neuro Oncol. 10, 208–215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sinicrope, K. D. et al. LPTO-09. Intrathecal topotecan for leptomeningeal metastasis in solid tumors: the MD Anderson experience. Neurooncol. Adv. 1, i8 (2019).

    PubMed Central  Google Scholar 

  145. Jaeckle, K. A. et al. Intra‐CSF topotecan in treatment of breast cancer patients with leptomeningeal metastases. Cancer Med. 9, 7935–7942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45, 545–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Lin, J. H. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr. Drug. Metab. 9, 46–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Soderquist, R. G. & Mahoney, M. J. Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Exp. Opin. Drug Deliv. 7, 285–293 (2010).

    Article  CAS  Google Scholar 

  149. Chamberlain, M. C. Treatment of leptomeningeal metastasis with intraventricular administration of depot cytarabine (DTC 101). Arch. Neurol. 50, 261 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Glantz, M. J. et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J. Clin. Oncol. 17, 3110–3116 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Ohyashiki, K., Ohyashiki, J. H., Iwabuchi, A., Ito, H. & Toyama, K. Central nervous system involvement in acute nonlymphocytic leukemia with inv(16)(p13q22). Leukemia 2, 398–399 (1988).

    CAS  PubMed  Google Scholar 

  152. Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).

    Article  PubMed  Google Scholar 

  153. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 14, e396–e406 (2013).

    Article  PubMed  Google Scholar 

  154. Chukwueke, U. N. & Wen, P. Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 8, CNS28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chamberlain, M. et al. Leptomeningeal metastases: a RANO proposal for response criteria. Neuro Oncol. 19, 484–492 (2017).

    PubMed  Google Scholar 

  156. Wen, P. Y. et al. Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 35, 2439–2449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Food and Drug Administration. Evaluating Cancer Drugs in Patients with Central Nervous System Metastases (FDA, 2021).

  158. Zhou, K., Cai, X., Wang, X., Lan, X. & Zhang, X. Efficacy and safety of WBRT + EGFR-TKI versus WBRT only in the treatment of NSCLC patients with brain metastasis: an updated meta-analysis. Thorac. Cancer 13, 563–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Brown, P. D. et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 18, 1049–1060 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Mehrabian, H., Detsky, J., Soliman, H., Sahgal, A. & Stanisz, G. J. Advanced magnetic resonance imaging techniques in management of brain metastases. Front. Oncol. 9, 440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zakaria, R. et al. The role of the immune response in brain metastases: novel imaging biomarkers for immunotherapy. Front. Oncol. 11, 711405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Daqqaq, T. S. & Alhasan, A. S. Positron emission tomography and perfusion weighted imaging in the detection of brain tumors recurrence. Neurosciences 27, 131–142 (2022).

    Article  PubMed Central  Google Scholar 

  163. Kwee, R. M. & Kwee, T. C. Dynamic susceptibility MR perfusion in diagnosing recurrent brain metastases after radiotherapy: a systematic review and meta-analysis. J. Magn. Reson. Imaging 51, 524–534 (2020).

    Article  PubMed  Google Scholar 

  164. Jia, C. et al. Brain metastases of non-small cell lung cancer: magnetic resonance spectroscopy for clinical outcome assessment in patients with stereotactic radiotherapy. Onco Targets Ther. 13, 13087–13096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Guo, D. et al. A novel score combining magnetic resonance spectroscopy parameters and systemic immune-inflammation index improves prognosis prediction in non-small cell lung cancer patients with brain metastases after stereotactic radiotherapy. Front. Oncol. 12, 762230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Najjar, A. M., Johnson, J. M. & Schellingerhout, D. The emerging role of amino acid PET in neuro-oncology. Bioengineering (Basel) 5, 104 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Otman, H. et al. Delayed [18F]-FDG PET imaging increases diagnostic performance and reproducibility to differentiate recurrence of brain metastases from radionecrosis. Clin. Nucl. Med. 47, 800–806 (2022).

    Article  PubMed  Google Scholar 

  168. Pauleit, D. et al. PET with O-(2-18F-fluoroethyl)-l-tyrosine in peripheral tumors: first clinical results. J. Nucl. Med. 46, 411–416 (2005).

    CAS  PubMed  Google Scholar 

  169. Celli, M. et al. Diagnostic and prognostic potential of 18F-FET PET in the differential diagnosis of glioma recurrence and treatment-induced changes after chemoradiation therapy. Front. Oncol. 11, 721821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Albert, N. L. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 18, 1199–1208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chou, J. et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate cancer. Cancer Res. 83, 301–315 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lv, G. et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J. Nucl. Med. 61, 117–122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Boire, A. et al. Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro Oncol. 21, 571–584 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu, X. et al. Cerebrospinal fluid cell-free DNA-based detection of high level of genomic instability is associated with poor prognosis in NSCLC patients with leptomeningeal metastases. Front. Oncol. 12, 664420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fan, Y. et al. Cell-cycle and DNA-damage response pathway is involved in leptomeningeal metastasis of non-small cell lung cancer. Clin. Cancer Res. 24, 209–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Zheng, M.-M. et al. Genotyping of cerebrospinal fluid associated with osimertinib response and resistance for leptomeningeal metastases in EGFR-mutated NSCLC. J. Thorac. Oncol. 16, 250–258 (2021).

    Article  PubMed  Google Scholar 

  177. Zheng, M.-M. et al. Clinical utility of cerebrospinal fluid cell-free DNA as liquid biopsy for leptomeningeal metastases in ALK-rearranged NSCLC. J. Thorac. Oncol. 14, 924–932 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Li, Y. S. et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Ann. Oncol. 29, 945–952 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Li, M. et al. Dynamic monitoring of cerebrospinal fluid circulating tumor DNA to identify unique genetic profiles of brain metastatic tumors and better predict intracranial tumor responses in non-small cell lung cancer patients with brain metastases: a prospective cohort study (GASTO 1028). BMC Med. 20, 398 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lu, B. Y. et al. Spatially resolved analysis of the T cell immune contexture in lung cancer-associated brain metastases. J. Immunother. Cancer 9, e002684 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. de Groot, J. et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro Oncol. 22, 539–549 (2020).

    Article  PubMed  Google Scholar 

  182. Jing Li, M. P. Stereotactic Radiosurgery Versus Whole-brain Radiation Therapy for Patients with 4-15 Brain Metastases: A Phase III Randomized Controlled Trial (American Society for Radiation Oncology Annual Meeting, 2020).

  183. Magnuson, W. J. et al. Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J. Clin. Oncol. 35, 1070–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Soffietti, R., Ahluwalia, M., Lin, N. & Rudà, R. Management of brain metastases according to molecular subtypes. Nat. Rev. Neurol. 16, 557–574 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Vogelbaum, M. A. et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J. Clin. Oncol. 40, 492–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. White, M. N. et al. Combining osimertinib with chemotherapy in EGFR-mutant NSCLC at progression. Clin. Lung Cancer 22, 201–209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, G. et al. Central nervous system efficacy of furmonertinib versus gefitinib in patients with non-small cell lung cancer with epidermal growth factor receptor mutations: results from FURLONG study. J. Clin. Oncol. 40, 9101 (2022).

    Article  Google Scholar 

  188. Deng, Y. et al. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol. Clin. Oncol. 2, 116–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Yang, J.-J. et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir. Med. 5, 707–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Jung, H. A. et al. Totality outcome of afatinib sequential treatment in patients with EGFR mutation-positive non-small cell lung cancer in South Korea (TOAST): Korean Cancer Study Group (KCSG) LU-19-22. Transl. Lung Cancer Res. 11, 1369–1379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cho, B. C. et al. A phase 1/2 study of lazertinib 240 mg in patients with advanced EGFR T790M-positive NSCLC after previous EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 17, 558–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Solomon, B. J. et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 19, 1654–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Li, W. et al. TRUST — Updated Efficacy and Safety of Taletrectinib in Patients (pts) with ROS1 + Non-Small Cell Lung Cancer (NSCLC) (European Lung Cancer Congress, 2023).

  194. Ou, S. et al. OA02.03. Clinical activity of lorlatinib in patients with ROS1 + advanced non-small cell lung cancer: phase 2 study cohort EXP-6. J. Thorac. Oncol. 13, S322–S323 (2018).

    Article  Google Scholar 

  195. Frost, N. et al. Lorlatinib in pretreated ALK- or ROS1-positive lung cancer and impact of TP53 co-mutations: results from the German early access program. Ther. Adv. Med. Oncol. 13, 175883592098055 (2021).

    Article  Google Scholar 

  196. Odintsov, I. et al. Comparison of TAS0953/HM06 and selpercatinib in RET fusion-driven preclinical disease models of intracranial metastases. J. Clin. Oncol. 40, 2024 (2022).

    Article  Google Scholar 

  197. Griesinger, F. et al. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: update from the ARROW trial. Ann. Oncol. 33, 1168–1178 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.L. is supported by the Damon Runyon Foundation and V Foundation for Cancer Research. J.V.H. is supported by NIH R50CA265307, 5R01CA247975 and R01CA234183. K.C. is supported by NIH T32 CA009666. J.Z. is supported by the Cancer Prevention and Research Institute of Texas Multi-Investigator Research Award grant (RP160668), the NIH (NCI) R01CA234629-01 and 5U01CA256780.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and X.L. wrote the manuscript. All authors researched data for the manuscript, made a substantial contribution to discussions of content and edited and/or reviewed the manuscript before submission.

Corresponding author

Correspondence to Xiuning Le.

Ethics declarations

Competing interests

J.Z. has acted as a consultant and/or adviser of AstraZeneca, Bristol Myers Squibb, GenePlus, Innovent, Johnson & Johnson and Novartis, and has received research grants from Johnson & Johnson, Merck and Novartis. J.V.H. has acted as an adviser of AstraZeneca, Boehringer Ingelheim, BrightPath Biotherapeutics, Bristol Myers Squibb, Catalyst Biotech, EMD Serono, Foundation Medicine, Genentech/Roche, GlaxoSmithKline, Guardant Health, Hengrui Pharmaceutical, Janssen, Kairos Ventures, Leads Biolabs, Lilly, Mirati Therapeutics, Nexus Health Systems, Novartis, Pneuma Respiratory, Roche, Sanofi/Aventis, Spectrum Pharmaceuticals and Takeda, has received research funding from AstraZeneca, GlaxoSmithKline and Spectrum, is included in a licensing agreement between Spectrum and MD Anderson Cancer Center regarding intellectual property relating to treatments targeting of EGFR and HER2 exon 20 mutations, and declares stock and other ownership interests in Bio-Tree Consulting and Cardinal Spine. X.L. has acted as a consultant and/or adviser of Abbvie, AstraZeneca, Blueprint Medicines, Boehringer Ingelheim, Eli Lilly, EMD Serono (Merck KGaA), Hengrui Therapeutics, Janssen, Novartis, Sensei Biotherapeutics and Spectrum Pharmaceutics, and has received research funding from Boehringer Ingelheim, Eli Lilly, EMD Serono and Regeneron. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks R. Soffietti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, K., Concannon, K., Li, J. et al. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat Rev Clin Oncol 20, 716–732 (2023). https://doi.org/10.1038/s41571-023-00808-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00808-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer