Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The global burden of lung cancer: current status and future trends

Abstract

Lung cancer is the leading cause of cancer-related death worldwide. However, lung cancer incidence and mortality rates differ substantially across the world, reflecting varying patterns of tobacco smoking, exposure to environmental risk factors and genetics. Tobacco smoking is the leading risk factor for lung cancer. Lung cancer incidence largely reflects trends in smoking patterns, which generally vary by sex and economic development. For this reason, tobacco control campaigns are a central part of global strategies designed to reduce lung cancer mortality. Environmental and occupational lung cancer risk factors, such as unprocessed biomass fuels, asbestos, arsenic and radon, can also contribute to lung cancer incidence in certain parts of the world. Over the past decade, large-cohort clinical studies have established that low-dose CT screening reduces lung cancer mortality, largely owing to increased diagnosis and treatment at earlier disease stages. These data have led to recommendations that individuals with a high risk of lung cancer undergo screening in several economically developed countries and increased implementation of screening worldwide. In this Review, we provide an overview of the global epidemiology of lung cancer. Lung cancer risk factors and global risk reduction efforts are also discussed. Finally, we summarize lung cancer screening policies and their implementation worldwide.

Key points

  • Lung cancer is the leading cause of cancer death globally, with incidence and mortality trends varying greatly by country and largely reflecting differences in tobacco smoking trends.

  • Cigarette smoking is the most prevalent lung cancer risk factor, although environmental exposures, such as biomass fuels, asbestos, arsenic and radon, are all important lung factor risk factors with levels of exposure that vary widely across the globe.

  • Lung cancer incidence and mortality rates are highest in economically developed countries in which tobacco smoking peaked several decades ago, although these rates have mostly now peaked and are declining.

  • Reductions in lung cancer mortality in economically developed countries reflect decreased incidence (mirroring declines in tobacco smoking) and improvements in treatment of patients with advanced-stage disease, including immunotherapies and targeted therapies.

  • In low-income and middle-income countries at the later stages of the tobacco epidemic, both lung cancer incidence and mortality are increasing, thus highlighting the importance of tobacco mitigation policies for reducing the global burden of lung cancer.

  • Low-dose CT-based lung cancer screening reduces lung cancer mortality, although adoption of lung cancer screening programmes has been slow, with limited uptake compared with other cancer screening programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The global epidemiology of lung cancer.
Fig. 2: Changes in lung cancer epidemiology for men and women over time.
Fig. 3: Changes in overall lung cancer epidemiology over time.
Fig. 4: Changes in number of individuals who smoke, by country (1990–2019).
Fig. 5: Prevalence of common NSCLC driver mutations by continent and patient characteristics.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Travis, W. D., Brambilla, E., Burke, A. P., Marx, A. & Nicholson, A. G. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart (IARC, 2015).

  3. Schabath, M. B. & Cote, M. L. Cancer progress and priorities: lung cancer. Cancer Epidemiol. Biomark. Prev. 28, 1563–1579 (2019).

    Article  Google Scholar 

  4. Lortet-Tieulent, J. et al. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 84, 13–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wakelee, H. A. et al. Lung cancer incidence in never smokers. J. Clin. Oncol. 25, 472–478 (2007).

    Article  PubMed  Google Scholar 

  6. United Nations Development Programme. Human development report 2021-22. UNDP http://report.hdr.undp.org (2022).

  7. Jemal, A., Ma, J., Rosenberg, P. S., Siegel, R. & Anderson, W. F. Increasing lung cancer death rates among young women in southern and midwestern states. J. Clin. Oncol. 30, 2739–2744 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jemal, A. et al. Higher lung cancer incidence in young women than young men in the united states. N. Engl. J. Med. 378, 1999–2009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Islami, F. et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United states. CA Cancer J. Clin. 68, 31–54 (2018).

    Article  PubMed  Google Scholar 

  10. Siegel, D. A., Fedewa, S. A., Henley, S. J., Pollack, L. A. & Jemal, A. Proportion of never smokers among men and women with lung cancer in 7 US states. JAMA Oncol. 7, 302–304 (2021).

    Article  PubMed  Google Scholar 

  11. Sakoda, L. C. et al. Trends in smoking-specific lung cancer incidence rates within a US integrated health system, 2007-2018. Chest https://doi.org/10.1016/j.chest.2023.03.016 (2023).

    Article  PubMed  Google Scholar 

  12. Pelosof, L. et al. Proportion of never-smoker non-small cell lung cancer patients at three diverse institutions. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djw295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meza, R., Meernik, C., Jeon, J. & Cote, M. L. Lung cancer incidence trends by gender, race and histology in the United States, 1973-2010. PLoS ONE 10, e0121323 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haiman, C. A. et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N. Engl. J. Med. 354, 333–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Murphy, S. E. Biochemistry of nicotine metabolism and its relevance to lung cancer. J. Biol. Chem. 296, 100722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  17. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  18. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, G. K. & Jemal, A. Socioeconomic and racial/ethnic disparities in cancer mortality, incidence, and survival in the United States, 1950-2014: over six decades of changing patterns and widening inequalities. J. Environ. Public Health 2017, 2819372 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blom, E. F., Ten Haaf, K., Arenberg, D. A. & de Koning, H. J. Disparities in receiving guideline-concordant treatment for lung cancer in the United States. Ann. Am. Thorac. Soc. 17, 186–194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sineshaw, H. M. et al. County-level variations in receipt of surgery for early-stage non-small cell lung cancer in the United States. Chest 157, 212–222 (2020).

    Article  PubMed  Google Scholar 

  22. GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet 397, 2337–2360 (2021).

    Article  Google Scholar 

  23. Allemani, C. et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391, 1023–1075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jani, C. et al. Lung cancer mortality in Europe and the USA between 2000 and 2017: an observational analysis. ERJ Open. Res. https://doi.org/10.1183/23120541.00311-2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malvezzi, M. et al. European cancer mortality predictions for the year 2023 with focus on lung cancer. Ann. Oncol. 34, 410–419 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Carioli, G. et al. European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann. Oncol. 31, 650–658 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Alves, L., Bastos, J. & Lunet, N. Trends in lung cancer mortality in Portugal (1955-2005). Rev. Port. Pneumol. 15, 575–587 (2009).

    Article  PubMed  Google Scholar 

  28. Martínez, C., Guydish, J., Robinson, G., Martínez-Sánchez, J. M. & Fernández, E. Assessment of the smoke-free outdoor regulation in the WHO European region. Prev. Med. 64, 37–40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Forsea, A. M. Cancer registries in Europe – going forward is the only option. Ecancermedicalscience 10, 641 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cho, B. C. et al. Genomic landscape of non-small cell lung cancer (NSCLC) in East Asia using circulating tumor DNA (ctDNA) in clinical practice. Curr. Oncol. 29, 2154–2164 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mathias, C. et al. Lung cancer in Brazil. J. Thorac. Oncol. 15, 170–175 (2020).

    Article  PubMed  Google Scholar 

  32. Souza, M. C., Vasconcelos, A. G. & Cruz, O. G. Trends in lung cancer mortality in Brazil from the 1980s into the early 21st century: age-period-cohort analysis. Cad. Saude Publica 28, 21–30 (2012).

    Article  PubMed  Google Scholar 

  33. Jiang, D. et al. Trends in cancer mortality in China from 2004 to 2018: a nationwide longitudinal study. Cancer Commun. 41, 1024–1036 (2021).

    Article  Google Scholar 

  34. Parascandola, M. & Xiao, L. Tobacco and the lung cancer epidemic in China. Transl. Lung Cancer Res. 8, S21–S30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hosgood, H. D. 3rd et al. In-home coal and wood use and lung cancer risk: a pooled analysis of the International Lung Cancer Consortium. Env. Health Perspect. 118, 1743–1747 (2010).

    Article  CAS  Google Scholar 

  36. Kurmi, O. P., Arya, P. H., Lam, K. B., Sorahan, T. & Ayres, J. G. Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. Eur. Respir. J. 40, 1228–1237 (2012).

    Article  PubMed  Google Scholar 

  37. Qiu, A. Y., Leng, S., McCormack, M., Peden, D. B. & Sood, A. Lung effects of household air pollution. J. Allergy Clin. Immunol. Pract. 10, 2807–2819 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, M. et al. Trends in smoking prevalence in urban and rural China, 2007 to 2018: findings from 5 consecutive nationally representative cross-sectional surveys. PLoS Med. 19, e1004064 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pineros, M., Znaor, A., Mery, L. & Bray, F. A global cancer surveillance framework within noncommunicable disease surveillance: making the case for population-based cancer registries. Epidemiol. Rev. 39, 161–169 (2017).

    Article  PubMed  Google Scholar 

  40. Wei, W. et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 21, e342–e349 (2020).

    Article  PubMed  Google Scholar 

  41. Mathur, P. et al. Cancer statistics, 2020: report from National Cancer Registry Programme, India. JCO Glob. Oncol. 6, 1063–1075 (2020).

    Article  PubMed  Google Scholar 

  42. Nath, A., Sathishkumar, K., Das, P., Sudarshan, K. L. & Mathur, P. A clinicoepidemiological profile of lung cancers in India – results from the National Cancer Registry Programme. Indian J. Med. Res. 155, 264–272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Singh, N. et al. Lung cancer in India. J. Thorac. Oncol. 16, 1250–1266 (2021).

    Article  PubMed  Google Scholar 

  44. Kaur, H. et al. Evolving epidemiology of lung cancer in India: reducing non-small cell lung cancer–not otherwise specified and quantifying tobacco smoke exposure are the key. Indian J. Cancer 54, 285–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Mohan, A. et al. Clinical profile of lung cancer in North India: a 10-year analysis of 1862 patients from a tertiary care center. Lung India 37, 190–197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shaikh, R., Janssen, F. & Vogt, T. The progression of the tobacco epidemic in India on the national and regional level, 1998-2016. BMC Public Health 22, 317 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. India State-Level Disease Burden Initiative Cancer Collaborators. The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990–2016. Lancet Oncol. 19, 1289–1306 (2022).

    Google Scholar 

  48. & Piñeros, M. et al. An updated profile of the cancer burden, patterns and trends in Latin America and the Caribbean. Lancet Reg. Health Am. 13, 100294 (2022).

    PubMed  PubMed Central  Google Scholar 

  49. Raez, L. E. et al. The burden of lung cancer in Latin-America and challenges in the access to genomic profiling, immunotherapy and targeted treatments. Lung Cancer 119, 7–13 (2018).

    Article  PubMed  Google Scholar 

  50. Pakzad, R., Mohammadian-Hafshejani, A., Ghoncheh, M., Pakzad, I. & Salehiniya, H. The incidence and mortality of lung cancer and their relationship to development in Asia. Transl. Lung Cancer Res. 4, 763–774 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Hamdi, Y. et al. Cancer in Africa: the untold story. Front. Oncol. 11, 650117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Centers for Disease Control and Prevention. What are the risk factors for lung cancer? CDC https://www.cdc.gov/cancer/lung/basic_info/risk_factors.htm (2022).

  53. Peto, R. et al. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. Br. Med. J. 321, 323–329 (2000).

    Article  CAS  Google Scholar 

  54. Boffetta, P. et al. Cigar and pipe smoking and lung cancer risk: a multicenter study from Europe. J. Natl Cancer Inst. 91, 697–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Pednekar, M. S., Gupta, P. C., Yeole, B. B. & Hébert, J. R. Association of tobacco habits, including bidi smoking, with overall and site-specific cancer incidence: results from the Mumbai cohort study. Cancer Causes Control. 22, 859–868 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Proctor, R. N. The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tob. Control. 21, 87–91 (2012).

    Article  PubMed  Google Scholar 

  57. Doll, R. & Hill, A. B. The mortality of doctors in relation to their smoking habits. Br. Med. J. 1, 1451 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. US Department of Health, Education, and Welfare. Smoking and health: report of the Advisory Committee to the Surgeon General of the Public Health Service (US Public Health Service, 1964).

  59. Brawley, O. W., Glynn, T. J., Khuri, F. R., Wender, R. C. & Seffrin, J. R. The first Surgeon General’s report on smoking and health: the 50th anniversary. CA Cancer J. Clin. 64, 5–8 (2014).

    Article  PubMed  Google Scholar 

  60. WHO Framework Convention on Tobacco Control. 2021 global progress report on implementation of the WHO Framework Convention on Tobacco Control (WHO FCTC, 2022).

  61. Oberg, M., Jaakkola, M. S., Woodward, A., Peruga, A. & Prüss-Ustün, A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet 377, 139–146 (2011).

    Article  PubMed  Google Scholar 

  62. Office on Smoking and Health. The Health Consequences of Involuntary Exposure to Tobacco Smoke: a Report of the Surgeon General (Centers for Disease Control and Prevention, 2006).

  63. Yousuf, H. et al. Estimated worldwide mortality attributed to secondhand tobacco smoke exposure, 1990-2016. JAMA Netw. Open 3, e201177 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bracken-Clarke, D. et al. Vaping and lung cancer – a review of current data and recommendations. Lung Cancer 153, 11–20 (2021).

    Article  PubMed  Google Scholar 

  65. Centers for Disease Control and Prevention. Trends in tobacco use among youth. CDC https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/trends-in-tobacco-use-among-youth.html (2022).

  66. Sindelar, J. L. Regulating vaping – policies, possibilities, and perils. N. Engl. J. Med. 382, e54 (2020).

    Article  PubMed  Google Scholar 

  67. Campus, B., Fafard, P., St Pierre, J. & Hoffman, S. J. Comparing the regulation and incentivization of e-cigarettes across 97 countries. Soc. Sci. Med. 291, 114187 (2021).

    Article  PubMed  Google Scholar 

  68. Bruce, N. et al. Does household use of biomass fuel cause lung cancer? A systematic review and evaluation of the evidence for the GBD 2010 study. Thorax 70, 433–441 (2015).

    Article  PubMed  Google Scholar 

  69. Woolley, K. E. et al. Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low- and middle-income countries: a systematic review protocol. Syst. Rev. 10, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Korsiak, J. et al. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. Lancet Planet. Health 6, e400–e409 (2022).

    Article  PubMed  Google Scholar 

  72. Rousseau, M.-C., Straif, K. & Siemiatycki, J. IARC carcinogen update. Environ. Health Perspect. 113, A580–A581 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yuan, T., Zhang, H., Chen, B., Zhang, H. & Tao, S. Association between lung cancer risk and inorganic arsenic concentration in drinking water: a dose-response meta-analysis. Toxicol. Res. 7, 1257–1266 (2018).

    Article  CAS  Google Scholar 

  74. Shankar, S., Shanker, U. & Shikha Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 304524 (2014).

    Article  Google Scholar 

  75. D’Ippoliti, D. et al. Arsenic in drinking water and mortality for cancer and chronic diseases in central Italy, 1990-2010. PLoS ONE 10, e0138182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ferdosi, H. et al. Arsenic in drinking water and lung cancer mortality in the United States: an analysis based on US counties and 30 years of observation (1950-1979). J. Environ. Public Health 2016, 1602929 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ferreccio, C. et al. Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer. Epidemiol 24, 898–905 (2013).

    Article  Google Scholar 

  78. Wu, M. M., Kuo, T. L., Hwang, Y. H. & Chen, C. J. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am. J. Epidemiol. 130, 1123–1132 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Oberoi, S., Barchowsky, A. & Wu, F. The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol. Biomark. Prev. 23, 1187–1194 (2014).

    Article  CAS  Google Scholar 

  80. UNICEF. Arsenic Primer: Guidance on the Investigation and Mitigation of Arsenic Contamination (UNICEF, 2018).

  81. Turner, M. C. et al. Radon and lung cancer in the American Cancer Society Cohort. Cancer Epidemiol. Biomark. Prev. 20, 438–448 (2011).

    Article  CAS  Google Scholar 

  82. Ngoc, L. T. N., Park, D. & Lee, Y. C. Human health impacts of residential radon exposure: updated systematic review and meta-analysis of case-control studies. Int. J. Environ. Res. Public Health 20, 97 (2012).

    Article  Google Scholar 

  83. Shan, X. et al. A global burden assessment of lung cancer attributed to residential radon exposure during 1990-2019. Indoor Air 32, e13120 (2022).

    Article  PubMed  Google Scholar 

  84. World Health Organization. WHO Handbook on Indoor Radon: a Public Health Perspective (WHO, 2009).

  85. US Environmental Protection Agency. The national radon action plan – a strategy for saving lives. EPA https://www.epa.gov/radon/national-radon-action-plan-strategy-saving-lives (2023).

  86. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A Review of Human Carcinogens. Part F: Chemical Agents and Related Occupations (IARC, 2012).

  87. Pira, E., Donato, F., Maida, L. & Discalzi, G. Exposure to asbestos: past, present and future. J. Thorac. Dis. 10, S237–S245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Villeneuve, P. J., Parent, M., Harris, S. A. & Johnson, K. C. Occupational exposure to asbestos and lung cancer in men: evidence from a population-based case-control study in eight Canadian provinces. BMC Cancer 12, 595 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lash, T. L., Crouch, E. A. & Green, L. C. A meta-analysis of the relation between cumulative exposure to asbestos and relative risk of lung cancer. Occup. Environ. Med. 54, 254–263 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nelson, H. H. & Kelsey, K. T. The molecular epidemiology of asbestos and tobacco in lung cancer. Oncogene 21, 7284–7288 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Markowitz, S. B., Levin, S. M., Miller, A. & Morabia, A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American Insulator cohort. Am. J. Respir. Crit. Care Med. 188, 90–96 (2013).

    Article  PubMed  Google Scholar 

  92. Mossman B. T., Gualtieri A. F. in Occupational Cancers (eds.Anttila S. & Boffetta P.) 239–256 (Springer, 2020).

  93. Thives, L. P., Ghisi, E., Thives Júnior, J. J. & Vieira, A. S. Is asbestos still a problem in the world? A current review. J. Environ. Manag. 319, 115716 (2022).

    Article  Google Scholar 

  94. Benbrahim-Tallaa, L. et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 13, 663–664 (2012).

    Article  PubMed  Google Scholar 

  95. Ge, C. et al. Diesel engine exhaust exposure, smoking, and lung cancer subtype risks. a pooled exposure-response analysis of 14 case-control studies. Am. J. Respir. Crit. Care Med. 202, 402–411 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Garshick, E. et al. Lung cancer and elemental carbon exposure in trucking industry workers. Env. Health Perspect. 120, 1301–1306 (2012).

    Article  Google Scholar 

  97. Silverman, D. T. et al. The diesel exhaust in miners study: a nested case-control study of lung cancer and diesel exhaust. J. Natl Cancer Inst. 104, 855–868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vermeulen, R. et al. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ. Health Perspect. 122, 172–177 (2024).

    Article  Google Scholar 

  99. Young, R. P. et al. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur. Respir. J. 34, 380–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. de Torres, J. P. et al. Lung cancer in patients with chronic obstructive pulmonary disease-incidence and predicting factors. Am. J. Respir. Crit. Care Med. 184, 913–919 (2011).

    Article  PubMed  Google Scholar 

  101. Durham, A. L. & Adcock, I. M. The relationship between COPD and lung cancer. Lung Cancer 90, 121–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Young, R. P. et al. Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD. PLoS ONE 6, e16476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saber Cherif, L. et al. The nicotinic receptor polymorphism rs16969968 is associated with airway remodeling and inflammatory dysregulation in COPD patients. Cells 11, 2937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sigel, K., Makinson, A. & Thaler, J. Lung cancer in persons with HIV. Curr. Opin. Hiv. AIDS 12, 31–38 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shiels, M. S., Cole, S. R., Mehta, S. H. & Kirk, G. D. Lung cancer incidence and mortality among HIV-infected and HIV-uninfected injection drug users. J. Acquir. Immune Defic. Syndr. 55, 510–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sigel, K. et al. HIV as an independent risk factor for incident lung cancer. AIDS 26, 1017–1025 (2012).

    Article  PubMed  Google Scholar 

  107. Engels, E. A. et al. Elevated incidence of lung cancer among HIV-infected individuals. J. Clin. Oncol. 24, 1383–1388 (2006).

    Article  PubMed  Google Scholar 

  108. Chaturvedi, A. K. et al. Elevated risk of lung cancer among people with AIDS. AIDS 21, 207–213 (2007).

    Article  PubMed  Google Scholar 

  109. Kirk, G. D. et al. HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin. Infect. Dis. 45, 103–110 (2007).

    Article  PubMed  Google Scholar 

  110. Parker, M. S., Leveno, D. M., Campbell, T. J., Worrell, J. A. & Carozza, S. E. AIDS-related bronchogenic carcinoma: fact or fiction? Chest 113, 154–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Patel, P. et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992-2003. Ann. Intern. Med. 148, 728–736 (2008).

    Article  PubMed  Google Scholar 

  112. Winstone, T. A., Man, S. F., Hull, M., Montaner, J. S. & Sin, D. D. Epidemic of lung cancer in patients with HIV infection. Chest 143, 305–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hessol, N. A. et al. Lung cancer incidence and survival among HIV-infected and uninfected women and men. AIDS 29, 1183–1193 (2015).

    Article  PubMed  Google Scholar 

  114. Bearz, A. et al. Lung cancer in HIV positive patients: the GICAT experience. Eur. Rev. Med. Pharmacol. Sci. 18, 500–508 (2014).

    CAS  PubMed  Google Scholar 

  115. O’Connor, E. A. et al. Vitamin and mineral supplements for the primary prevention of cardiovascular disease and cancer: updated evidence report and systematic review for the US Preventive Services Task Force. J. Am. Med. Assoc. 327, 2334–2347 (2022).

    Article  Google Scholar 

  116. Wei, X. et al. Diet and risk of incident lung cancer: a large prospective cohort study in UK Biobank. Am. J. Clin. Nutr. 114, 2043–2051 (2021).

    Article  PubMed  Google Scholar 

  117. Xue, X. J. et al. Red and processed meat consumption and the risk of lung cancer: a dose-response meta-analysis of 33 published studies. Int. J. Clin. Exp. Med. 7, 1542–1553 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Vieira, A. R. et al. Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann. Oncol. 27, 81–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Amararathna, M., Johnston, M. R. & Rupasinghe, H. P. V. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci. 17, 1352 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Alsharairi, N. A. The effects of dietary supplements on asthma and lung cancer risk in smokers and non-smokers: a review of the literature. Nutrients 11, 725 (2016).

    Article  Google Scholar 

  121. The Lung Cancer Cohort Consortium.Circulating folate, vitamin B6, and methionine in relation to lung cancer risk in the Lung Cancer Cohort Consortium (LC3). J. Natl Cancer Inst. 110, 57–67 (2018).

    Article  Google Scholar 

  122. Slatore, C. G., Littman, A. J., Au, D. H., Satia, J. A. & White, E. Long-term use of supplemental multivitamins, vitamin C, vitamin E, and folate does not reduce the risk of lung cancer. Am. J. Respir. Crit. Care Med. 177, 524–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Verbeek, J. H. et al. An approach to quantifying the potential importance of residual confounding in systematic reviews of observational studies: a GRADE concept paper. Environ. Int. 157, 106868 (2021).

    Article  PubMed  Google Scholar 

  124. Cortés-Jofré, M., Rueda, J. R., Asenjo-Lobos, C., Madrid, E. & Bonfill Cosp, X. Drugs for preventing lung cancer in healthy people. Cochrane Database Syst. Rev. 3, Cd002141 (2020).

    PubMed  Google Scholar 

  125. The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

    Article  Google Scholar 

  126. Omenn, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Pearson-Stuttard, J. et al. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 6, e6–e15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lennon, H., Sperrin, M., Badrick, E. & Renehan, A. G. The obesity paradox in cancer: a review. Curr. Oncol. Rep. 18, 56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Duan, P. et al. Body mass index and risk of lung cancer: systematic review and dose-response meta-analysis. Sci. Rep. 5, 16938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ardesch, F. H. et al. The obesity paradox in lung cancer: associations with body size versus body shape. Front. Oncol. 10, 591110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yu, D. et al. Overall and central obesity and risk of lung cancer: a pooled analysis. J. Natl Cancer Inst. 110, 831–842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Leiter, A. et al. Assessing the association of diabetes with lung cancer risk. Transl. Lung Cancer Res. 10, 4200–4208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yi, Z. H. et al. Association between diabetes mellitus and lung cancer: meta-analysis. Eur. J. Clin. Invest. 50, e13332 (2020).

    Article  PubMed  Google Scholar 

  134. Carreras-Torres, R. et al. Obesity, metabolic factors and risk of different histological types of lung cancer: a Mendelian randomization study. PLoS ONE 12, e0177875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dziadziuszko, R., Camidge, D. R. & Hirsch, F. R. The insulin-like growth factor pathway in lung cancer. J. Thorac. Oncol. 3, 815–818 (2008).

    Article  PubMed  Google Scholar 

  136. Li, S. et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br. J. Cancer 110, 2812–2820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Y. L. et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 78985–78993 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Swanton, C. & Govindan, R. Clinical implications of genomic discoveries in lung cancer. N. Engl. J. Med. 374, 1864–1873 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. AACR Project GENIE Consortium et al. AACR Project Genie: Powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  141. Dogan, S. et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin. Cancer Res. 18, 6169–6177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Etzel, C. J., Amos, C. I. & Spitz, M. R. Risk for smoking-related cancer among relatives of lung cancer patients. Cancer Res. 63, 8531–8535 (2003).

    CAS  PubMed  Google Scholar 

  143. Matakidou, A., Eisen, T. & Houlston, R. S. Systematic review of the relationship between family history and lung cancer risk. Br. J. Cancer 93, 825–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Coté, M. L. et al. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur. J. Cancer 48, 1957–1968 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mucci, L. A. et al. Familial risk and heritability of cancer among twins in Nordic countries. J. Am. Med. Assoc. 315, 68–76 (2016).

    Article  CAS  Google Scholar 

  146. Caron, O., Frebourg, T., Benusiglio, P. R., Foulon, S. & Brugières, L. Lung adenocarcinoma as part of the Li–Fraumeni syndrome spectrum: preliminary data of the LIFSCREEN randomized clinical trial. JAMA Oncol. 3, 1736–1737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gazdar, A. et al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J. Thorac. Oncol. 9, 456–463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McKay, J. D. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 49, 1126–1132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Klein, R. J. & Gümüş, Z. H. Are polygenic risk scores ready for the cancer clinic? – a perspective. Transl. Lung Cancer Res. 11, 910–919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hung, R. J. et al. Assessing lung cancer absolute risk trajectory based on a polygenic risk model. Cancer Res. 81, 1607–1615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dai, J. et al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. Lancet Respir. Med. 7, 881–891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence – SEER Research Data, 8 Registries, Nov 2021 Sub (1975-2020) – Linked To County Attributes – Time Dependent (1990–2020) Income/Rurality, 1969–2020 Counties. https://seer.cancer.gov/statistics-network/explorer (National Cancer Institute, 2023).

  153. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Mortality – All COD, Aggregated With State, Total U.S. (1969-2020), Katrina/Rita Population Adjustment. https://seer.cancer.gov/statistics-network/explorer (National Cancer Institute, 2022).

  154. Paci, E. et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 72, 825–831 (2017).

    Article  PubMed  Google Scholar 

  155. Infante, M. et al. Long-term follow-up results of the DANTE trial, a randomized study of lung cancer screening with spiral computed tomography. Am. J. Respir. Crit. Care Med. 191, 1166–1175 (2015).

    Article  PubMed  Google Scholar 

  156. Saghir, Z. et al. CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 67, 296–301 (2012).

    Article  PubMed  Google Scholar 

  157. Becker, N. et al. Lung cancer mortality reduction by LDCT screening – results from the randomized German LUSI trial. Int. J. Cancer 146, 1503–1513 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  159. Aberle, D. R. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

    Article  PubMed  Google Scholar 

  160. Krist, A. H. et al. Screening for lung cancer: US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 325, 962–970 (2021).

    Article  Google Scholar 

  161. Canadian Task Force on Preventive Health Care. Recommendations on screening for lung cancer. Can. Med. Assoc. J. 188, 425–432 (2016).

    Article  Google Scholar 

  162. Oudkerk, M. et al. European position statement on lung cancer screening. Lancet Oncol. 18, e754–e766 (2017).

    Article  PubMed  Google Scholar 

  163. UK National Screening Committee. Adult screening programme: lung cancer. GOV.UK https://view-health-screening-recommendations.service.gov.uk/lung-cancer/ (2022).

  164. Bach, P. B. et al. Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307, 2418–2429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Japan Radiological Society The Japanese imaging guideline 2013. Japan Radiological Society http://www.radiology.jp/content/files/diagnostic_imaging_guidelines_2013_e.pdf (2013).

  166. Zhou, Q. et al. China national lung cancer screening guideline with low-dose computed tomography (2018 version) [Chinese]. Zhongguo Fei Ai Za Zhi 21, 67–75 (2018).

    PubMed  Google Scholar 

  167. Jang, S. H. et al. The Korean guideline for lung cancer screening. J. Korean Med. Assoc. 58, 291–301 (2015).

    Article  Google Scholar 

  168. Triphuridet, N. & Henschke, C. Landscape on CT screening for lung cancer in Asia. Lung Cancer 10, 107–124 (2019).

    PubMed  PubMed Central  Google Scholar 

  169. Sagawa, M., Nakayama, T., Tanaka, M., Sakuma, T. & Sobue, T. A randomized controlled trial on the efficacy of thoracic CT screening for lung cancer in non-smokers and smokers of <30 pack-years aged 50–64 years (JECS study): research design. Jpn. J. Clin. Oncol. 42, 1219–1221 (2012).

    Article  PubMed  Google Scholar 

  170. dos Santos, R. S. et al. Do current lung cancer screening guidelines apply for populations with high prevalence of granulomatous disease? Results from the first Brazilian lung cancer screening trial (BRELT1). Ann. Thorac. Surg. 101, 481–486 (2016).

    Article  PubMed  Google Scholar 

  171. Ministéro Saúde. Protocolos clínicos e diretrizes terapêuticas em oncologia. Ministéro Saúde https://www.gov.br/saude/pt-br/assuntos/protocolos-clinicos-e-diretrizes-terapeuticas-pcdt/arquivos/2014/livro-pcdt-oncologia-2014.pdf (2014).

  172. Toumazis, I. et al. Cost-effectiveness evaluation of the 2021 US Preventive Services Task Force recommendation for lung cancer screening. JAMA Oncol. 7, 1833–1842 (2021).

    Article  PubMed  Google Scholar 

  173. Criss, S. D., Sheehan, D. F., Palazzo, L. & Kong, C. Y. Population impact of lung cancer screening in the United States: projections from a microsimulation model. PLoS Med. 15, e1002506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kee, D., Wisnivesky, J. & Kale, M. S. Lung cancer screening uptake: analysis of BRFSS 2018. J. Gen. Intern. Med. 36, 2897–2899 (2021).

    Article  PubMed  Google Scholar 

  175. Cao, W. et al. Uptake of lung cancer screening with low-dose computed tomography in China: a multi-centre population-based study. EClinicalMedicine 52, 101594 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Quaife, S. L. et al. Lung screen uptake trial (LSUT): randomized controlled clinical trial testing targeted invitation materials. Am. J. Respir. Crit. Care Med. 201, 965–975 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. National Cancer Institute. Breast, cervical, and colorectal cancers – early detection summary table. NIH https://progressreport.cancer.gov/tables/breast-cervical (2022).

  178. Jonnalagadda, S. et al. Beliefs and attitudes about lung cancer screening among smokers. Lung Cancer 77, 526–531 (2012).

    Article  PubMed  Google Scholar 

  179. Carter-Harris, L., Ceppa, D. P., Hanna, N. & Rawl, S. M. Lung cancer screening: what do long-term smokers know and believe? Health Expect. 20, 59–68 (2017).

    Article  PubMed  Google Scholar 

  180. Gesthalter, Y. B. et al. Evaluations of implementation at early-adopting lung cancer screening programs: lessons learned. Chest 152, 70–80 (2017).

    Article  PubMed  Google Scholar 

  181. Medicare. Lung cancer screenings. Medicare.gov https://www.medicare.gov/coverage/lung-cancer-screenings (2023).

  182. Carter-Harris, L. & Gould, M. K. Multilevel barriers to the successful implementation of lung cancer screening: Why does it have to be so hard? Ann. Am. Thorac. Soc. 14, 1261–1265 (2017).

    Article  PubMed  Google Scholar 

  183. Modin, H. E. et al. Pack-year cigarette smoking history for determination of lung cancer screening eligibility. comparison of the electronic medical record versus a shared decision-making conversation. Ann. Am. Thorac. Soc. 14, 1320–1325 (2017).

    Article  PubMed  Google Scholar 

  184. American Lung Association. State of lung cancer. American Lung Association https://www.lung.org/research/state-of-lung-cancer (2022).

  185. Jia, Q., Chen, H., Chen, X. & Tang, Q. Barriers to low-dose CT lung cancer screening among middle-aged Chinese. Int. J. Environ. Res. Public Health 2020 17, 7107 (2020).

    Google Scholar 

  186. Novellis, P. et al. Lung cancer screening: who pays? Who receives? The European perspectives. Transl. Lung Cancer Res. 10, 2395–2406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Crosbie, P. A. et al. Implementing lung cancer screening: baseline results from a community-based ‘Lung Health Check’ pilot in deprived areas of Manchester. Thorax 74, 405–409 (2019).

    Article  PubMed  Google Scholar 

  188. Verghese, C., Redko, C. & Fink, B. Screening for lung cancer has limited effectiveness globally and distracts from much needed efforts to reduce the critical worldwide prevalence of smoking and related morbidity and mortality. J. Glob. Oncol. 4, 1–7 (2018).

    PubMed  Google Scholar 

  189. Shankar, A. et al. Feasibility of lung cancer screening in developing countries: challenges, opportunities and way forward. Transl. Lung Cancer Res. 8, S106–S121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fitzgerald, R. C., Antoniou, A. C., Fruk, L. & Rosenfeld, N. The future of early cancer detection. Nat. Med. 28, 666–677 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, M. C., Oxnard, G. R., Klein, E. A., Swanton, C. & Seiden, M. V. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31, 745–759 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Hubbell, E., Clarke, C. A., Aravanis, A. M. & Berg, C. D. Modeled reductions in late-stage cancer with a multi-cancer early detection test. Cancer Epidemiol. Biomark. Prev. 30, 460–468 (2021).

    Article  CAS  Google Scholar 

  193. Hackshaw, A. et al. Estimating the population health impact of a multi-cancer early detection genomic blood test to complement existing screening in the US and UK. Br. J. Cancer 125, 1432–1442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mouritzen, M. T. et al. Nationwide survival benefit after implementation of first-line immunotherapy for patients with advanced NSCLC – real world efficacy. Cancers 13, 4846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Smeltzer, M. P. et al. The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer. J. Thorac. Oncol. 15, 1434–1448 (2020).

    Article  PubMed  Google Scholar 

  196. Febbraro, M. et al. Barriers to access: global variability in implementing treatment advances in lung cancer. Am. Soc. Clin. Oncol. Educ. Book 42, 1–7 (2022).

    PubMed  Google Scholar 

  197. US Environmental Protection Agency. Learn about impacts of diesel exhaust and the Diesel Emissions Reduction Act (DERA). EPA https://www.epa.gov/dera/learn-about-impacts-diesel-exhaust-and-diesel-emissions-reduction-act-dera (2023).

  198. Ervik, M. et al. Global Cancer Observatory: Cancer Over Time (International Agency for Research on Cancer, accessed 1 May 2022); https://gco.iarc.fr/overtime.

  199. Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kim, H. R. et al. Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer 118, 729–739 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Amanda Leiter.

Ethics declarations

Competing interests

R.V. has acted as an adviser and/or consultant to AstraZeneca, Beigene, BerGenBio, Bristol-Myers Squibb, Merck, Novartis, Novocure and Regeneron, and has received research grants from AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, and Onconova Therapeutics. J.P.W. has acted as an adviser and/or consultant to Atea, Banook, PPD and Sanofi and has received research grants from Arnold Consultants, Regeneron and Sanofi. A.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks D. Christiani and the other, anonymous reviewers for the peer-review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiter, A., Veluswamy, R.R. & Wisnivesky, J.P. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 20, 624–639 (2023). https://doi.org/10.1038/s41571-023-00798-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00798-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer