Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancing CAR T cell therapy through the use of multidimensional omics data

Abstract

Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.

Key points

  • Multidimensional omics data, encompassing genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and microbiomics, have been exploited to advance our mechanistic understanding of chimeric antigen receptor (CAR) T cell therapy.

  • Utilization of multi-omics data derived from both tumour and non-malignant tissues at the bulk and/or single-cell levels is a powerful approach to identifying optimal targets for highly efficacious and safe CAR T cell therapy.

  • Integration of bulk and/or single-cell multidimensional omics data has been applied to investigate key determinants of CAR T cell persistence and antitumour efficacy, including T cell states and phenotypes, tumour cell characteristics, the tumour microenvironment and the microbiome.

  • Leveraging multi-omics data promises to elucidate the mechanisms underlying CAR T cell-related toxicities, including cytokine-release syndrome, immune effector cell-associated neurotoxicity syndrome and on-target, off-tumour toxicities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of applications of multi-omics data in CAR T cell therapy.
Fig. 2: Applications of multi-omics data in CAR target identification.
Fig. 3: Multidimensional omics characterization of molecular features associated with the efficacy of CAR T cell therapy.
Fig. 4: Summary of factors related to major categories of CAR T cell-induced toxicities revealed by multi-omics data.

Similar content being viewed by others

References

  1. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  PubMed  Google Scholar 

  2. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat. Med. 28, 325–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Irving, M., Zoete, V., Bassani-Sternberg, M. & Coukos, G. A roadmap for driving CAR T cells toward the oncogenic immunopeptidome. Cancer Cell 40, 20–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delgoffe, G. M. et al. The role of exhaustion in CAR T cell therapy. Cancer Cell 39, 885–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Milone, M. C. et al. Engineering-enhanced CAR T cells for improved cancer therapy. Nat. Cancer 2, 780–793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Santomasso, B. D. et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J. Clin. Oncol. 39, 3978–3992 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng, Y., Finck, A. & Fan, R. Single-cell omics analyses enabled by microchip technologies. Annu. Rev. Biomed. Eng. 21, 365–393 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Cantini, L. et al. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat. Commun. 12, 124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, P. et al. Big data in basic and translational cancer research. Nat. Rev. Cancer https://doi.org/10.1038/s41568-022-00502-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. https://doi.org/10.1038/s41591-022-01916-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Good, Z. et al. Post-infusion CAR Treg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Young, R. M., Engel, N. W., Uslu, U., Wellhausen, N. & June, C. H. Next-generation CAR T-cell therapies. Cancer Discov. 12, 1625–1633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xhangolli, I. et al. Single-cell analysis of CAR-T cell activation reveals a mixed TH1/TH2 response independent of differentiation. Genomics Proteomics Bioinformatics 17, 129–139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Prieto, C. A. et al. Epigenetic profiling and response to CD19 chimeric antigen receptor T-cell therapy in B-cell malignancies. J. Natl Cancer Inst. 114, 436–445 (2022).

    Article  PubMed  Google Scholar 

  34. Ye, L. et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab. 34, 595–614.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, W. et al. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat. Cancer 2, 83–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. MacKay, M. et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto, T. N., Kishton, R. J. & Restifo, N. P. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat. Med. 25, 1488–1499 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Hwang, M. S. et al. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat. Commun. 12, 5271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13, eabe7378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shouval, R. et al. Impact of TP53 genomic alterations in large B-cell lymphoma treated with CD19-chimeric antigen receptor T-cell therapy. J. Clin. Oncol. 40, 369–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Cherng, H.-J. J. et al. Risk assessment with low-pass whole-genome sequencing of cell-free DNA before CD19 CAR T-cell therapy for large B-cell lymphoma. Blood 140, 504–515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jain, M. D. et al. Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood 140, 491–503 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Sworder, B. J. et al. Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas. Cancer Cell https://doi.org/10.1016/j.ccell.2022.12.005 (2022).

    Article  PubMed  Google Scholar 

  48. Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. https://doi.org/10.1038/s43586-021-00093-4 (2022).

    Article  Google Scholar 

  50. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Dufva, O. et al. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 135, 597–609 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gurusamy, D. et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell 37, 818–833.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov. 10, 552–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan, X. et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv. 6, 5844–5856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zebley, C. C., Gottschalk, S. & Youngblood, B. Rewriting history: epigenetic reprogramming of CD8+ T cell differentiation to enhance immunotherapy. Trends Immunol. 41, 665–675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akbari, B. et al. Epigenetic strategies to boost CAR T cell therapy. Mol. Ther. 29, 2640–2659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, A. et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 607, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stricker, S. H., Köferle, A. & Beck, S. From profiles to function in epigenomics. Nat. Rev. Genet. 18, 51–66 (2016).

    Article  PubMed  Google Scholar 

  66. Wang, Y. et al. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat. Commun. 12, 409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wei, Y. et al. Targeting CDK7 suppresses super enhancer-linked inflammatory genes and alleviates CAR T cell-induced cytokine release syndrome. Mol. Cancer 20, 5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gennert, D. G. et al. Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proc. Natl Acad. Sci. USA 118, e2104758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ding, Z.-C. et al. Persistent STAT5 activation reprograms the epigenetic landscape in CD4+ T cells to drive polyfunctionality and antitumor immunity. Sci. Immunol. 5, eaba5962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00509-1 (2022).

    Article  PubMed  Google Scholar 

  71. Jiang, P. et al. Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction. Leukemia https://doi.org/10.1038/s41375-022-01676-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Hong, M. et al. RNA sequencing: new technologies and applications in cancer research. J. Hematol. Oncol. 13, 166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Xiang, Y., Ye, Y., Zhang, Z. & Han, L. Maximizing the utility of cancer transcriptomic data. Trends Cancer 4, 823–837 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Michie, J. et al. Antagonism of IAPs enhances CAR T-cell efficacy. Cancer Immunol. Res. 7, 183–192 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Giuffrida, L. et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 12, 3236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Papalexi, E. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nature 12, 175–188 (2021).

    Google Scholar 

  80. Mineo, M. et al. Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol. Cell 78, 1207–1223.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pan, Y. et al. RNA dysregulation: an expanding source of cancer immunotherapy targets. Trends Pharmacol. Sci. 42, 268–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, N. et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice. Cell Rep. Med. 2, 100297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell 75, 7–12 (2019).

    Article  PubMed  Google Scholar 

  87. Boroughs, A. C. et al. A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-seq. Mol. Ther. 28, 2577–2592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, X. X. et al. Single-cell transcriptomic analysis reveals BCMA CAR-T cell dynamics in a patient with refractory primary plasma cell leukemia. Mol. Ther. 29, 645–657 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jing, Y. et al. Expression of chimeric antigen receptor therapy targets detected by single-cell sequencing of normal cells may contribute to off-tumor toxicity. Cancer Cell 39, 1558–1559 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Boulch, M. et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6, eabd4344 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Dhodapkar, K. M. et al. Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov. https://doi.org/10.1158/2643-3230.BCD-22-0018 (2022).

    Article  PubMed  Google Scholar 

  93. Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    Article  PubMed  Google Scholar 

  94. Bradley, P. & Thomas, P. G. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu. Rev. Immunol. 37, 547–570 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mani, D. R. et al. Cancer proteogenomics: current impact and future prospects. Nat. Rev. Cancer 22, 298–313 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Enblad, G. et al. A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin. Cancer Res. 24, 6185–6194 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Hu, Z. et al. The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nat. Cancer 2, 1406–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Nix, M. A. et al. Surface proteomics reveals CD72 as a target for in vitro–evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov. 11, 2032–2049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Perna, F. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32, 506–519.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, J. K. et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc. Natl Acad. Sci. USA 115, E4473–E4482 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marcu, A. et al. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. J. Immunother. Cancer 9, e002071 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, eaat6753 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ramello, M. C. et al. An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci. Signal. 12, eaap9777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu, W. et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 182, 855–871.e23 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Lombard-Banek, C. & Schiel, J. E. Mass spectrometry advances and perspectives for the characterization of emerging adoptive cell therapies. Molecules 25, 1396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Bonilla, D. L., Reinin, G. & Chua, E. Full spectrum flow cytometry as a powerful technology for cancer immunotherapy research. Front. Mol. Biosci. 7, 612801 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chong, E. A. et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 139, 1026–1038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goldberg, L. et al. Single-cell analysis by mass cytometry reveals CD19 CAR T cell spatiotemporal plasticity in patients. Oncoimmunology 11, 2040772 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fisher, J. et al. Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci. Signal. 12, eaax1872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rossi, J. et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132, 804–814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bai, Z., Su, G. & Fan, R. Single-cell analysis technologies for immuno-oncology research: from mechanistic delineation to biomarker discovery. Genomics Proteomics Bioinformatics 19, 191–207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fultang, L. et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 136, 1155–1160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hao, M. et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci. Transl. Med. 12, eaaz6667 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Hirabayashi, K. et al. Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2, 904–918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci. Immunol. 4, eaap9520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shen, L. et al. Metabolic reprogramming by ex vivo glutamine inhibition endows CAR-T cells with less-differentiated phenotype and persistent antitumor activity. Cancer Lett. 538, 215710 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Xu, J. et al. Metabolic flux analysis and fluxomics-driven determination of reaction free energy using multiple isotopes. Curr. Opin. Biotechnol. 64, 151–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Liang, L., Sun, F., Wang, H. & Hu, Z. Metabolomics, metabolic flux analysis and cancer pharmacology. Pharmacol. Ther. 224, 107827 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Van Bruggen, J. A. C. et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood 134, 44–58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Luo, M. et al. Race is a key determinant of the human intratumor microbiome. Cancer Cell https://doi.org/10.1016/j.ccell.2022.08.007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Matson, V., Chervin, C. S. & Gajewski, T. F. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160, 600–613 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00515-3 (2022).

    Article  PubMed  Google Scholar 

  144. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  145. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 25–36.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Lee, W. D., Mukha, D., Aizenshtein, E. & Shlomi, T. Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells. Nat. Commun. 10, 1351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 23, bbab454 (2022).

    Article  PubMed  Google Scholar 

  163. Goecks, J., Jalili, V., Heiser, L. M. & Gray, J. W. How machine learning will transform biomedicine. Cell 181, 92–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17, 710–724 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wei, J., Han, X., Bo, J. & Han, W. Target selection for CAR-T therapy. J. Hematol. Oncol. 12, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bosse, K. R. et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 32, 295–309.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Hsiue, E. H. C. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu, J. et al. TSNAdb: a database for tumor-specific neoantigens from immunogenomics data analysis. Genomics Proteomics Bioinformatics 16, 276–282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dannenfelser, R. et al. Discriminatory power of combinatorial antigen recognition in cancer T cell therapies. Cell Syst. 11, 215–228.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167, 419–432.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cho, J. H. et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat. Commun. 12, 792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Atilla, P. A. et al. Combinatorial antigen targeting strategies for acute leukemia: application in myeloid malignancy. Cytotherapy 24, 282–290 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Liu, F. et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood 132, 901–901 (2018).

    Article  Google Scholar 

  181. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fernández de Larrea, C. et al. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape–driven relapse in multiple myeloma. Blood Cancer Discov. 1, 146–154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Han, X. et al. Construction of a human cell landscape at single-cell level constructing an HCL using microwell-seq. Nature 581, 303–309 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. He, S. et al. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. 21, 294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  186. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps to decipher disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen, N., Li, X., Chintala, N. K., Tano, Z. E. & Adusumilli, P. S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol. 51, 103–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tang, J. P. et al. Hypophosphatemia due to increased effector cell metabolic activity is associated with neurotoxicity symptoms in CD19-targeted CAR T-cell therapy. Cancer Immunol. Res. 10, 1433–1440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nobles, C. L. et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J. Clin. Invest. 130, 673–685 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Cappell, K. M. & Kochenderfer, J. N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 18, 715–727 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Lemoine, J., Ruella, M. & Houot, R. Born to survive: how cancer cells resist CAR T cell therapy. J. Hematol. Oncol. 14, 199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lemoine, J., Ruella, M. & Houot, R. Overcoming intrinsic resistance of cancer cells to CAR T-cell killing. Clin. Cancer Res. 27, 6298–6306 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Plaks, V. et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood 138, 1081–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rabilloud, T. et al. Single-cell profiling identifies pre-existing CD19-negative subclones in a B-ALL patient with CD19-negative relapse after CAR-T therapy. Nat. Commun. 12, 865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Asnani, M. et al. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 34, 1202–1207 (2020).

    Article  PubMed  Google Scholar 

  205. Jacoby, E. et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7, 12320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Upadhyay, R. et al. A critical role for FAS-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov. 11, 599–613 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Monti, S. et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 22, 359–372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jain, M. D. et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 137, 2621–2633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kankeu Fonkoua, L. A., Sirpilla, O., Sakemura, R., Siegler, E. L. & Kenderian, S. S. CAR T cell therapy and the tumor microenvironment: current challenges and opportunities. Mol. Ther. Oncolytics 25, 69–77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Britten, C. M., Shalabi, A. & Hoos, A. Industrializing engineered autologous T cells as medicines for solid tumours. Nat. Rev. Drug Discov. 20, 476–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Xu, N. et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J. Exp. Med. 218, e20200844 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 12, 5291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  217. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Choi, B. D. et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Avanzi, M. P. et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 23, 2130–2141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ellis, G. I., Sheppard, N. C. & Riley, J. L. Genetic engineering of T cells for immunotherapy. Nat. Rev. Genet. 22, 427–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    Article  PubMed  Google Scholar 

  227. Dougan, M., Luoma, A. M., Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gill, S. & Brudno, J. N. CAR T-cell therapy in hematologic malignancies: clinical role, toxicity, and unanswered questions. Am. Soc. Clin. Oncol. Educ. B 41, e246–e265 (2021).

    Article  Google Scholar 

  231. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Bai, Z. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Davis-Marcisak, E. F. et al. From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell 39, 1062–1080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Andrews, T. S., Kiselev, V. Y., McCarthy, D. & Hemberg, M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat. Protoc. 16, 2749–2764 (2021).

    Article  PubMed  Google Scholar 

  236. Guo, S., Zhang, C. & Le, A. The limitless applications of single-cell metabolomics. Curr. Opin. Biotechnol. 71, 115–122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research. Cell 185, 2725–2738 (2022).

    Article  PubMed  Google Scholar 

  238. Johnson, D. B. et al. Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma. Clin. Cancer Res. 24, 5250–5260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Jing, Y., Yang, J., Johnson, D. B., Moslehi, J. J. & Han, L. Harnessing big data to characterize immune-related adverse events. Nat. Rev. Clin. Oncol. 19, 269–280 (2022).

    Article  PubMed  Google Scholar 

  241. Reel, P. S., Reel, S., Pearson, E., Trucco, E. & Jefferson, E. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol. Adv. 49, 107739 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Levine, L. S. et al. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 54, 829–844.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the US NIH (grants R01HG011633 and R01CA262623 to L.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. M.R.G. is a Scholar of the Leukaemia and Lymphoma Society. The authors regret that page limitations have prevented them from including all the relevant studies in this Review. Draft figures for this manuscript were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Michael R. Green or Leng Han.

Ethics declarations

Competing interests

M.R.G. has stock ownership interest in KDAc Therapeutics, receives funding from Abbvie, Allogene, Kite/Gilead and Sanofi, and has received honoraria from Tessa Therapeutics. J.Y., Y.C., Y.J. and L.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Maus, who co-reviewed with N. Haradhvala; R. Fan, who co-reviewed with Z. Bai; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Antigen Explorer: https://antigen.princeton.edu/

CARTSC: https://hanlab.tamhsc.edu/CARTSC/

ClinicalTrials.gov: https://clinicaltrials.gov/ct2/home

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, Y., Jing, Y. et al. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 20, 211–228 (2023). https://doi.org/10.1038/s41571-023-00729-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00729-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing