Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular therapies and precision medicine for hepatocellular carcinoma

Abstract

The global burden of hepatocellular carcinoma (HCC) is increasing and might soon surpass an annual incidence of 1 million cases. Genomic studies have established the landscape of molecular alterations in HCC; however, the most common mutations are not actionable, and only ~25% of tumours harbour potentially targetable drivers. Despite the fact that surveillance programmes lead to early diagnosis in 40–50% of patients, at a point when potentially curative treatments are applicable, almost half of all patients with HCC ultimately receive systemic therapies. Sorafenib was the first systemic therapy approved for patients with advanced-stage HCC, after a landmark study revealed an improvement in median overall survival from 8 to 11 months. New drugs — lenvatinib in the frontline and regorafenib, cabozantinib, and ramucirumab in the second line — have also been demonstrated to improve clinical outcomes, although the median overall survival remains ~1 year; thus, therapeutic breakthroughs are still needed. Immune-checkpoint inhibitors are now being incorporated into the HCC treatment armamentarium and combinations of molecularly targeted therapies with immunotherapies are emerging as tools to boost the immune response. Research on biomarkers of a response or primary resistance to immunotherapies is also advancing. Herein, we summarize the molecular targets and therapies for the management of HCC and discuss the advancements expected in the near future, including biomarker-driven treatments and immunotherapies.

Key points

  • The global incidence of hepatocellular carcinoma (HCC) is increasing and might reach 1 million cases per year during the next decade.

  • Next-generation sequencing studies have established the landscape of molecular aberrations associated with HCC; although the most common mutations (in the TERT promoter, CTNNB1, and TP53) are not clinically actionable, ~25% of HCCs harbour potentially targetable driver alterations.

  • In phase III studies, survival benefits for patients with advanced-stage HCC have been demonstrated with five systemic therapies: sorafenib and lenvatinib in the first-line setting and regorafenib, cabozantinib, and ramucirumab in the second-line setting. Promising results have also been obtained with nivolumab in phase II studies in the second-line setting.

  • Prolonging the outcome of patients with advanced-stage HCC to beyond 1 year is an unmet medical need; refining the identification of patients with tumours responsive or intrinsically resistant to immunotherapy and optimizing combinations with molecularly targeted therapies are major avenues for research.

  • Proof-of-concept and biomarker-based trials of molecularly targeted agents should be implemented in both intermediate-stage and advanced-stage disease settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative molecular and immunological classification of HCC.
Fig. 2: Hepatocellular treatments recommended in international EASL guidelines4.

Figure adapted with permission from ref.4, Elsevier.

Fig. 3: Overall survival outcomes of phase III clinical trials testing molecularly targeted therapies or radioembolization with 90Y in patients with advanced-stage HCC.
Fig. 4: Molecularly targeted therapies for HCC and their target signalling pathways.
Fig. 5: Treatment strategy for advanced HCC.

Similar content being viewed by others

References

  1. Torre, L. A. et al. Global cancer statistics, 2012. CA. Cancer J. Clin. 65, 87–108 (2015).

    PubMed  Google Scholar 

  2. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2, 16018 (2016).

    PubMed  Google Scholar 

  3. Zucman-Rossi, J., Villanueva, A., Nault, J. C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239 (2015).

    CAS  PubMed  Google Scholar 

  4. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. https://doi.org/10.1016/j.jhep.2018.03.019 (2018).

    Article  Google Scholar 

  5. Bruix, J., S. M. A. A. for the S. of L. D. Management of hepatocellular carcinoma: an update. Hepatology 53, 1020–1022 (2011).

    PubMed  Google Scholar 

  6. Llovet, J. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    CAS  PubMed  Google Scholar 

  7. Kudo, M. et al. A randomised phase 3 trial of lenvatinib versus sorafenib in firstline treatment of patients with unresectable hepatocellular carcinoma. Lancet 391, 1163–1173 (2018).

    CAS  PubMed  Google Scholar 

  8. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    CAS  PubMed  Google Scholar 

  9. Abou-Alfa, G.K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Google Scholar 

  10. Zhu, A. X. et al. REACH-2: A randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafe [abstract]. J. Clin. Oncol. 36, 4003 (2018).

    Google Scholar 

  11. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Llovet, J. M. & Hernandez-Gea, V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 20, 2072–2079 (2014).

    CAS  PubMed  Google Scholar 

  13. Sangiovanni, A. et al. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 126, 1005–1014 (2004).

    PubMed  Google Scholar 

  14. Nault, J.-C. et al. Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology 152, 880–894.e6 (2017).

    CAS  PubMed  Google Scholar 

  15. Sia, D., Villanueva, A., Friedman, S. L. & Llovet, J. M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745–761 (2016).

    PubMed  Google Scholar 

  16. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Charles Nault, J. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Google Scholar 

  18. Wheeler, D. A. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).

    CAS  PubMed Central  Google Scholar 

  19. Ahn, S.-M. et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60, 1972–1982 (2014).

    CAS  PubMed  Google Scholar 

  20. Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    CAS  PubMed  Google Scholar 

  21. Chiang, D. Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Quetglas, I. et al. IGF2 is up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology 151, 1192–1205 (2016).

    CAS  PubMed  Google Scholar 

  23. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    CAS  PubMed  Google Scholar 

  25. Lee, J.-S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).

    CAS  PubMed  Google Scholar 

  26. Toffanin, S. et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 140, 1618–1628 (2011).

    CAS  PubMed  Google Scholar 

  27. Llovet, J. M., Villanueva, A., Lachenmayer, A. & Finn, R. S. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat. Rev. Clin. Oncol. 12, 408–424 (2015).

    CAS  PubMed  Google Scholar 

  28. Hoshida, Y. et al. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin. Liver Dis. 30, 35–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, K. et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58, 706–717 (2013).

    PubMed  Google Scholar 

  30. Villanueva, A. et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61, 1945–1956 (2015).

    CAS  PubMed  Google Scholar 

  31. Lachenmayer, A. et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin. Cancer Res. 18, 4997–5007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  34. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    CAS  PubMed  Google Scholar 

  35. Weis, S. M. & Cheresh, D. A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).

    CAS  PubMed  Google Scholar 

  36. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    CAS  PubMed  Google Scholar 

  37. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yau, T. et al. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 146, 1691–1700.e3 (2014).

    PubMed  Google Scholar 

  39. [No authors listed]. A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 28, 751–755 (1998).

    Google Scholar 

  40. Sobin, L. H. & Compton, C. C. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer 116, 5336–5339 (2010).

    PubMed  Google Scholar 

  41. Kudo, M., Chung, H. & Osaki, Y. Prognostic staging system for hepatocellular carcinoma (CLIP score): its value and limitations, and a proposal for a new staging system, the Japan Integrated Staging Score (JIS score). J. Gastroenterol. 38, 207–215 (2003).

    PubMed  Google Scholar 

  42. Llovet, J. M., Brú, C. & Bruix, J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin. Liver Dis. 19, 329–338 (1999).

    CAS  PubMed  Google Scholar 

  43. Bruix, J. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. Oncol. 16, 1344–1354 (2015).

    CAS  PubMed  Google Scholar 

  44. Llovet, J. M. et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359, 1734–1739 (2002).

    PubMed  Google Scholar 

  45. Lo, C.-M. et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35, 1164–1171 (2002).

    CAS  PubMed  Google Scholar 

  46. Llovet, J. M. & Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37, 429–442 (2003).

    CAS  PubMed  Google Scholar 

  47. Lencioni, R. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J. Hepatol. 64, 1090–1098 (2016).

    CAS  PubMed  Google Scholar 

  48. Meyer, T. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 565–575 (2017).

    PubMed  Google Scholar 

  49. Kudo, M. et al. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology 60, 1697–1707 (2014).

    CAS  PubMed  Google Scholar 

  50. Qin, S. et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J. Clin. Oncol. 31, 3501–3508 (2013).

    CAS  PubMed  Google Scholar 

  51. Abou-Alfa, G. K. et al. Doxorubicin plus sorafenib versus doxorubicin alone in patients with advanced hepatocellular carcinoma. JAMA 304, 2154 (2010).

    CAS  PubMed  Google Scholar 

  52. Yeo, W. et al. A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl Cancer Inst. 97, 1532–1538 (2005).

    CAS  PubMed  Google Scholar 

  53. Chow, P. et al. High-dose tamoxifen in the treatment of inoperable hepatocellular carcinoma: a multicenter randomized controlled trial. Hepatology 36, 1221–1226 (2002).

    CAS  PubMed  Google Scholar 

  54. Dalhoff, K. et al. A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. Br. J. Cancer 89, 252–257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, A.-L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).

    CAS  PubMed  Google Scholar 

  56. Reig, M. et al. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J. Hepatol. 61, 318–324 (2014).

    CAS  PubMed  Google Scholar 

  57. Bruix, J. et al. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase 3 studies. J. Hepatol. 67, 999–1008 (2017).

    CAS  PubMed  Google Scholar 

  58. Iavarone, M. et al. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology 54, 2055–2063 (2011).

    CAS  PubMed  Google Scholar 

  59. Ganten, T. M. et al. Sorafenib in patients with hepatocellular carcinoma—results of the Observational INSIGHT Study. Clin. Cancer Res. 23, 5720–5728 (2017).

    CAS  PubMed  Google Scholar 

  60. Marrero, J. A. et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: the GIDEON study. J. Hepatol. 65, 1140–1147 (2016).

    CAS  PubMed  Google Scholar 

  61. Kudo, M. et al. Regional differences in sorafenib-treated patients with hepatocellular carcinoma: GIDEON observational study. Liver Int. 36, 1196–1205 (2016).

    CAS  PubMed  Google Scholar 

  62. Wilhelm, S. M. et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129–3140 (2008).

    CAS  PubMed  Google Scholar 

  63. Llovet, J. M. et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 18, 2290–2300 (2012).

    CAS  PubMed  Google Scholar 

  64. Pinyol, R. et al. Molecular predictors of recurrence prevention with sorafenib as adjuvant therapy in hepatocellular carcinoma: biomarker study of the STORM phase III trial. J. Hepatol. 66, S12–S13 (2017).

    Google Scholar 

  65. Llovet, J. M. et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl Cancer Inst. 100, 698–711 (2008).

    PubMed  Google Scholar 

  66. Lencioni, R. et al. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J. Hepatol. 66, 1166–1172 (2017).

    PubMed  Google Scholar 

  67. Montal, R., Lencioni, R. & Llovet, J. M. Reply to: mRECIST for systemic therapies: more evidence is required before recommendations could be made. J. Hepatol. 67, 196–197 (2017).

    PubMed  Google Scholar 

  68. Johnson, P. J. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J. Clin. Oncol. 31, 3517–3524 (2013).

    CAS  PubMed  Google Scholar 

  69. Cheng, A.-L. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J. Clin. Oncol. 31, 4067–4075 (2013).

    CAS  PubMed  Google Scholar 

  70. Cainap, C. et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 33, 172–179 (2015).

    CAS  PubMed  Google Scholar 

  71. Zhu, aX. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 33, 559–566 (2014).

    PubMed  Google Scholar 

  72. Vilgrain, V. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 18, 1624–1636 (2017).

    CAS  PubMed  Google Scholar 

  73. Chow, P. K. H. et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J. Clin. Oncol. 36, 1913–1921 (2018).

    PubMed  Google Scholar 

  74. Ricke, J. et al. The impact of combining Selective Internal Radiation Therapy (SIRT) with sorafenib on overall survival in patients with advanced hepatocellular carcinoma: the SORAMIC trial palliative cohort. J. Hepatol. 68, S102 (2018).

    Google Scholar 

  75. Matsui, J. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 14, 5459–5465 (2008).

    CAS  PubMed  Google Scholar 

  76. Ikeda, K. et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J. Gastroenterol. 52, 512–519 (2017).

    CAS  PubMed  Google Scholar 

  77. Zhu, A. X. et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA 312, 57–67 (2014).

    PubMed  Google Scholar 

  78. Zhu, A. X. et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 16, 859–870 (2015).

    CAS  PubMed  Google Scholar 

  79. Llovet, J. M. et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J. Clin. Oncol. 31, 3509–3516 (2013).

    CAS  PubMed  Google Scholar 

  80. Rimassa, L. et al. Second-line tivantinib (ARQ 197) versus placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): results of the METIV-HCC phase III trial. J. Clin. Oncol. 35 (Suppl. 15), 4000 (2017).

    Google Scholar 

  81. Zhu, A. X. et al. KEYNOTE-224: Phase II study of pembrolizumab in patients with previously treated advanced hepatocellular carcinoma. J. Clin. Oncol. 35 (Suppl. 4), TPS504 (2017).

    Google Scholar 

  82. Wilhelm, S. M. et al. Regorafenib (BAY 73–4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 129, 245–255 (2011).

    CAS  PubMed  Google Scholar 

  83. Bruix, J. et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: Multicentre, open-label, phase II safety study. Eur. J. Cancer 49, 3412–3419 (2013).

    CAS  PubMed  Google Scholar 

  84. Finn, R. S. et al. Outcomes with sorafenib followed by regorafenib or placebo for HCC: additional analyses from the phase 3 RESORCE trial. J. Hepatol. https://doi.org/10.1016/j.jhep.2018.04.010 (2018).

    Article  PubMed  Google Scholar 

  85. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    CAS  PubMed  Google Scholar 

  86. Kelley, R. K. et al. Cabozantinib in hepatocellular carcinoma: Results of a phase 2 placebo-controlled randomized discontinuation study. Ann. Oncol. 28, 528–534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Goyal, L., Muzumdar, M. D. & Zhu, A. X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res. 19, 2310–2318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhu, A. X. et al. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin. Cancer Res. 19, 6614–6623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Terentiev, A. A. & Moldogazieva, N. T. Alpha-fetoprotein: a renaissance. Tumor Biol. 34, 2075–2091 (2013).

    CAS  Google Scholar 

  90. Shan, Y. F. et al. Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status. Med. Oncol. 28, 1012–1016 (2011).

    CAS  PubMed  Google Scholar 

  91. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 451–461 (2015).

    Google Scholar 

  92. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    CAS  PubMed  Google Scholar 

  94. Ribas, A. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med. 373, 1490–1492 (2015).

    PubMed  Google Scholar 

  95. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Iñarrairaegui, M., Melero, I. & Sangro, B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin. Cancer Res. 24, 1518–1524 (2017).

    PubMed  Google Scholar 

  97. Sangro, B. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59, 81–88 (2013).

    CAS  PubMed  Google Scholar 

  98. El-Khoueiry, A. B. et al. Impact of antitumor activity on survival outcomes, and nonconventional benefit, with nivolumab (NIVO) in patients with advanced hepatocellular carcinoma (aHCC): subanalyses of CheckMate-040. J. Clin. Oncol. 36 (Suppl. 4), 475 (2018).

    Google Scholar 

  99. US Food & Drug Administration. FDA grants accelerated approval to nivolumab for HCC previously treated with sorafenib (FDA, 2017).

  100. Zhu, A. X. et al. KEYNOTE-224: Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. J. Clin. Oncol. 36 (Suppl. 4), 209 (2018).

    Google Scholar 

  101. Finn, R. S. et al. KEYNOTE-240: Randomized phase III study of pembrolizumab versus best supportive care for second-line advanced hepatocellular carcinoma. J. Clin. Oncol. 35 (Suppl. 4), TPS503 (2017).

    Google Scholar 

  102. Wainberg, Z. A. et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol. 35 (Suppl. 4), 4071 (2017).

    Google Scholar 

  103. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    CAS  PubMed  Google Scholar 

  104. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–129 (2016).

    Google Scholar 

  105. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Crocenzi, T. S. et al. Nivolumab (nivo) in sorafenib (sor)-naive and -experienced pts with advanced hepatocellular carcinoma (HCC): CheckMate 040 study. J. Clin. Oncol. 35 (Suppl. 15), 4013 (2017).

    Google Scholar 

  107. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kelley, R. K. et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): phase I safety and efficacy analyses. J. Clin. Oncol. 35 (Suppl. 15), 4073 (2017).

    Google Scholar 

  110. Lee, C.-H. et al. A phase 1b/2 trial of lenvatinib plus pembrolizumab in patients with renal cell carcinoma. Ann. Oncol. 28 (Suppl. 5), 295–329 (2017).

    Google Scholar 

  111. Genentech. FDA grants breakthrough therapy designation for Genentech’s TECENTRIQ in combination with avastin as first-line treatment for advanced or metastatic hepatocellular carcinoma (HCC). Genentech https://www.gene.com/media/press-releases/14736/2018-07-17/fda-grants-breakthrough-therapy-designat?utm_source=F&utm_medium=P&utm_term=15538&utm_content=TecentriqHCCBTD&utm_campaign=TecentriqHCCBTD (2018).

  112. Collins, D. C., Sundar, R., Lim, J. S. J. & Yap, T. A. Towards precision medicine in the clinic: from biomarker discovery to novel therapeutics. Trends Pharmacol. Sci. 38, 25–40 (2017).

    CAS  PubMed  Google Scholar 

  113. Santoro, A. et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 14, 55–63 (2013).

    CAS  PubMed  Google Scholar 

  114. Basilico, C. et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin. Cancer Res. 19, 2381–2392 (2013).

    CAS  PubMed  Google Scholar 

  115. Babina, I. S. & Turner, N. C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 17, 318–332 (2017).

    CAS  PubMed  Google Scholar 

  116. Javle, M. et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol. 36, 276–282 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Konecny, G. E. et al. Second-line dovitinib (TKI258) in patients with FGFR2-mutated or FGFR2-non-mutated advanced or metastatic endometrial cancer: a non-randomised, open-label, two-group, two-stage, phase 2 study. Lancet Oncol. 16, 686–694 (2015).

    CAS  PubMed  Google Scholar 

  118. Jeong Lee, H. et al. Fibroblast growth factor receptor isotype expression and its association with overall survival in patients with hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 60–70 (2015).

    Google Scholar 

  119. Wu, X. et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J. Biol. Chem. 285, 5165–5170 (2010).

    CAS  PubMed  Google Scholar 

  120. Gao, L. et al. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J. Exp. Clin. Cancer Res. 36, 1–10 (2017).

    Google Scholar 

  121. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Finn, R. S. et al. Gains in FGF19 are predictive of response to the fibroblast growth factor receptor (FGFR) small molecule tyrosine kinase inhibitor BGJ 398 in vitro [abstract 3858]. Cancer Res. 72 (Suppl. 8), 3858 (2012).

    Google Scholar 

  123. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective Pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    CAS  PubMed  Google Scholar 

  124. Hagel, M. et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 5, 424–437 (2015).

    CAS  PubMed  Google Scholar 

  125. Joshi, J. J. et al. H3B-6527is a potent and selective inhibitor of FGFR4 in FGF19-driven hepatocellular carcinoma. Cancer Res. 77, 6999–7013 (2017).

    CAS  PubMed  Google Scholar 

  126. Harris, J. BLU-554 associated with improved response in HCC. OncLive https://www.Onclive.com/Conference-Coverage/Ilca-2017/blu554-Associated-With-Improved-Response-in-hcc (2017).

  127. Matter, M. S., Decaens, T., Andersen, J. B. & Thorgeirsson, S. S. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J. Hepatol. 60, 855–865 (2014).

    CAS  PubMed  Google Scholar 

  128. Villanueva, A. et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135, 1972–1983 (2008).

    CAS  PubMed  Google Scholar 

  129. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    CAS  PubMed  Google Scholar 

  130. Lim, H. Y. et al. A phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86–9766) plus sorafenib for Asian patients with unresectable hepatocellular carcinoma. Clin. Cancer Res. 20, 5976–5985 (2014).

    CAS  PubMed  Google Scholar 

  131. Lim, H. Y. et al. Phase II studies with refametinib or refametinib plus sorafenib in patients with ras-mutated hepatocellular carcinoma. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-3588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sia, D. & Llovet, J. M. Liver cancer: Translating ‘–omics’ results into precision medicine for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 571–572 (2017).

    PubMed  Google Scholar 

  133. de Gramont, A. et al. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12, 197–212 (2014).

    PubMed  Google Scholar 

  134. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    CAS  PubMed  Google Scholar 

  135. Xu, R. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16, 1155–1162 (2017).

    CAS  PubMed  Google Scholar 

  136. Mullard, A. Reining in the supersized Phase I cancer trial. Nat. Rev. Drug Discov. 15, 371–373 (2016).

    CAS  PubMed  Google Scholar 

  137. Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Torrecilla, S. et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J. Hepatol. 67, 1222–1231 (2017).

    PubMed  Google Scholar 

  139. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    CAS  PubMed  Google Scholar 

  140. Weber, J. S., Yang, J. C., Atkins, M. B. & Disis, M. L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 33, 2092–2099 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Masucci, G. V. et al. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I — pre-analytical and analytical validation. J. Immunother. Cancer 4, 1–25 (2016).

    PubMed Central  Google Scholar 

  142. Poh, A. First tissue-agnostic drug approval issued. Cancer Discov. 7, 656 (2017).

    Google Scholar 

  143. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of J.M.L. is supported by grants from the European Commission Horizon 2020 programme (HEPCAR, proposal number 667273–2), the US Department of Defense (CA150272P3), the US National Cancer Institute (P30 CA196521), the Samuel Waxman Cancer Research Foundation, the Spanish National Health Institute (SAF 2016–76390), Asociación Española Contra el Cáncer (AECC), and the Generalitat de Catalunya (AGAUR, SGR-1162 and SGR-1358). The work of D.S. is supported by the Gilead Sciences Research Scholar Program in Liver Disease.

Reviewer information

Nature Reviews Clinical Oncology thanks G. Gores, J.-L. Raoul, and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to each stage of the preparation of this manuscript for publication.

Corresponding author

Correspondence to Josep M. Llovet.

Ethics declarations

Competing interests

J.M.L. is a consultant to Bayer HealthCare, Bristol-Myers Squibb (BMS), Celsion, Eisai, Eli Lilly, Exelixis, and Ipsen and has active research funding from Bayer HealthCare, BMS, and Eisai. R.S.F. is a consultant to Bayer HealthCare, BMS, Eisai, Eli Lilly, Merck, Pfizer, and Roche. R.M. and D.S. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llovet, J.M., Montal, R., Sia, D. et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15, 599–616 (2018). https://doi.org/10.1038/s41571-018-0073-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0073-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer