Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management

An Author Correction to this article was published on 15 August 2022

This article has been updated

Abstract

The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both ‘on-target’ mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and ‘off-target’ mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies.

Key points

  • Non-small-cell lung cancers (NSCLCs) harbouring oncogenic EGFR mutations or ALK rearrangements can be effectively treated with EGFR and ALK tyrosine kinase inhibitors (TKIs), respectively.

  • The third-generation EGFR TKI osimertinib and the ALK TKI lorlatinib are currently the most advanced and effective clinically approved agents in their respective NSCLC subsets; both agents are highly effective including against central nervous system metastases.

  • Resistance to third-generation EGFR or ALK TKIs can be mediated by acquired EGFR or ALK kinase-domain mutations, respectively; fourth-generation TKIs designed to overcome this on-target resistance are currently in development.

  • Off-target resistance to third-generation EGFR and ALK TKIs is more prevalent than on-target resistance and is mediated by various mechanisms, including the activation of bypass signalling or phenotypic transformation.

  • Novel approaches designed to overcome resistance beyond fourth-generation TKIs, including combination therapies, antibody–drug conjugates, bispecific antibodies and immune-directed approaches, are at various stages of clinical investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of genomic discoveries and drug development in EGFR-mutant and ALK-rearranged NSCLCs.
Fig. 2: Mechanisms of acquired resistance to osimertinib and lorlatinib in EGFR-mutant and ALK-rearranged NSCLCs, respectively.

Similar content being viewed by others

Change history

References

  1. Barlesi, F. et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 387, 1415–1426 (2016).

    CAS  PubMed  Google Scholar 

  2. Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F. & Heist, R. S. Lung cancer. Lancet 398, 535–554 (2021).

    PubMed  Google Scholar 

  4. Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009).

    CAS  PubMed  Google Scholar 

  5. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  6. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  7. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    CAS  PubMed  Google Scholar 

  9. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wee, P. & Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers https://doi.org/10.3390/cancers9050052 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000146648-EGFR/tissue (2021).

  12. Mendelsohn, J. Targeting the epidermal growth factor receptor for cancer therapy. J. Clin. Oncol. https://doi.org/10.1200/JCO.2002.07.121 (2002).

    Article  PubMed  Google Scholar 

  13. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    CAS  PubMed  Google Scholar 

  14. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakagawa, K. et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in Japanese patients with solid malignant tumors. Ann. Oncol. 14, 922–930 (2003).

    CAS  PubMed  Google Scholar 

  16. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J. Clin. Oncol. 21, 2237–2246 (2003).

    CAS  PubMed  Google Scholar 

  17. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149–2158 (2003).

    CAS  PubMed  Google Scholar 

  18. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  19. Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    CAS  PubMed  Google Scholar 

  20. Asahina, H. et al. A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations. Br. J. Cancer 95, 998–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Inoue, A. et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J. Clin. Oncol. 24, 3340–3346 (2006).

    CAS  PubMed  Google Scholar 

  22. Sutani, A. et al. Gefitinib for non-small-cell lung cancer patients with epidermal growth factor receptor gene mutations screened by peptide nucleic acid-locked nucleic acid PCR clamp. Br. J. Cancer 95, 1483–1489 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sunaga, N. et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer 56, 383–389 (2007).

    PubMed  Google Scholar 

  24. Yoshida, K. et al. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer. J. Thorac. Oncol. 2, 22–28 (2007).

    PubMed  Google Scholar 

  25. Sequist, L. V. et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26, 2442–2449 (2008).

    CAS  PubMed  Google Scholar 

  26. Tamura, K. et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br. J. Cancer 98, 907–914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sugio, K. et al. Prospective phase II study of gefitinib in non-small cell lung cancer with epidermal growth factor receptor gene mutations. Lung Cancer 64, 314–318 (2009).

    PubMed  Google Scholar 

  28. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  29. Han, J. Y. et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J. Clin. Oncol. 30, 1122–1128 (2012).

    CAS  PubMed  Google Scholar 

  30. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    CAS  PubMed  Google Scholar 

  31. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    CAS  PubMed  Google Scholar 

  32. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    CAS  PubMed  Google Scholar 

  33. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  PubMed  Google Scholar 

  34. Wu, Y. L. et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann. Oncol. 26, 1883–1889 (2015).

    PubMed  Google Scholar 

  35. Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller, V. A. et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 13, 528–538 (2012).

    CAS  PubMed  Google Scholar 

  39. Ellis, P. M. et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. Lancet Oncol. 15, 1379–1388 (2014).

    CAS  PubMed  Google Scholar 

  40. Mok, T. S. et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J. Clin. Oncol. 36, 2244–2250 (2018).

    CAS  PubMed  Google Scholar 

  41. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    CAS  PubMed  Google Scholar 

  42. Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015).

    PubMed  Google Scholar 

  43. Colclough, N. et al. Preclinical comparison of the blood-brain barrier permeability of osimertinib with other EGFR TKIs. Clin. Cancer Res. 27, 189–201 (2021).

    CAS  PubMed  Google Scholar 

  44. Ballard, P. et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 22, 5130–5140 (2016).

    CAS  PubMed  Google Scholar 

  45. Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017).

    CAS  PubMed  Google Scholar 

  46. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    CAS  PubMed  Google Scholar 

  47. Ramalingam, S. S. et al. Overall Survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    CAS  PubMed  Google Scholar 

  48. Andrews Wright, N. M. & Goss, G. D. Third-generation epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Transl. Lung Cancer Res. 8, S247–S264 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994).

    CAS  PubMed  Google Scholar 

  50. Ou, S. I., Zhu, V. W. & Nagasaka, M. Catalog of 5′ fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100015 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Takeuchi, K. et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res. 15, 3143–3149 (2009).

    CAS  PubMed  Google Scholar 

  52. Togashi, Y. et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS ONE 7, e31323 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw, A. T. & Engelman, J. A. ALK in lung cancer: past, present, and future. J. Clin. Oncol. 31, 1105–1111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8, 11–23 (2008).

    CAS  PubMed  Google Scholar 

  55. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    CAS  PubMed  Google Scholar 

  56. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).

    CAS  PubMed  Google Scholar 

  57. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Camidge, D. R. et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13, 1011–1019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    CAS  PubMed  Google Scholar 

  60. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    PubMed  Google Scholar 

  61. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, D.-W. et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 17, 452–463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ou, S. H. et al. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J. Clin. Oncol. 34, 661–668 (2016).

    CAS  PubMed  Google Scholar 

  64. Shaw, A. T. et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 17, 234–242 (2016).

    CAS  PubMed  Google Scholar 

  65. Gettinger, S. N. et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 17, 1683–1696 (2016).

    CAS  PubMed  Google Scholar 

  66. Kim, D. W. et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J. Clin. Oncol. 35, 2490–2498 (2017).

    CAS  PubMed  Google Scholar 

  67. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    CAS  PubMed  Google Scholar 

  68. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 379, 2027–2039 (2018).

    CAS  PubMed  Google Scholar 

  69. Horn, L. et al. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: a randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2021.3523 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zou, H. Y. et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28, 70–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson, T. W. et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(m etheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J. Med. Chem. 57, 4720–4744 (2014).

    CAS  PubMed  Google Scholar 

  72. Shaw, A. T. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 18, 1590–1599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Solomon, B. J. et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 19, 1654–1667 (2018).

    CAS  PubMed  Google Scholar 

  74. Gainor, J. F. et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00063 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Drilon, A. et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J. Thorac. Oncol. 13, 1595–1601 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Shaw, A. T. et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J. Clin. Oncol. 37, 1370–1379 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Shaw, A. T. et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 383, 2018–2029 (2020).

    CAS  PubMed  Google Scholar 

  78. Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ercan, D. et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin. Cancer Res. 21, 3913–3923 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu, H. A. et al. Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol. 1, 982–984 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 13513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Piotrowska, Z. et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 8, 1529–1539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).

    CAS  PubMed  Google Scholar 

  85. Ou, S. I. et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer 108, 228–231 (2017).

    PubMed  Google Scholar 

  86. Klempner, S. J., Mehta, P., Schrock, A. B., Ali, S. M. & Ou, S. I. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature. Lung Cancer 8, 241–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng, D. et al. EGFR G796D mutation mediates resistance to osimertinib. Oncotarget 8, 49671–49679 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Chen, K. et al. Novel mutations on EGFR Leu792 potentially correlate to acquired resistance to osimertinib in advanced NSCLC. J. Thorac. Oncol. 12, e65–e68 (2017).

    PubMed  Google Scholar 

  89. Ou, Q. et al. Investigating novel resistance mechanisms to third generation EGFR TKI osimertinib in non-small cell lung cancer patients using next generation sequencing. J. Clin. Oncol. 35, 2572–2572 (2017).

    Google Scholar 

  90. Bersanelli, M. et al. L718Q mutation as new mechanism of acquired resistance to AZD9291 in EGFR-mutated NSCLC. J. Thorac. Oncol. 11, e121–e123 (2016).

    PubMed  Google Scholar 

  91. Fassunke, J. et al. Overcoming EGFR(G724S)-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nat. Commun. 9, 4655 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Zhang, Y., He, B., Zhou, D., Li, M. & Hu, C. Newly emergent acquired EGFR exon 18 G724S mutation after resistance of a T790M specific EGFR inhibitor osimertinib in non-small-cell lung cancer: a case report. OncoTargets Ther. 12, 51–56 (2019).

    Google Scholar 

  93. Oztan, A. et al. Emergence of EGFR G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib. Lung Cancer 111, 84–87 (2017).

    CAS  PubMed  Google Scholar 

  94. Nukaga, S. et al. Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res. 77, 2078–2089 (2017).

    CAS  PubMed  Google Scholar 

  95. Knebel, F. H. et al. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC. Lung Cancer 108, 238–241 (2017).

    PubMed  Google Scholar 

  96. Schoenfeld, A. J. et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. 26, 2654–2663 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schoenfeld, A. J. et al. Tissue-based molecular and histological landscape of acquired resistance to osimertinib given initially or at relapse in patients with EGFR-mutant lung cancers. J. Clin. Oncol. 37, 9028–9028 (2019).

    Google Scholar 

  98. Ramalingam, S. S. et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann. Oncol. https://doi.org/10.1093/annonc/mdy424.063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoda, S. et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 8, 714–729 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shiba-Ishii, A. et al. Structural and functional analysis of lorlatinib analogs reveals roadmap for targeting diverse compound resistance mutations in ALK-positive lung cancer. Preprint at bioRxiv https://doi.org/10.1101/2021.07.16.452681 (2021).

    Article  Google Scholar 

  102. Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).

    CAS  PubMed  Google Scholar 

  103. Dagogo-Jack, I. et al. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin. Cancer Res. 25, 6662–6670 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pailler, E. et al. Acquired resistance mutations to alk inhibitors identified by single circulating tumor cell sequencing in ALK-rearranged non-small-cell lung cancer. Clin. Cancer Res. 25, 6671–6682 (2019).

    CAS  PubMed  Google Scholar 

  105. Zhu, V. W. et al. A novel sequentially evolved EML4-ALK variant 3 G1202R/S1206Y double mutation in cis confers resistance to lorlatinib: a brief report and literature review. JTO Clin. Res. Rep. 2, 100116 (2021).

    PubMed  Google Scholar 

  106. Takahashi, K. et al. Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in non-small cell lung cancer. Thorac. Cancer 11, 581–587 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Recondo, G. et al. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res. 26, 242–255 (2020).

    CAS  PubMed  Google Scholar 

  108. Okada, K. et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine 41, 105–119 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Song, Z. et al. Deep RNA sequencing revealed fusion junctional heterogeneity may predict crizotinib treatment efficacy in ALK-rearranged NSCLC. J. Thorac. Oncol. 17, 264–276 (2022).

    CAS  PubMed  Google Scholar 

  110. Lin, J. J. et al. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J. Clin. Oncol. 36, 1199–1206 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    CAS  PubMed  Google Scholar 

  112. Papadimitrakopoulou, V. A. et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann. Oncol. https://doi.org/10.1093/annonc/mdy424.064 (2018).

    Article  Google Scholar 

  113. Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).

    PubMed  Google Scholar 

  114. Ou, S. I., Agarwal, N. & Ali, S. M. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer 98, 59–61 (2016).

    PubMed  Google Scholar 

  115. York, E. R., Varella-Garcia, M., Bang, T. J., Aisner, D. L. & Camidge, D. R. Tolerable and effective combination of full-dose crizotinib and osimertinib targeting MET amplification sequentially emerging after T790M positivity in EGFR-mutant non-small cell lung cancer. J. Thorac. Oncol. 12, e85–e88 (2017).

    PubMed  Google Scholar 

  116. Deng, L., Kiedrowski, L. A., Ravera, E., Cheng, H. & Halmos, B. Response to dual crizotinib and osimertinib treatment in a lung cancer patient with MET amplification detected by liquid biopsy who acquired secondary resistance to EGFR tyrosine kinase inhibition. J. Thorac. Oncol. 13, e169–e172 (2018).

    PubMed  Google Scholar 

  117. Zhu, V. W., Schrock, A. B., Ali, S. M. & Ou, S. I. Differential response to a combination of full-dose osimertinib and crizotinib in a patient with EGFR-mutant non-small cell lung cancer and emergent MET amplification. Lung Cancer 10, 21–26 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang, J. et al. Osimertinib and cabozantinib combinatorial therapy in an EGFR-mutant lung adenocarcinoma patient with multiple MET secondary-site mutations after resistance to crizotinib. J. Thorac. Oncol. 13, e49–e53 (2018).

    PubMed  Google Scholar 

  119. Oxnard, G. R. et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. 31, 507–516 (2020).

    CAS  PubMed  Google Scholar 

  120. Sequist, L. V. et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21, 373–386 (2020).

    CAS  PubMed  Google Scholar 

  121. Dagogo-Jack, I. et al. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res. 26, 2535–2545 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Iams, W. & Chae, Y. P3.02-034 acquired resistance to osimertinib by CCDC6-RET fusion in a patient with EGFR T790M mutant metastatic lung adenocarcinoma. J. Thorac. Oncol. 12, S2249–S2250 (2017).

    Google Scholar 

  123. Offin, M. et al. Acquired ALK and RET gene fusions as mechanisms of resistance to osimertinib in EGFR-mutant lung cancers. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Le, X. et al. Landscape of EGFR-dependent and -independent resistance mechanisms to osimertinib and continuation therapy beyond progression in EGFR-mutant NSCLC. Clin. Cancer Res. 24, 6195–6203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. McCoach, C. E. et al. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. Clin. Cancer Res. 24, 3334–3347 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rotow, J. et al. FP14.07 Combination osimertinib plus selpercatinib for EGFR-mutant non-small cell lung cancer (NSCLC) with acquired RET fusions. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2021.01.150 (2021).

    Article  Google Scholar 

  127. Kim, L., Chae, Y. K., Jung, C. M., Lee, A. D. & Yu, E. Addition of selpercatinib to overcome osimertinib resistance in non-small cell lung cancer (NSCLC) with acquired RET fusion detected in ctDNA at very low allele frequency. J. Clin. Oncol. 39, 3046–3046 (2021).

    Google Scholar 

  128. Piotrowska, Z. et al. MET amplification (amp) as a resistance mechanism to osimertinib. J. Clin. Oncol. 35, 9020–9020 (2017).

    Google Scholar 

  129. Schrock, A. B. et al. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 13, 1312–1323 (2018).

    PubMed  Google Scholar 

  130. Takezawa, K. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2, 922–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Planchard, D. et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann. Oncol. 26, 2073–2078 (2015).

    CAS  PubMed  Google Scholar 

  132. Hsu, C. C. et al. Exon 16-Skipping HER2 as a novel mechanism of osimertinib resistance in EGFR L858R/T790M-positive non-small cell lung cancer. J. Thorac. Oncol. 15, 50–61 (2020).

    CAS  PubMed  Google Scholar 

  133. Xia, H. et al. Evidence of NTRK1 fusion as resistance mechanism to EGFR TKI in EGFR+ NSCLC: results from a large-scale survey of NTRK1 fusions in Chinese patients with lung cancer. Clin. Lung Cancer 21, 247–254 (2020).

    CAS  PubMed  Google Scholar 

  134. Vojnic, M. et al. Acquired BRAF rearrangements induce secondary resistance to EGFR therapy in EGFR-mutated lung cancers. J. Thorac. Oncol. 14, 802–815 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ho, C. C. et al. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J. Thorac. Oncol. 12, 567–572 (2017).

    PubMed  Google Scholar 

  136. Piotrowska, Z. et al. Heterogeneity and coexistence of T790M and T790 wild-type resistant subclones drive mixed response to third-generation epidermal growth factor receptor inhibitors in lung cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Xu, C., Li, D., Duan, W. & Tao, M. TPD52L1-ROS1 rearrangement as a new acquired resistance mechanism to osimertinib that responds to crizotinib in combination with osimertinib in lung adenocarcinoma. JTO Clin. Res. Rep. 1, 100034 (2020).

    PubMed  PubMed Central  Google Scholar 

  138. Zeng, L., Yang, N. & Zhang, Y. GOPC-ROS1 rearrangement as an acquired resistance mechanism to osimertinib and responding to crizotinib combined treatments in lung adenocarcinoma. J. Thorac. Oncol. 13, e114–e116 (2018).

    PubMed  Google Scholar 

  139. Allen, J. M. et al. Genomic profiling of circulating tumor DNA in relapsed EGFR-mutated lung adenocarcinoma reveals an acquired FGFR3-TACC3 fusion. Clin. Lung Cancer 18, e219–e222 (2017).

    CAS  PubMed  Google Scholar 

  140. Haura, E. B., Hicks, J. K. & Boyle, T. A. Erdafitinib overcomes FGFR3-TACC3-mediated resistance to osimertinib. J. Thorac. Oncol. 15, e154–e156 (2020).

    CAS  PubMed  Google Scholar 

  141. Fan, P. D. et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc. Natl Acad. Sci. USA 115, E6030–E6038 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Taniguchi, H. et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat. Commun. 10, 259 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Scaltriti, M., Elkabets, M. & Baselga, J. Molecular pathways: AXL, a membrane receptor mediator of resistance to therapy. Clin. Cancer Res. 22, 1313–1317 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Park, J. H. et al. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 7, 22005–22015 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Cortot, A. B. et al. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 73, 834–843 (2013).

    CAS  PubMed  Google Scholar 

  146. Daniel, C., Callens, C., Melaabi, S., Bieche, I. & Girard, N. Acquired exon 14 MET mutation associated with resistance to alectinib in a patient with ALK-rearranged NSCLC. JTO Clin. Res. Rep. 1, 100082 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Sui, A. et al. BRAF V600E mutation as a novel mechanism of acquired resistance to ALK inhibition in ALK-rearranged lung adenocarcinoma: a case report. Medicine 100, e24917 (2021).

    PubMed  PubMed Central  Google Scholar 

  148. Gu, F. F. et al. Lung adenocarcinoma harboring concomitant SPTBN1-ALK fusion, c-Met overexpression, and HER-2 amplification with inherent resistance to crizotinib, chemotherapy, and radiotherapy. J. Hematol. Oncol. 9, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Minari, R. et al. Emergence of a HER2-amplified clone during disease progression in an ALK-rearranged NSCLC patient treated with ALK-inhibitors: a case report. Transl. Lung Cancer Res. 9, 787–792 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra117 (2012).

    Google Scholar 

  152. Kim, S. et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J. Thorac. Oncol. 8, 415–422 (2013).

    CAS  PubMed  Google Scholar 

  153. Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lovly, C. M. et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 20, 1027–1034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wilson, F. H. et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 27, 397–408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakamichi, S. et al. Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial-mesenchymal transition is critical in conquering ALK-positive lung cancer. Oncotarget 9, 27242–27255 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Dardaei, L. et al. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med. 24, 512–517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Eberlein, C. A. et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res. 75, 2489–2500 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ou, S. I. et al. Emergence of FGFR3-TACC3 fusions as a potential by-pass resistance mechanism to EGFR tyrosine kinase inhibitors in EGFR mutated NSCLC patients. Lung Cancer 111, 61–64 (2017).

    PubMed  Google Scholar 

  160. Ninomiya, K. et al. MET or NRAS amplification is an acquired resistance mechanism to the third-generation EGFR inhibitor naquotinib. Sci. Rep. 8, 1955 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Ortiz-Cuaran, S. et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin. Cancer Res. 22, 4837–4847 (2016).

    CAS  PubMed  Google Scholar 

  162. Mu, Y. et al. Acquired resistance to osimertinib in patients with non-small-cell lung cancer: mechanisms and clinical outcomes. J. Cancer Res. Clin. Oncol. 146, 2427–2433 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hong, M. H. et al. Molecular landscape of osimertinib resistance revealed by targeted panel sequencing and patient-derived cancer models in non-small cell lung cancer patients. Ann. Oncol. https://doi.org/10.1093/annonc/mdy292.051 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Xu, H. et al. Characterization of acquired receptor tyrosine-kinase fusions as mechanisms of resistance to EGFR tyrosine-kinase inhibitors. Cancer Manag. Res. 11, 6343–6351 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Dagogo-Jack, I. et al. Response to the combination of osimertinib and trametinib in a patient with EGFR-mutant NSCLC harboring an acquired BRAF fusion. J. Thorac. Oncol. 14, e226–e228 (2019).

    PubMed  Google Scholar 

  166. Hrustanovic, G. et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Oser, M. G., Niederst, M. J., Sequist, L. V. & Engelman, J. A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ham, J. S. et al. Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. J. Thorac. Oncol. 11, e1–e4 (2016).

    PubMed  Google Scholar 

  170. Li, L. et al. Transformation to small-cell carcinoma as an acquired resistance mechanism to AZD9291: a case report. Oncotarget 8, 18609–18614 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Taniguchi, Y., Horiuchi, H., Morikawa, T. & Usui, K. Small-cell carcinoma transformation of pulmonary adenocarcinoma after osimertinib treatment: a case report. Case Rep. Oncol. 11, 323–329 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6, 6377 (2015).

    CAS  PubMed  Google Scholar 

  173. Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).

    CAS  PubMed  Google Scholar 

  174. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    CAS  PubMed  Google Scholar 

  175. Takegawa, N. et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann. Oncol. 27, 953–955 (2016).

    CAS  PubMed  Google Scholar 

  176. Miyamoto, S. et al. Transformation to small-cell lung cancer as a mechanism of acquired resistance to crizotinib and alectinib. Jpn. J. Clin. Oncol. 46, 170–173 (2016).

    PubMed  Google Scholar 

  177. Fujita, S., Masago, K., Katakami, N. & Yatabe, Y. Transformation to SCLC after treatment with the ALK inhibitor alectinib. J. Thorac. Oncol. 11, e67–e72 (2016).

    PubMed  Google Scholar 

  178. Park, S., Han, J. & Sun, J. M. Histologic transformation of ALK-rearranged adenocarcinoma to squamous cell carcinoma after treatment with ALK inhibitor. Lung Cancer 127, 66–68 (2019).

    PubMed  Google Scholar 

  179. Kaiho, T., Nakajima, T., Iwasawa, S., Yonemori, Y. & Yoshino, I. ALK rearrangement adenocarcinoma with histological transformation to squamous cell carcinoma resistant to alectinib and ceritinib. OncoTargets Ther. 13, 1557–1560 (2020).

    Google Scholar 

  180. Ueda, S. et al. Transformation from adenocarcinoma to squamous cell lung carcinoma with MET amplification after lorlatinib resistance: a case report. Thorac. Cancer 12, 715–719 (2021).

    PubMed  PubMed Central  Google Scholar 

  181. Lin, J. J. et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. NPJ Precis. Oncol. 4, 21 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Piper-Vallillo, A. J., Sequist, L. V. & Piotrowska, Z. Emerging treatment paradigms for EGFR-mutant lung cancers progressing on osimertinib: a review. J. Clin. Oncol. https://doi.org/10.1200/JCO.19.03123 (2020).

    Article  PubMed  Google Scholar 

  183. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Voulgari, A. & Pintzas, A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796, 75–90 (2009).

    CAS  PubMed  Google Scholar 

  185. Weng, C. H. et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38, 455–468 (2019).

    CAS  PubMed  Google Scholar 

  186. Tanaka, K. et al. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell 39, 1245–1261.e6 (2021).

    CAS  PubMed  Google Scholar 

  187. Lin, J. J. & Shaw, A. T. Resisting resistance: targeted therapies in lung cancer. Trends Cancer 2, 350–364 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Xu, C. et al. Potential resistance mechanisms using next generation sequencing from Chinese EGFR T790M+ non-small cell lung cancer patients with primary resistance to osimertinib: a multicenter study. Ann. Oncol. https://doi.org/10.1093/annonc/mdz063.012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Oxnard, G. R. et al. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol. 8, 179–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Arcila, M. E. et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 12, 220–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Bivona, T. G. et al. FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    CAS  PubMed  Google Scholar 

  193. Karachaliou, N. et al. BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer. Sci. Rep. 5, 17499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, L. et al. Clinical features of Bim deletion polymorphism and its relation with crizotinib primary resistance in Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer. Cancer 123, 2927–2935 (2017).

    CAS  PubMed  Google Scholar 

  195. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  196. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Rheinheimer, S. et al. Oligoprogressive non-small-cell lung cancer under treatment with PD-(L)1 inhibitors. Cancershttps://doi.org/10.3390/cancers12041046 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Campo, M. et al. Integration of stereotactic body radiation therapy with tyrosine kinase inhibitors in stage IV oncogene-driven lung cancer. Oncologist 21, 964–973 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Weickhardt, A. J. et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol. 7, 1807–1814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Franceschini, D. et al. The use of radiation therapy for oligoprogressive/oligopersistent oncogene-driven non small cell lung cancer: state of the art. Crit. Rev. Oncol. Hematol. 148, 102894 (2020).

    CAS  PubMed  Google Scholar 

  201. Bearz, A. et al. Activity of pemetrexed on brain metastases from non-small cell lung cancer. Lung Cancer 68, 264–268 (2010).

    PubMed  Google Scholar 

  202. Goldstein, I. M. et al. Dose escalation of osimertinib for intracranial progression in EGFR mutated non-small-cell lung cancer with brain metastases. Neurooncol Adv. 2, vdaa125 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Piper-Vallillo, A. et al. High-dose osimertinib for CNS progression in EGFR+ non-small cell lung cancer (NSCLC): a multi-institutional experience. J. Clin. Oncol. 38, 9586–9586 (2020).

    Google Scholar 

  204. Park, S. et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol. 31, 1397–1404 (2020).

    CAS  PubMed  Google Scholar 

  205. Gainor, J. F. et al. Alectinib dose escalation reinduces central nervous system responses in patients with anaplastic lymphoma kinase-positive non-small cell lung cancer relapsing on standard dose alectinib. J. Thorac. Oncol. 11, 256–260 (2016).

    PubMed  Google Scholar 

  206. Urbanska, E. M., Santoni-Rugiu, E., Melchior, L. C., Carlsen, J. F. & Sorensen, J. B. Intracranial response of ALK+ non-small-cell lung cancer to second-line dose-escalated brigatinib after alectinib discontinuation due to drug-induced hepatitis and relapse after whole brain radiotherapy followed by stereotactic radiosurgery. Clin. Lung Cancer 22, e528–e532 (2021).

    CAS  PubMed  Google Scholar 

  207. Jia, Y. et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534, 129–132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang, S., Song, Y. & Liu, D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett. 385, 51–54 (2017).

    CAS  PubMed  Google Scholar 

  209. To, C. et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 9, 926–943 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Lim, S. M. et al. BLU-945, a fourth generation, potent and highly selective epidermal growth factor receptor tyrosine kinase inhibitor with intracranial activity, demonstrates robust in vivo anti-tumor activity in models of osimertinib-resistant non-small cell lung cancer. Cancer Res. 81, 1467 (2021).

    Google Scholar 

  211. Conti, C. et al. BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Res. 81, 615 (2021).

  212. Murray, B. W. et al. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-21-0221 (2021).

    Article  PubMed  Google Scholar 

  213. Tangpeerachaikul, A., Deshpande, A., Kohl, N. E., Horan, J. C. & Pelish, H. E. NVL-655 Exhibits Antitumor Activity in Lorlatinib-Resistant Subcutaneous and Intracranial Models of ALK-Rearranged NSCLC (P244). AACR-NCI-EORTC Molecular Targets Conference (AACR, 2021).

  214. Zhang, S. et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation alk inhibitors in preclinical models. Clin. Cancer Res. 22, 5527–5538 (2016).

    CAS  PubMed  Google Scholar 

  215. Uchibori, K. et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun. 8, 14768 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Noda-Narita, S. & Kanda, S. Overcoming resistance to third-generation epidermal growth factor receptor tyrosine kinase inhibitor in non-small cell lung cancer. Transl. Cancer Res. 6, S1187–S1190 (2017).

    CAS  Google Scholar 

  217. Wang, X. et al. Lung adenocarcinoma harboring EGFR 19del/C797S/T790M triple mutations responds to brigatinib and anti-EGFR antibody combination therapy. J. Thorac. Oncol. 14, e85–e88 (2019).

    PubMed  Google Scholar 

  218. Zhao, J. et al. Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, and cis-C797S by osimertinib, bevacizumab, and brigatinib combination therapy: a case report. OncoTargets Ther. 11, 5545–5550 (2018).

    CAS  Google Scholar 

  219. Niederst, M. J. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation egfr inhibitors impacts sensitivity to subsequent treatment strategies. Clin. Cancer Res. 21, 3924–3933 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang, Z. et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J. Thorac. Oncol. 12, 1723–1727 (2017).

    PubMed  Google Scholar 

  221. Arulananda, S. et al. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer. J. Thorac. Oncol. 12, 1728–1732 (2017).

    PubMed  Google Scholar 

  222. Zhou, Z. et al. Durable clinical response of lung adenocarcinoma harboring EGFR 19Del/T790M/in trans-C797S to combination therapy of first- and third-generation EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 14, e157–e159 (2019).

    PubMed  Google Scholar 

  223. Patil, T. et al. Effect of continuing osimertinib with chemotherapy in the post-progression setting on progression-free survival among patients with metastatic epidermal growth factor receptor (EGFR) positive non-small cell lung cancer. J. Clin. Oncol. 39, 9124–9124 (2021).

    Google Scholar 

  224. White, M. N. et al. Combining osimertinib with chemotherapy in EGFR-mutant NSCLC at progression. Clin. Lung Cancer 22, 201–209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Lin, J. J. et al. Efficacy of platinum/pemetrexed combination chemotherapy in ALK-positive NSCLC refractory to second-generation ALK inhibitors. J. Thorac. Oncol. 15, 258–265 (2020).

    CAS  PubMed  Google Scholar 

  226. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers https://doi.org/10.3390/cancers13112666 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Hosomi, Y. et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38, 115–123 (2020).

    CAS  PubMed  Google Scholar 

  228. Noronha, V. et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 38, 124–136 (2020).

    CAS  PubMed  Google Scholar 

  229. Watanabe, H. et al. Significant combination benefit of anti-VEGFR antibody and oncogene-targeted agents in EGFR or ALK mutant NSCLC cells. Cancer Res. 79, 2131 (2019).

    Google Scholar 

  230. Nakagawa, K. et al. RELAY subgroup analyses by EGFR Ex19del and Ex21L858R mutations for ramucirumab plus erlotinib in metastatic non-small cell lung cancer. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-0273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kawashima, Y. et al. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): overall survival analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Respir. Med. 10, 72–82 (2022).

    CAS  PubMed  Google Scholar 

  232. Zhou, Q. et al. CTONG 1509: Phase III study of bevacizumab with or without erlotinib in untreated Chinese patients with advanced EGFR-mutated NSCLC. Ann. Oncol. https://doi.org/10.1093/annonc/mdz260.002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Soo, R. et al. VP3-2021: A randomized phase II study of second-line osimertinib (Osi) and bevacizumab (Bev) versus Osi in advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) and T790M mutations (mt): results from the ETOP BOOSTER trial. Ann. Oncol. 32, 942–944 (2021).

    Google Scholar 

  234. Akamatsu, H. et al. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients With EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: West Japan Oncology Group 8715L phase 2 randomized clinical trial. JAMA Oncol. 7, 386–394 (2021).

    PubMed  PubMed Central  Google Scholar 

  235. Kenmotsu, H. et al. Primary results of a randomized phase II study of osimertinib plus bevacizumab versus osimertinib monotherapy for untreated patients with non-squamous non-small cell lung cancer harboring EGFR mutations: WJOG9717L study. Ann. Oncol. 32 (Suppl. 5), S1283–S1346 (2021).

    Google Scholar 

  236. Lin, J. J. et al. Safety and activity of alectinib plus bevacizumab in patients with advanced ALK-rearranged non-small-cell lung cancer: a phase I/II study. ESMO Open. 7, 100342 (2021).

    PubMed  PubMed Central  Google Scholar 

  237. Watanabe, S. et al. MA21.05 phase II trial of the combination of alectinib with bevacizumab in ALK-positive nonsquamous non-small cell lung cancer. J. Thor. Oncol. https://doi.org/10.1016/j.jtho.2019.08.676 (2019).

    Article  Google Scholar 

  238. Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Garassino, M. C. et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 19, 521–536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Bylicki, O. et al. Efficacy and safety of programmed cell-death-protein-1 and its ligand inhibitors in pretreated patients with epidermal growth-factor receptor-mutated or anaplastic lymphoma kinase-translocated lung adenocarcinoma. Medicine 99, e18726 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Huang, Q. et al. Impact of PD-L1 expression, driver mutations and clinical characteristics on survival after anti-PD-1/PD-L1 immunotherapy versus chemotherapy in non-small-cell lung cancer: a meta-analysis of randomized trials. Oncoimmunology 7, e1396403 (2018).

    PubMed  PubMed Central  Google Scholar 

  242. Lee, C. K. et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer — a meta-analysis. J. Thorac. Oncol. 12, 403–407 (2017).

    PubMed  Google Scholar 

  243. Calles, A., Riess, J. W. & Brahmer, J. R. Checkpoint blockade in lung cancer with driver mutation: choose the road wisely. Am. Soc. Clin. Oncol. Educ. Book. 40, 372–384 (2020).

    PubMed  Google Scholar 

  244. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    CAS  PubMed  Google Scholar 

  245. Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

    CAS  PubMed  Google Scholar 

  246. Nogami, N. et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain. J. Thorac. Oncol. 17, 309–323 (2022).

    CAS  PubMed  Google Scholar 

  247. Lu, S. et al. VP9-2021: ORIENT-31: phase III study of sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated nonsquamous NSCLC who progressed after EGFR-TKI therapy. Ann. Oncol. 33, 112–113 (2022).

    Google Scholar 

  248. Muthusamy, B. & Pennell, N. Chemoimmunotherapy for EGFR-mutant NSCLC: still no clear answer. J. Thorac. Oncol. 17, 179–181 (2022).

    PubMed  Google Scholar 

  249. Rudin, C. et al. MA15.02 long-term safety and clinical activity results from a phase Ib study of erlotinib plus atezolizumab in advanced NSCLC. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2018.08.440 (2018).

    Article  Google Scholar 

  250. Gettinger, S. et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J. Thorac. Oncol. 13, 1363–1372 (2018).

    PubMed  Google Scholar 

  251. Creelan, B. C. et al. A phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. Br. J. Cancer 124, 383–390 (2021).

    CAS  PubMed  Google Scholar 

  252. Yang, J. C. et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J. Thorac. Oncol. 14, 553–559 (2019).

    CAS  PubMed  Google Scholar 

  253. Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation — positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    PubMed  Google Scholar 

  254. Felip, E. et al. Ceritinib plus nivolumab in patients with advanced ALK-rearranged non-small cell lung cancer: results of an open-label, multicenter, phase 1B Study. J. Thorac. Oncol. 15, 392–403 (2020).

    CAS  PubMed  Google Scholar 

  255. Kim, D.-W. et al. Safety and clinical activity results from a phase Ib study of alectinib plus atezolizumab in ALK+ advanced NSCLC (aNSCLC). J. Clin. Oncol. 36, 9009–9009 (2018).

    Google Scholar 

  256. Shaw, A. T. et al. Avelumab (anti-PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: Phase 1b results from JAVELIN Lung 101. J. Clin. Oncol. 36, 9008–9008 (2018).

    Google Scholar 

  257. Patel, S. P. et al. Phase Ib study of crizotinib plus pembrolizumab in patients with previously untreated advanced non-small cell lung cancer with ALK Translocation. Oncologist 25, 562–e1012 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Ahn, M. J. et al. Brief Report: osimertinib plus durvalumab in patients with EGFR-mutated, advanced non-small cell lung cancer: a phase 1b, open-label, multicenter trial. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2022.01.012 (2022).

    Article  PubMed  Google Scholar 

  259. Ahn, M. J. et al. 136O: Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J. Thorac. Oncol. https://doi.org/10.1016/s1556-0864(16)30246-5 (2016).

    Article  PubMed  Google Scholar 

  260. Schoenfeld, A. J. et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. 30, 839–844 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Park, K. et al. Amivantamab in EGFR Exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).

    CAS  PubMed  Google Scholar 

  262. Cho, B. C. et al. 1258O - Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Ann. Oncol. 31, S754–S840 (2020).

    Google Scholar 

  263. Bauml, J. et al. Amivantamab in combination with lazertinib for the treatment of osimertinib-relapsed, chemotherapy-naïve EGFR mutant (EGFRm) non-small cell lung cancer (NSCLC) and potential biomarkers for response. J. Clin. Oncol. 39, 9006–9006 (2021).

    Google Scholar 

  264. Janne, P. A. et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 12, 74–89 (2022).

    CAS  PubMed  Google Scholar 

  265. Yonesaka, K. et al. HER3 augmentation via blockade of EGFR/AKT signaling enhances anticancer activity of HER3-targeting patritumab deruxtecan in EGFR-mutated non-small cell lung cancer. Clin. Cancer Res. 28, 390–403 (2022).

    CAS  PubMed  Google Scholar 

  266. Haikala, H. M. et al. EGFR inhibition enhances the cellular uptake and antitumor-activity of the HER3 antibody-drug conjugate HER3-DXd. Cancer Res. 82, 130–141 (2022).

    CAS  PubMed  Google Scholar 

  267. Zaman, S., Jadid, H., Denson, A. C. & Gray, J. E. Targeting Trop-2 in solid tumors: future prospects. OncoTargets Ther. 12, 1781–1790 (2019).

    CAS  Google Scholar 

  268. Gymnopoulos, M. et al. TR1801-ADC: a highly potent cMet antibody-drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol. Oncol. 14, 54–68 (2020).

    CAS  PubMed  Google Scholar 

  269. Pulford, K. et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood 96, 1605–1607 (2000).

    CAS  PubMed  Google Scholar 

  270. Passoni, L. et al. ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. Blood 99, 2100–2106 (2002).

    CAS  PubMed  Google Scholar 

  271. Ait-Tahar, K. et al. B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int. J. Cancer 118, 688–695 (2006).

    CAS  PubMed  Google Scholar 

  272. Ait-Tahar, K., Barnardo, M. C. & Pulford, K. CD4 T-helper responses to the anaplastic lymphoma kinase (ALK) protein in patients with ALK-positive anaplastic large-cell lymphoma. Cancer Res. 67, 1898–1901 (2007).

    CAS  PubMed  Google Scholar 

  273. Chiarle, R. et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat. Med. 14, 676–680 (2008).

    CAS  PubMed  Google Scholar 

  274. Voena, C. et al. Efficacy of a cancer vaccine against ALK-rearranged lung tumors. Cancer Immunol. Res. 3, 1333–1343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the myriad research groups that have contributed to advances in EGFR-mutant and ALK-rearranged lung cancers, including those whose important work was not able to be featured in this Review owing to space constraints. We thank the patients, their families and clinical trial teams whose generosity and dedication have enabled drug development and advances in the mechanistic understanding of drug resistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Jessica J. Lin.

Ethics declarations

Competing interests

L.V.S. has acted as a consultant of AstraZeneca, Genentech, Janssen, Pfizer and Takeda, and has received institutional research support from AstraZeneca, Boehringer–Ingelheim, Delfi and Novartis. J.J.L. has acted as a consultant for Bayer, Blueprint Medicines, C4 Therapeutics, Elevation Oncology, Genentech, Mirati Therapeutics, Novartis, Nuvalent and Turning Point Therapeutics, has received honoraria and travel support from Pfizer, has received institutional research funds from Bayer, Elevation Oncology, Hengrui Therapeutics, Linnaeus, Neon Therapeutics, Novartis, Nuvalent, Relay Therapeutics, Roche and Turning Point Therapeutics, and has received CME funding from MedStar Health, Northwell Health and OncLive. A.J.C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks R. Rosell, N. Yamamoto, Federico Cappuzzo and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, A.J., Sequist, L.V. & Lin, J.J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol 19, 499–514 (2022). https://doi.org/10.1038/s41571-022-00639-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00639-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer