Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota in colorectal cancer development and therapy

Abstract

Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut microbial dysbiosis contributes to the development of CRC through a diverse range of molecular mechanisms.
Fig. 2: Clinical implications of gut microorganisms in the prevention and treatment of colorectal cancer.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, H. J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).

    PubMed  Google Scholar 

  5. Scott, A. J. et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68, 1624–1632 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Dai, Z. et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 6, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst. 105, 1907–1911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zackular, J. P., Rogers, M. A. M., Ruffin, M. T. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121 (2014).

    Article  CAS  Google Scholar 

  14. Baxter, N. T., Ruffin, M. T., Rogers, M. A. M. & Schloss, P. D. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. https://doi.org/10.1186/s13073-016-0290-3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yazici, C. et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66, 1983–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7, e39743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Z. et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 8, 881–893 (2014).

    Article  PubMed  Google Scholar 

  23. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes https://doi.org/10.1038/s41522-017-0040-3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. McCoy, A. N. et al. Fusobacterium is associated with colorectal adenomas. PLoS ONE https://doi.org/10.1371/journal.pone.0053653 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang, J. Q. et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut 69, 1248–1257 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boleij, A. & Tjalsma, H. The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect. Dis. 13, 719–724 (2013).

    Article  PubMed  Google Scholar 

  31. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Correa, N. B., Peret Filho, L. A., Penna, F. J., Lima, F. M. & Nicoli, J. R. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol. 39, 385–389 (2005).

    Article  PubMed  Google Scholar 

  33. Horz, H. P., Meinelt, A., Houben, B. & Conrads, G. Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral. Microbiol. Immunol. 22, 126–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Roy, D., Ward, P., Vincent, D. & Mondou, F. Molecular identification of potentially probiotic lactobacilli. Curr. Microbiol. 40, 40–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Szajewska, H., Ruszczynski, M. & Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J. Pediatr. 149, 367–372 (2006).

    Article  PubMed  Google Scholar 

  36. Pilchova, T., Pilet, M.-F., Cappelier, J.-M., Pazlarová, J. & Tresse, O. Protective effect of Carnobacterium spp. against Listeria monocytogenes during host cell invasion using in vitro HT29 model. Front. Cell. Infect. Microbiol. 6, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, W. et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis. Gastroenterology 160, 2395–2408 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Okuda, S. et al. Profiling of host genetic alterations and intra-tumor microbiomes in colorectal cancer. Comput. Struct. Biotechnol. J. 19, 3330–3338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burns, M. B., Lynch, J., Starr, T. K., Knights, D. & Blekhman, R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 7, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kosumi, K. et al. The amount of Bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome. Am. J. Pathol. 188, 2839–2852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto, S. et al. Heterogeneous distribution of Fusobacterium nucleatum in the progression of colorectal cancer. J. Gastroenterol. Hepatol. 36, 1869–1876 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Galeano Nino, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Salyakina, D. & Tsinoremas, N. F. Viral expression associated with gastrointestinal adenocarcinomas in TCGA high-throughput sequencing data. Hum. Genomics 7, 23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bodaghi, S. et al. Colorectal papillomavirus infection in patients with colorectal cancer. Clin. Cancer Res. 11, 2862–2867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goel, A. et al. Association of JC virus T-antigen expression with the methylator phenotype in sporadic colorectal cancers. Gastroenterology 130, 1950–1961 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Shkoporov, A. N., Turkington, C. J. & Hill, C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00755-4 (2022).

    Article  PubMed  Google Scholar 

  49. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    Article  PubMed  Google Scholar 

  50. Niu, Y. D., McAllister, T. A., Nash, J. H., Kropinski, A. M. & Stanford, K. Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS ONE 9, e100426 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hannigan, G. D., Duhaime, M. B., Ruffin, M. T. T., Koumpouras, C. C. & Schloss, P. D. Diagnostic potential and interactive dynamics of the colorectal cancer virome. mBio https://doi.org/10.1128/mBio.02248-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen, F. et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J. Adv. Res. https://doi.org/10.1016/j.jare.2022.09.012 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lin, Y. et al. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology 163, 908–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Anandakumar, A., Pellino, G., Tekkis, P. & Kontovounisios, C. Fungal microbiome in colorectal cancer: a systematic review. Updates Surg. 71, 625–630 (2019).

    Article  PubMed  Google Scholar 

  55. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Gao, R. et al. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2457–2468 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Luan, C. et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci. Rep. 5, 7980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, N. N. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Hoegenauer, C., Hammer, H. F., Mahnert, A. & Moissl-Eichinger, C. Methanogenic Archaea in the human gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-022-00673-z (2022).

    Article  PubMed  Google Scholar 

  63. Nakamura, N., Lin, H. C., McSweeney, C. S., Mackie, R. I. & Gaskins, H. R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu. Rev. Food Sci. Technol. 1, 363–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Coker, O. O., Wu, W. K. K., Wong, S. H., Sung, J. J. Y. & Yu, J. Altered gut Archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 159, 1459–1470.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Llorens-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research. Cell 185, 2725–2738 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Epstein, S. S. The phenomenon of microbial uncultivability. Curr. Opin. Microbiol. 16, 636–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Saheb Kashaf, S. et al. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 7, 169–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, J. et al. Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa. Genomics Proteom. Bioinforma. https://doi.org/10.1016/j.gpb.2021.05.001 (2021).

    Article  Google Scholar 

  71. Villa, M. M. et al. Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture. mSystems https://doi.org/10.1128/mSystems.00864-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Watterson, W. J. et al. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. Elife https://doi.org/10.7554/eLife.56998 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, L. et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc. Natl Acad. Sci. USA 111, 9768–9773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Chijiiwa, R. et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome 8, 5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wong, S. H. et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633.e6 (2017).

    Article  PubMed  Google Scholar 

  78. Li, L. et al. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine 48, 301–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. https://doi.org/10.15252/embr.201847638 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Guo, P. et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J. Exp. Clin. Cancer Res. 39, 202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Casasanta, M. A. et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci. Signal https://doi.org/10.1126/scisignal.aba9157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nougayrede, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iftekhar, A. et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 12, 1003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cougnoux, A. et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63, 1932–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Lucas, C. et al. Autophagy of intestinal epithelial cells inhibits colorectal carcinogenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice. Gastroenterology 158, 1373–1388 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Lopes, A. et al. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int. J. Cancer 146, 3147–3159 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Tsoi, H. et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152, 1419–1433.e5 (2017).

    Article  PubMed  Google Scholar 

  92. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

    Article  PubMed  Google Scholar 

  93. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Geis, A. L. et al. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 5, 1098–1109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cao, Y. et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology https://doi.org/10.1053/j.gastro.2021.08.003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hwang, S. et al. Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int. J. Med. Sci. 17, 145–152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thiele Orberg, E. et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10, 421–433 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, J. et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162, 135 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Bai, X. W. et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut https://doi.org/10.1136/gutjnl-2021-325021 (2022).

    Article  PubMed  Google Scholar 

  100. Akyol, A. et al. Generating somatic mosaicism with a Cre recombinase-microsatellite sequence transgene. Nat. Methods 5, 231–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xue, Y., Johnson, R., Desmet, M., Snyder, P. W. & Fleet, J. C. Generation of a transgenic mouse for colorectal cancer research with intestinal Cre expression limited to the large intestine. Mol. Cancer Res. 8, 1095–1104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  Google Scholar 

  103. Nesic, D., Hsu, Y. & Stebbins, C. E. Assembly and function of a bacterial genotoxin. Nature 429, 429–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Johnson, W. M. & Lior, H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb. Pathog. 4, 103–113 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science https://doi.org/10.1126/science.aar7785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Xue, M. et al. Structure elucidation of colibactin and its DNA cross-links. Science https://doi.org/10.1126/science.aax2685 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dziubanska-Kusibab, P. J. et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 26, 1063–1069 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cougnoux, A. et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 65, 278–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Volpe, M. R. et al. A small molecule inhibitor prevents gut bacterial genotoxin production. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01147-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA 108, 15354–15359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, X. & Huycke, M. M. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 132, 551–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio 4, e00152-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ikegami, A., Chung, P. & Han, Y. P. W. Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect. Immun. 77, 3075–3079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu, M. H. et al. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J. Biol. Chem. 282, 25000–25009 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Mu, W. et al. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front. Cell Infect. Microbiol. 10, 584798 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Lasry, A., Zinger, A. & Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol. 17, 230–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Ruiz, P. A., Anna, S., Kim, S. C., Sartor, R. B. & Haller, D. IL-10 gene-deficient mice lack TGF-β/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. J. Immunol. 174, 2990–2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Zhao, L. et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41, 4200–4210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. DeStefano Shields, C. E. et al. Bacterial-driven inflammation and mutant BRAF expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discov. 11, 1792–1807 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5, 4724 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Zou, J. & Shankar, N. Roles of TLR/MyD88/MAPK/NF-κB signaling pathways in the regulation of phagocytosis and proinflammatory cytokine expression in response to E. faecalis infection. PLoS ONE 10, e0136947 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xia, Y. F., Shen, S. & Verma, I. M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2, 823–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Udden, S. M. N. et al. NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways. Cell Rep. 19, 2756–2770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Q. et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 11, 1248–1267 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Schneider, K. M. et al. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat. Commun. 13, 3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Peuker, K. et al. Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity 55, 701–717.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, T. T. et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 49, 504–514.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xu, C. C. et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes https://doi.org/10.1080/19490976.2021.1980347 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chiang, M. K. et al. Two ST11 Klebsiella pneumoniae strains exacerbate colorectal tumorigenesis in a colitis-associated mouse model. Gut Microbes 13, 1980348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ou, J. H. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Payne, C. M., Bernstein, C., Dvorak, K. & Bernstein, H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin. Exp. Gastroenterol. 1, 19–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Booth, L. A., Gilmore, I. T. & Bilton, R. F. Secondary bile acid induced DNA damage in HT29 cells: are free radicals involved? Free Radic. Res. 26, 135–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Turner, D. J. et al. Bile salts induce resistance to apoptosis through NF-κB-mediated XIAP expression. Ann. Surg. 245, 415–425 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bernstein, C. et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch. Toxicol. 85, 863–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cao, H. et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int. J. Cancer 140, 2545–2556 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Islam, K. B. M. S. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, J. Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wali, R. K. et al. Ursodeoxycholic acid and F6-D3 inhibit aberrant crypt proliferation in the rat azoxymethane model of colon cancer: roles of cyclin D1 and E-cadherin. Cancer Epidemiol. Biomark. Prev. 11, 1653–1662 (2002).

    CAS  Google Scholar 

  150. Peiro-Jordan, R. et al. The chemopreventive agent ursodeoxycholic acid inhibits proliferation of colon carcinoma cells by suppressing c-Myc expression. Eur. J. Cancer Prev. 21, 413–422 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Kim, E. K., Cho, J. H., Kim, E. & Kim, Y. J. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth. PLoS ONE https://doi.org/10.1371/journal.pone.0181183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Marquet, P., Duncan, S. H., Chassard, C., Bernalier-Donadille, A. & Flint, H. J. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol. Lett. 299, 128–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Braccia, D. J., Jiang, X. F., Pop, M. & Hall, A. B. The capacity to produce hydrogen sulfide (H2S) via cysteine degradation is ubiquitous in the human gut microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.705583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Laue, H., Denger, K. & Cook, A. M. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl. Environ. Microbiol. 63, 2016–2021 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Nguyen, L. H. et al. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 158, 1313–1325 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Nguyen, L. H. et al. The sulfur microbial diet is associated with increased risk of early-onset colorectal cancer precursors. Gastroenterology 161, 1423–1432.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Attene-Ramos, M. S. et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen. 51, 304–314 (2010).

    CAS  PubMed  Google Scholar 

  159. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R. & Plewa, M. J. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Cai, W. J., Wang, M. J., Ju, L. H., Wang, C. & Zhu, Y. C. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol. Int. 34, 565–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Chen, F. et al. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 71, 1315–1325 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut https://doi.org/10.1136/gutjnl-2022-327156 (2022).

    Article  PubMed  Google Scholar 

  163. Gao, R. et al. Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites. Gastroenterology 163, 1024–1037.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Coker, O. O. et al. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome https://doi.org/10.1186/s40168-021-01208-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S. & Frizelle, F. A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 7, 11590 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Gao, R. et al. Mucosa-associated microbiota signature in colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2073–2083 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Yuan, D. et al. A comprehensive analysis of the microbiota composition and host driver gene mutations in colorectal cancer. Invest. N. Drugs 40, 884–894 (2022).

    Article  CAS  Google Scholar 

  169. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, C. et al. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut 71, 2253–2265 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Sobhani, I. et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc. Natl Acad. Sci. USA 116, 24285–24295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maiuri, A. R. et al. Mismatch repair proteins initiate epigenetic alterations during inflammation-driven tumorigenesis. Cancer Res. 77, 3467–3478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Park, H. E., Kim, J. H., Cho, N. Y., Lee, H. S. & Kang, G. H. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 471, 329–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Xia, X. X. et al. Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. Microbiome https://doi.org/10.1186/s40168-020-00847-4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yuan, C., Burns, M. B., Subramanian, S. & Blekhman, R. Interaction between host microRNAs and the gut microbiota in colorectal cancer. Msystems 3, e00205-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yang, Y. Z. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152, 851–866.e24 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Hong, J. et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 70, 2123–2137 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Liu, S. et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19, 32–43 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tomkovich, S. et al. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. Msystems https://doi.org/10.1128/mSystems.00451-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Chen, S. et al. Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nat. Commun. 13, 1248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  182. Goldin, B. R. & Gorbach, S. L. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J. Natl Cancer Inst. 64, 263–265 (1980).

    Article  CAS  PubMed  Google Scholar 

  183. Rao, C. V., Sanders, M. E., Indranie, C., Simi, B. & Reddy, B. S. Prevention of colonic preneoplastic lesions by the probiotic Lactobacillus acidophilus NCFMTM in F344 rats. Int. J. Oncol. 14, 939–944 (1999).

    CAS  PubMed  Google Scholar 

  184. Goldin, B. R., Gualtieri, L. J. & Moore, R. P. The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr. Cancer 25, 197–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Koo, M. & Rao, A. V. Long-term effect of Bifidobacteria and Neosugar on precursor lesions of colonic cancer in CF1 mice. Nutr. Cancer 16, 249–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  186. Singh, J. et al. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18, 833–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Rowland, I. R., Rumney, C. J., Coutts, J. T. & Lievense, L. C. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Ishikawa, H. et al. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int. J. Cancer 116, 762–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Rafter, J. et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 85, 488–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  PubMed  Google Scholar 

  191. Wan, Y. et al. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol. Lett. 7, 1738–1742 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Wang, S. M. et al. Induction of HT-29 cells apoptosis by lactobacilli isolated from fermented products. Res. Microbiol. 165, 202–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Nami, Y. et al. Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiol. Immunol. 58, 492–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Tiptiri-Kourpeti, A. et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE 11, e0147960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Orlando, A. et al. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer 64, 1103–1111 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Karimi Ardestani, S., Tafvizi, F. & Tajabadi Ebrahimi, M. Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum. Exp. Toxicol. 38, 1069–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Chung, I. C. et al. Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice. Nutrients https://doi.org/10.3390/nu11030516 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Vital, M., Karch, A. & Pieper, D. H. Colonic butyrate-producing communities in humans: an overview using omics data. mSystems https://doi.org/10.1128/mSystems.00130-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Archer, S. Y., Meng, S., Shei, A. & Hodin, R. A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl Acad. Sci. USA 95, 6791–6796 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. & Kim, C. H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396–406.e10 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Zhao, Y. et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 11, 752–762 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 469, 456–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Sivaprakasam, S. et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 5, e238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Konishi, H. et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 7, 12365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sugimura, N. et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut https://doi.org/10.1136/gutjnl-2020-323951 (2021).

    Article  PubMed  Google Scholar 

  209. Bell, H. N. et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40, 185–200.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Sakatani, A. et al. Polyphosphate derived from Lactobacillus brevis inhibits colon cancer progression through induction of cell apoptosis. Anticancer. Res. 36, 591–598 (2016).

    CAS  PubMed  Google Scholar 

  211. Kashima, S. et al. Polyphosphate, an active molecule derived from probiotic Lactobacillus brevis, improves the fibrosis in murine colitis. Transl. Res. 166, 163–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Ahmadi, S., Ghollasi, M. & Hosseini, H. M. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb. Pathog. 111, 193–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Cao, K. Y. et al. Antitumor activities of tRNA-derived fragments and tRNA halves from non-pathogenic Escherichia coli strains on colorectal cancer and their structure–activity relationship. mSystems 7, e0016422 (2022).

    Article  PubMed  Google Scholar 

  214. Li, Q. et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology 160, 1179–1193.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Di, W. et al. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol. Lett. 16, 3577–3586 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Kim, Y., Oh, S., Yun, H. S., Oh, S. & Kim, S. H. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett. Appl. Microbiol. 51, 123–130 (2010).

    CAS  PubMed  Google Scholar 

  217. El-Deeb, N. M., Yassin, A. M., Al-Madboly, L. A. & El-Hawiet, A. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb. Cell Fact. 17, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Di, W. et al. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydr. Polym. 171, 307–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Li, F. et al. Antitumor mechanisms of an exopolysaccharide from Lactobacillus fermentum on HT-29 cells and HT-29 tumor-bearing mice. Int. J. Biol. Macromol. 209, 552–562 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Li, W. et al. Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydr. Res. 411, 6–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Xiao, L. et al. Anticancer potential of an exopolysaccharide from Lactobacillus helveticus MB2-1 on human colon cancer HT-29 cells via apoptosis induction. Food Funct. 11, 10170–10181 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Song, W. et al. Oxidative stress and endoplasmic reticulum stress contribute to L. paracasei subsp. paracasei M5L exopolysaccharide-induced apoptosis in HT-29 cells. Food Sci. Nutr. 9, 1676–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sun, M. et al. The effects of Lactobacillus plantarum-12 crude exopolysaccharides on the cell proliferation and apoptosis of human colon cancer (HT-29) cells. Probiotics Antimicrob. Proteins 13, 413–421 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Tukenmez, U., Aktas, B., Aslim, B. & Yavuz, S. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Sci. Rep. 9, 8268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Deepak, V. et al. Exopolysaccharides from Lactobacillus acidophilus modulates the antioxidant status of 1,2-dimethyl hydrazine-induced colon cancer rat model. 3 Biotech 11, 225 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tian, P. J. et al. Extraction of peptidoglycan from L. paracasei subp. paracasei X12 and its preliminary mechanisms of inducing immunogenic cell death in HT-29 cells. Int. J. Mol. Sci. 16, 20033–20049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schmitt, M. & Greten, F. R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 21, 653–667 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Gamallat, Y. et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed. Pharmacother. 83, 536–541 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Kuugbee, E. D. et al. Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig. Dis. Sci. 61, 2908–2920 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Do, E. J. et al. Suppression of colitis-associated carcinogenesis through modulation of IL-6/STAT3 pathway by balsalazide and VSL#3. J. Gastroenterol. Hepatol. 31, 1453–1461 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Chung, E. J. et al. Combination of metformin and VSL#3 additively suppresses western-style diet induced colon cancer in mice. Eur. J. Pharmacol. 794, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Del Carmen, S., de Moreno de LeBlanc, A. & LeBlanc, J. G. Development of a potential probiotic yoghurt using selected anti-inflammatory lactic acid bacteria for prevention of colitis and carcinogenesis in mice. J. Appl. Microbiol. 121, 821–830 (2016).

    Article  PubMed  Google Scholar 

  233. Jacouton, E., Chain, F., Sokol, H., Langella, P. & Bermudez-Humaran, L. G. Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front. Immunol. 8, 1553 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Del Carmen, S. et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int. Immunopharmacol. 42, 122–129 (2017).

    Article  PubMed  Google Scholar 

  235. Mohamadzadeh, M. et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 108, 4623–4630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Khazaie, K. et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 109, 10462–10467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ni, Y. et al. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in ApcMin/+ mice. J. Appl. Microbiol. 122, 770–784 (2017).

    Article  CAS  PubMed  Google Scholar 

  238. Wang, T. et al. Lacticaseibacillus rhamnosus LS8 ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated tumorigenesis in mice via regulating gut microbiota and inhibiting inflammation. Probiotics Antimicrob. Proteins 14, 947–959 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Liu, X. et al. Early life Lactobacillus rhamnosus GG colonisation inhibits intestinal tumour formation. Br. J. Cancer 126, 1421–1431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hibberd, A. A. et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open. Gastroenterol. 4, e000145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lawrence, G. W. et al. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 14, 2100203 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Lee, J. W. et al. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 5, 41–48 (2004).

    Article  PubMed  Google Scholar 

  245. Owens, J. A. et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell Mol. Gastroenterol. Hepatol. 12, 1311–1327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Montalban-Arques, A. et al. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe 29, 1573–1588.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, L. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 69, 1988–1997 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Fan, L. et al. A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs. Cancer Immunol. Res. 9, 1111–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Katona, B. W. & Weiss, J. M. Chemoprevention of colorectal cancer. Gastroenterology 158, 368–388 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Prizment, A. E. et al. Randomised clinical study: oral aspirin 325 mg daily vs placebo alters gut microbial composition and bacterial taxa associated with colorectal cancer risk. Aliment. Pharmacol. Ther. 52, 976–987 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Brennan, C. A. et al. Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. mBio https://doi.org/10.1128/mBio.00547-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Zhao, R. et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159, 969–983.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Garcia-Gonzalez, A. P. et al. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169, 431–441.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hou, X. Y. et al. Prevotella contributes to individual response of FOLFOX in colon cancer. Clin. Transl. Med. 11, e512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhang, S. et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J. Exp. Clin. Cancer Res. 38, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Scott, T. A. et al. Host–microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169, 442–456.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zheng, D. W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Yoon, Y., Kim, G., Jeon, B. N., Fang, S. & Park, H. Bifidobacterium strain-specific enhances the efficacy of cancer therapeutics in tumor-bearing mice. Cancers https://doi.org/10.3390/cancers13050957 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. LaCourse, K. D. et al. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep. 41, 111625 (2022).

    Article  CAS  PubMed  Google Scholar 

  267. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Ramos, A. & Hemann, M. T. Drugs, bugs, and cancer: Fusobacterium nucleatum promotes chemoresistance in colorectal cancer. Cell 170, 411–413 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. Chu, Z. L. et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc. Natl Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  PubMed  Google Scholar 

  271. Pang, R. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6, 603–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  272. Liu, H. et al. Fusobacterium nucleatum promotes colorectal cancer cell to acquire stem cell-like features by manipulating lipid droplet-mediated numb degradation. Adv. Sci. 9, e2105222 (2022).

    Article  Google Scholar 

  273. Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Bracci, L., Schiavoni, G., Sistigu, A. & Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 21, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Nagata, S. & Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 17, 333–340 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Wang, Y. J., Fletcher, R., Yu, J. & Zhang, L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes. Dis. 5, 194–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wang, Z., Till, B. & Gao, Q. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Oncoimmunology 6, e1331807 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  279. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  280. Barbet, G. et al. Sensing microbial viability through bacterial RNA augments T follicular helper cell and antibody responses. Immunity 48, 584–598.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  283. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  285. An, J. & Ha, E. M. Combination therapy of Lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J. Microbiol. Biotechnol. 26, 1490–1503 (2016).

    Article  CAS  PubMed  Google Scholar 

  286. An, J. & Ha, E. M. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression. J. Microbiol. 58, 967–977 (2020).

    Article  CAS  PubMed  Google Scholar 

  287. Encarnacao, J. C. et al. Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J. Nutr. Biochem. 56, 183–192 (2018).

    Article  CAS  PubMed  Google Scholar 

  288. An, J., Seok, H. & Ha, E. M. GABA-producing Lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling. J. Microbiol. 59, 202–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  289. An, J. & Ha, E. M. Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells. J. Microbiol. 60, 735–745 (2022).

    Article  CAS  PubMed  Google Scholar 

  290. Dong, X. et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci. Adv. 6, eaba1590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Keefe, D. M. Intestinal mucositis: mechanisms and management. Curr. Opin. Oncol. 19, 323–327 (2007).

    Article  PubMed  Google Scholar 

  292. van Vliet, M. J., Harmsen, H. J., de Bont, E. S. & Tissing, W. J. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 6, e1000879 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Stein, A., Voigt, W. & Jordan, K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2, 51–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Haaz, M. C., Rivory, L., Jantet, S., Ratanasavanh, D. & Robert, J. Glucuronidation of SN-38, the active metabolite of irinotecan, by human hepatic microsomes. Pharmacol. Toxicol. 80, 91–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  295. Yamamoto, M. et al. Metabolism of irinotecan and its active metabolite SN-38 by intestinal microflora in rats. Oncol. Rep. 20, 727–730 (2008).

    CAS  PubMed  Google Scholar 

  296. Cheng, K. W. et al. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol. Res. 139, 41–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Takasuna, K. et al. Involvement of β-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 56, 3752–3757 (1996).

    CAS  PubMed  Google Scholar 

  298. Pedroso, S. et al. Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice. Microbiology 161, 1950–1960 (2015).

    Article  CAS  PubMed  Google Scholar 

  299. Brandi, G. et al. Intestinal microflora and digestive toxicity of irinotecan in mice. Clin. Cancer Res. 12, 1299–1307 (2006).

    Article  CAS  PubMed  Google Scholar 

  300. Pollet, R. M. et al. An atlas of β-glucuronidases in the human intestinal microbiome. Structure 25, 967–977.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Bhatt, A. P. et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl Acad. Sci. USA 117, 7374–7381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Rousseau, B. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N. Engl. J. Med. 384, 1168–1170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  308. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  311. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  312. Xu, X. et al. Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front. Microbiol. 11, 814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Shaikh, F. Y. et al. Murine fecal microbiota transfer models selectively colonize human microbes and reveal transcriptional programs associated with response to neoadjuvant checkpoint inhibitors. Cancer Immunol. Immunother. https://doi.org/10.1007/s00262-022-03169-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Si, W. et al. Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut 71, 521–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  316. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  317. Li, Y. et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5−/− mice. Nat. Commun. 10, 1492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Griffin, M. E. et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 373, 1040–1046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Rizvi, Z. A. et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci. Adv. 7, eabg5016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Wang, T. et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2, 635–647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Makino, S. et al. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy. Sci. 99, 915–923 (2016).

    Article  CAS  PubMed  Google Scholar 

  324. Bessell, C. A. et al. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight https://doi.org/10.1172/jci.insight.135597 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  326. Gao, Y. et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal. Transduct. Target. Ther. 6, 398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Huang, J. et al. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front. Immunol. 13, 874922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  330. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zhang, S. L. et al. Lacticaseibacillus paracasei sh2020 induced antitumor immunity and synergized with anti-programmed cell death 1 to reduce tumor burden in mice. Gut Microbes 14, 2046246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Gao, G. et al. Adjunctive probiotic Lactobacillus rhamnosus Probio-M9 administration enhances the effect of anti-PD-1 antitumor therapy via restoring antibiotic-disrupted gut microbiota. Front. Immunol. 12, 772532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Zhuo, Q. et al. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci. Rep. 9, 20128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Morishita, M. et al. Characterizing different probiotic-derived extracellular vesicles as a novel adjuvant for immunotherapy. Mol. Pharm. 18, 1080–1092 (2021).

    Article  CAS  PubMed  Google Scholar 

  337. Kawanabe-Matsuda, H. et al. Dietary lactobacillus-derived exopolysaccharide enhances immune-checkpoint blockade therapy. Cancer Discov. 12, 1336–1355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Simpson, R. C. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med 28, 2344–2352 (2022).

    Article  CAS  PubMed  Google Scholar 

  339. Han, K. et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat. Biomed. Eng. 5, 1377–1388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Zhang, S. L. et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics 11, 4155–4170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  343. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aax0876 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Chen, J. H., Pezhouh, M. K., Lauwers, G. Y. & Masia, R. Histopathologic features of colitis due to immunotherapy with anti-PD-1 antibodies. Am. J. Surg. Pathol. 41, 643–654 (2017).

    Article  PubMed  Google Scholar 

  346. Wang, Y. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 24, 1804–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Sun, S. et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 117, 27509–27515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Wang, T. et al. Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front. Immunol. 10, 1235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Hundt, S., Haug, U. & Brenner, H. Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection. Ann. Intern. Med. 150, 162–169 (2009).

    Article  PubMed  Google Scholar 

  350. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  351. Guo, S. H. et al. A simple and novel fecal biomarker for colorectal cancer: ratio of Fusobacterium nucleatum to probiotics populations, based on their antagonistic effect. Clin. Chem. 64, 1327–1337 (2018).

    Article  PubMed  Google Scholar 

  352. Liang, Q. Y. et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 23, 2061–2070 (2017).

    Article  CAS  PubMed  Google Scholar 

  353. Wong, S. H. et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 66, 1441–1448 (2017).

    Article  CAS  PubMed  Google Scholar 

  354. Xie, Y. H. et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. Ebiomedicine 25, 32–40 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Suehiro, Y. et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann. Clin. Biochem. 54, 86–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  356. Liang, J. Q. et al. Fecal microbial DNA markers serve for screening colorectal neoplasm in asymptomatic subjects. J. Gastroenterol. Hepatol. 36, 1035–1043 (2021).

    Article  CAS  PubMed  Google Scholar 

  357. Yang, J. et al. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut Microbes 11, 918–929 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Lowenmark, T. et al. Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci. Rep. https://doi.org/10.1038/s41598-020-72132-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  359. Gao, R. Y. et al. Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J. Gastroenterol. Hepatol. 35, 2109–2121 (2020).

    Article  PubMed  Google Scholar 

  360. Clos-Garcia, M. et al. Integrative analysis of fecal metagenomics and metabolomics in colorectal cancer. Cancers https://doi.org/10.3390/cancers12051142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  361. Shen, X. N. et al. Fecal enterotoxigenic Bacteroides fragilisPeptostreptococcus stomatis–Parvimonas micra biomarker for noninvasive diagnosis and prognosis of colorectal laterally spreading tumor. Front. Oncol. https://doi.org/10.3389/fonc.2021.661048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Yuan, B. A. et al. Fecal bacteria as non-invasive biomarkers for colorectal adenocarcinoma. Front. Oncol. https://doi.org/10.3389/fonc.2021.664321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Liu, K. et al. The role of fecal Fusobacterium nucleatum and pks+ Escherichia coli as early diagnostic markers of colorectal cancer. Dis. Markers 2021, 1171239 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  364. Yao, Y. Z. et al. A new biomarker of fecal bacteria for non-invasive diagnosis of colorectal cancer. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2021.744049 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Osman, M. A. et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. https://doi.org/10.1038/s41598-021-82465-0 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Wu, Y. et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 12, 3063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Gao, R. Y. et al. Alterations of gut mycobiota profiles in adenoma and colorectal cancer. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2022.839435 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  368. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  369. Priya, S. et al. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nat. Microbiol. 7, 780–795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Eklof, V. et al. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 141, 2528–2536 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  371. Lee, J. K., Liles, E. G., Bent, S., Levin, T. R. & Corley, D. A. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann. Intern. Med. 160, 171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  372. Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1381–1390 (2014).

    Article  CAS  PubMed  Google Scholar 

  373. Sze, M. A., Baxter, N. T., Ruffin, M. T., Rogers, M. A. M. & Schloss, P. D. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome https://doi.org/10.1186/s40168-017-0366-3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Yao, Q. L. et al. Potential of fecal microbiota for detection and postoperative surveillance of colorectal cancer. BMC Microbiol. https://doi.org/10.1186/s12866-021-02182-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  375. Liang, J. Q. et al. Novel microbiome signatures for non-invasive diagnosis of adenoma recurrence after colonoscopic polypectomy. Aliment. Pharm. Ther. 55, 847–855 (2022).

    Article  CAS  Google Scholar 

  376. Kwong, T. N. Y. et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 155, 383–390.e8 (2018).

    Article  PubMed  Google Scholar 

  377. Ma, C. et al. Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes 13, 1–6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  378. Bosch, S. et al. The potential of fecal microbiota and amino acids to detect and monitor patients with adenoma. Gut Microbes 14, 2038863 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  379. Du, X. H. et al. Alterations of the gut microbiome and fecal metabolome in colorectal cancer: implication of intestinal metabolism for tumorigenesis. Front. Physiol. https://doi.org/10.3389/fphys.2022.854545 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  380. Bosch, S. et al. Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes 14, 2139979 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  381. Mo, S. B. et al. Fecal multidimensional assay for non-invasive detection of colorectal cancer: fecal immunochemical test, stool DNA mutation, methylation, and intestinal bacteria analysis. Front. Oncol. https://doi.org/10.3389/fonc.2021.643136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

    Article  CAS  PubMed  Google Scholar 

  383. Li, X. & Saxena, D. The tumor mycobiome: a paradigm shift in cancer pathogenesis. Cell 185, 3648–3651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Lee, S. H. et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol. 6, 277–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  386. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Martini, G. et al. Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab. Int. J. Cancer 151, 473–480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Pi, H., Huang, L., Liu, H., Liang, S. & Mei, J. Effects of PD-1/PD-L1 signaling pathway on intestinal flora in patients with colorectal cancer. Cancer Biomark. 28, 529–535 (2020).

    Article  CAS  PubMed  Google Scholar 

  389. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 68, 385–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  391. Zhao, L. et al. Uncovering 1058 novel human enteric DNA viruses through deep long-read third-generation sequencing and their clinical impact. Gastroenterology 163, 699–711 (2022).

    Article  CAS  PubMed  Google Scholar 

  392. Li, Y. et al. Recovery of human gut microbiota genomes with third-generation sequencing. Cell Death Dis. 12, 569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science https://doi.org/10.1126/science.aba5257 (2021).

    Article  PubMed  Google Scholar 

  394. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  395. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  396. Ayukawa, S. et al. Epithelial cells remove precancerous cells by cell competition via MHC class I-LILRB3 interaction. Nat. Immunol. 22, 1391–1402 (2021).

    Article  CAS  PubMed  Google Scholar 

  397. Geyer, R. J., Tobet, R., Berlin, R. D. & Srivastava, P. K. Immune response to mutant neo-antigens: cancer’s lessons for aging. Oncoimmunology 2, e26382 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  398. Dow, L. E. et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by funds from Research Grants Council-General Research Fund (14101321; 24100520), RGC-Collaborative Research Fund (C4039-19G); Heath and Medical Research Fund (06170686; 08190706); and the Science and Technology Program Grant Shenzhen (JCYJ20170413161534162).

Author information

Authors and Affiliations

Authors

Contributions

C.C.W. researched data for this manuscript. Both authors discussed the content of the manuscript, and wrote, reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Jun Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Chan who co-reviewed with C. Geraghty and W. Jia, who co-reviewed with H. Li and Y. Ni; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.C., Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 20, 429–452 (2023). https://doi.org/10.1038/s41571-023-00766-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00766-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer