Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathogenesis and systemic therapies for hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) remains one of the most prevalent and deadliest cancers. The poor outcome associated with HCC is dramatically changing due to the advent of effective systemic therapies. Here we discuss the molecular pathogenesis of HCC, molecular classes and determinants of heterogeneity. In addition, effective single-agent and combination systemic therapies involving immunotherapies as standard of care are analyzed. Finally, we propose a flowchart of sequential therapies, explore mechanisms of resistance and address the need for predictive biomarkers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular pathogenesis of HCC: step-by-step process, genomic hits and clonal evolution.
Fig. 2: Molecular depiction of systemic therapies in HCC.
Fig. 3: Staging system and treatment allocation for HCC.

Similar content being viewed by others

References

  1. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7, 6 (2021).

    Article  PubMed  Google Scholar 

  2. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

  3. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

  4. Zucman-Rossi, J., Villanueva, A., Nault, J. C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Llovet, J. M., Montal, R., Sia, D. & Finn, R. S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616 (2018).

    Article  PubMed  Google Scholar 

  6. Llovet, J. M. et al. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19, 151–172 (2021).

  7. Ding, X. et al. Genomic and epigenomic features of primary and recurrent hepatocellular carcinomas. Gastroenterology 157, 1630–1645 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Sia, D., Villanueva, A., Friedman, S. L. & Llovet, J. M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745–761 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Xue, R. et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology 150, 998–1008 (2016).

    Article  PubMed  Google Scholar 

  10. Losic, B. et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 11, 291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Llovet, J. M., Burroughs, A. & Bruix, J. Hepatocellular carcinoma. Lancet 362, 1907–1917 (2003).

    Article  PubMed  Google Scholar 

  13. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 282–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, A. X. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19, 940–952 (2018).

  20. FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma. FDA (10 March 2020).

  21. Yau, T. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 6, e204564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Llovet, J. M. et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 18, 293–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Llovet, J. M. et al. Trial design and endpoints in hepatocellular carcinoma: AASLD Consensus Conference. Hepatology 73, 158–191 (2021).

    Article  PubMed  Google Scholar 

  24. Hernandez‐Meza, G. et al. DNA-methylation profiling of human hepatocarcinogenesis. Hepatology 74, 183–199 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Meunier, L. et al. DNA methylation signatures reveal the diversity of processes remodeling hepatocellular carcinoma methylomes. Hepatology 74, 816–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Hlady, R. A. et al. Interferon drives hepatitis C virus scarring of the epigenome and creates targetable vulnerabilities following viral clearance. Hepatology 75, 983–996 (2021).

  27. Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

    Article  PubMed  Google Scholar 

  28. Bruno, S. et al. Human liver stem cells: a liver-derived mesenchymal stromal cell-like population with pro-regenerative properties. Front. Cell Dev. Biol. 9, 644088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran, P., Matchett, K. P., Dobie, R., Wilson-Kanamori, J. R. & Henderson, N. C. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457–472 (2020).

    Article  PubMed  Google Scholar 

  30. Lee, T. K.-W., Guan, X.-Y. & Ma, S. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 19, 26–44 (2021).

  31. Li, W., Li, L. & Hui, L. Cell plasticity in liver regeneration. Trends Cell Biol. 30, 329–338 (2020).

    Article  PubMed  Google Scholar 

  32. Hirsova, P. et al. Hepatocyte apoptosis is tumor promoting in murine nonalcoholic steatohepatitis. Cell Death Dis. 11, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bayard, Q. et al. Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress. Nat. Commun. 9, 5235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gellert-Kristensen, H. et al. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatology 72, 845–856 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, J. D. et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nault, J. C. & Letouze, E. Mutational processes in hepatocellular carcinoma: the story of aristolochic acid. Semin Liver Dis. 39, 334–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Ningarhari, M. et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J. Hepatol. 74, 1155–1166 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Torrecilla, S. et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J. Hepatol. 67, 1222–1231 (2017).

    Article  PubMed  Google Scholar 

  39. Lin, S. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, T. et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 28, 1822–1837 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Wheeler, D. A. & Roberts, L. R. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  42. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, R. D. et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 9, 1696–1707 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Chiang, D. Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez-Quetglas, I. et al. IGF2 is up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology 151, 1192–1205 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Noonan, A. & Pawlik, T. M. Hepatocellular carcinoma: an update on investigational drugs in phase I and II clinical trials. Expert Opin. Investig. Drugs 28, 941–949 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Luo, X.-Y., Wu, K.-M. & He, X.-X. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J. Exp. Clin. Cancer Res. 40, 172 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Toffanin, S. et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 140, 1618–1628 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Montironi, C. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut https://doi.org/10.1136/gutjnl-2021-325918 (2022).

  56. Wang, K. et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58, 706–717 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Bassaganyas, L. et al. Copy-number alteration burden differentially impacts immune profiles and molecular features of hepatocellular carcinoma. Clin. Cancer Res. 26, 6350–6361 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villanueva, A. et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61, 1945–1956 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lachenmayer, A. et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin. Cancer Res. 18, 4997–5007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pinyol, R. et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 865–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Sangro, B. et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 73, 1460–1469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haber, P. K. et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Oral Abstracts. Hepatology 74, 1–156 (2021).

    Google Scholar 

  63. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khatib, S., Pomyen, Y., Dang, H. & Wang, X. W. Understanding the cause and consequence of tumor heterogeneity. Trends Cancer 6, 267–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Tao, Y. et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl Acad. Sci. USA 108, 12042–12047 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, A. et al. Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J. Hepatol. 67, 293–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Um, T. H. et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J. Hepatol. 54, 939–947 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Heinrich, S. et al. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J. Hepatol. 74, 700–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Zheng, H. et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68, 127–140 (2018).

    Article  PubMed  Google Scholar 

  77. Ma, L. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36, 418–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Llovet, J. M., Montal, R. & Villanueva, A. Randomized trials and endpoints in advanced HCC: role of PFS as a surrogate of survival. J. Hepatol. 70, 1262–1277 (2019).

    Article  PubMed  Google Scholar 

  80. Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Gramont, A. et al. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12, 197–212 (2015).

    Article  PubMed  Google Scholar 

  82. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vogel, A. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv238–iv255 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Marrero, J. A. et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 68, 723–750 (2018).

    Article  PubMed  Google Scholar 

  85. Galle, P. R. et al. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  86. Omata, M. et al. Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol. Int. 11, 317–370 (2017).

    Article  PubMed  Google Scholar 

  87. Llovet, J. M. & Ducreux, M. EASL–EORTC Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. 56, 908–943 (2012).

    Article  Google Scholar 

  88. Singal, A. G. et al. International Liver Cancer Association (ILCA) white paper on biomarker development for hepatocellular carcinoma. Gastroenterology 160, 2572–2584 (2021).

    Article  PubMed  Google Scholar 

  89. Rebouissou, S. et al. Proliferation markers are associated with MET expression in hepatocellular carcinoma and predict tivantinib sensitivity in vitro. Clin. Cancer Res. 23, 4364–4375 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Rimassa, L. et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 19, 682–693 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Lim, H. Y. et al. Phase II studies with refametinib or refametinib plus sorafenib in patients with RAS-mutated hepatocellular carcinoma. Clin. Cancer Res. 24, 4650–4661 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Hatlen, M. A. et al. Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma. Cancer Discov. 9, 1686–1695 (2019).

    CAS  PubMed  Google Scholar 

  93. Abou-Alfa, G. K. et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J. Clin. Oncol. 40, 379 (2022).

    Article  Google Scholar 

  94. Exelixis and Ipsen announce cabozantinib in combination with an immune checkpoint inhibitor significantly improved progression-free survival in phase 3 COSMIC-312 pivotal trial in patients with previously untreated advanced liver cancer. Exelixis (28 June 2021).

  95. Vogel, A. et al. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann. Oncol. 32, 801–805 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, L. T. et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with intermediate and advanced/relapsed hepatocellular carcinoma: a TOS–ESMO initiative endorsed by CSCO, ISMPO, JSMO, KSMO, MOS and SSO. Ann. Oncol. 31, 334–351 (2020).

    Article  PubMed  Google Scholar 

  97. Gordan, J. D. et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J. Clin. Oncol. 38, 4317–4345 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Llovet, J. M., Brú, C. & Bruix, J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin. Liver Dis. 19, 329–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Mazzaferro, V. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 334, 693–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Yao, F. Y. et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology 61, 1968–1977 (2015).

    Article  PubMed  Google Scholar 

  101. Haber, P. K. et al. Evidence-based management of hepatocellular carcinoma: systematic review and meta-analysis of randomized controlled trials (2002–2020). Gastroenterology 161, 879–898 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Raoul, J.-L. et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat. Rev. 72, 28–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Kadalayil, L. et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann. Oncol. 24, 2565–2570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Attallah, A. M. et al. HCC-ART score, a simple, highly sensitive and specific test for early diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Br. J. Cancer 109, 1657–1665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Palmer, D. H., Malagari, K. & Kulik, L. M. Role of locoregional therapies in the wake of systemic therapy. J. Hepatol. 72, 277–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Vincenzi, B. et al. Prognostic relevance of objective response according to EASL criteria and mRECIST criteria in hepatocellular carcinoma patients treated with loco-regional therapies: a literature-based meta-analysis. PLoS ONE 10, e0133488 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Lencioni, R. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J. Hepatol. 64, 1090–1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Meyer, T. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 565–575 (2017).

    Article  PubMed  Google Scholar 

  109. Kudo, M. et al. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology 60, 1697–1707 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Reig, M. et al. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J. Hepatol. 61, 318–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Sung, M. W. et al. Association between overall survival and adverse events with lenvatinib treatment in patients with hepatocellular carcinoma (REFLECT). J. Clin. Oncol. 37, 317 (2019).

    Article  Google Scholar 

  112. Llovet, J. M. et al. Prognostic and predictive factors in patients with advanced HCC and elevated apha-fetoprotein treated with ramucirumab in two randomized phase III trial. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-4000 (2022).

  113. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Llovet, J. M. & Lencioni, R. mRECIST for HCC: performance and novel refinements. J. Hepatol. 72, 288–306 (2020).

    Article  PubMed  Google Scholar 

  115. Cheng, A.-L. L. et al. Efficacy and safety of sorafenib in patients in the Asia–Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Bruix, J. et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J. Hepatol. 57, 821–829 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Díaz-González, Á. et al. Systematic review with meta-analysis: the critical role of dermatological events in patients with hepatocellular carcinoma treated with sorafenib. Aliment. Pharmacol. Ther. 49, 482–491 (2019).

    Article  PubMed  Google Scholar 

  118. Marrero, J. A. et al. Observational registry of sorafenib use in clinical practice across Child–Pugh subgroups: the GIDEON study. J. Hepatol. 65, 1140–1147 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. He, M. K. et al. Sorafenib plus hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin vs sorafenib alone for hepatocellular carcinoma with portal vein invasion: a randomized clinical trial. JAMA Oncol. 5, 953–960 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Johnson, P. J. et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J. Clin. Oncol. 31, 3517–3524 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Cheng, A.-L. et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J. Clin. Oncol. 31, 4067–4075 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Cainap, C. et al. Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 33, 172–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Zhu, A. X. et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 33, 559–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Abou-Alfa, G. K. et al. Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol. 5, 1582–1588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Jouve, J. L. et al. Pravastatin combination with sorafenib does not improve survival in advanced hepatocellular carcinoma. J. Hepatol. 71, 516–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Park, J. W. et al. Sorafenib with or without concurrent transarterial chemoembolization in patients with advanced hepatocellular carcinoma: the phase III STAH trial. J. Hepatol. 70, 684–691 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Llovet, J. M. & Hernandez-Gea, V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 20, 2072–2079 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Vilgrain, V. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 18, 1624–1636 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Chow, P. K. H. et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia–Pacific patients with hepatocellular carcinoma. J. Clin. Oncol. 36, 1913–1921 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Wilhelm, S. M. et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 129, 245–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Finn, R. S. et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase III RESORCE trial. J. Hepatol. 69, 353–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, H.-D. et al. Regorafenib in patients with advanced Child–Pugh B hepatocellular carcinoma: a multicentre retrospective study. Liver Int. 40, 2544–2552 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Zhu, A. X. et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 16, 859–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Llovet, J. M. et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J. Clin. Oncol. 31, 3509–3516 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Finn, R. S., Ryoo, B., Merle, P., Kudo, M. & Bouattour, M. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J. Clin. Oncol. 38, 193–202 (2019).

    Article  PubMed  Google Scholar 

  137. Merck announces KEYTRUDA® (pembrolizumab) met primary endpoint of overall survival (OS) in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Merck (27 September 2021).

  138. Yau, T. et al. CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 30, v874–v875 (2019).

    Article  Google Scholar 

  139. Rahma, O. E. & Hodi, F. S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, M. S. et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 21, 808–820 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Cheng, A.-L. et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 76, 862–873 (2021).

  142. Finn, R. S. et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J. Clin. Oncol. 38, 2960–2970 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kelley, R. K. et al. Cabozantinib in combination with atezolizumab versus sorafenib in treatment-naive advanced hepatocellular carcinoma: COSMIC-312 phase III study design. Future Oncol. 16, 1525–1536 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kelley, R. K. et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J. Clin. Oncol. 39, 2991–3001 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. de Franchis, R. Expanding consensus in portal hypertension. J. Hepatol. 63, 743–752 (2015).

    Article  PubMed  Google Scholar 

  148. Benson, A. B. et al. Hepatobiliary cancers, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 19, 541–565 (2021).

    Article  PubMed  Google Scholar 

  149. Bruix, J., Chan, S. L., Galle, P. R., Rimassa, L. & Sangro, B. Systemic treatment of hepatocellular carcinoma: an EASL position paper. J. Hepatol. 75, 960–974 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Yau, T. et al. Outcomes of tyrosine kinase inhibitors after immunotherapy in advanced hepatocellular carcinoma: a multi-center study. J. Clin. Oncol. 39, e16181 (2021).

    Article  Google Scholar 

  151. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Rizvi, A. H. et al. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 35, 551–560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Su, S. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172, 841–856 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39, 866–882 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Shen, Y.-C. et al. Reliability of a single-region sample to evaluate tumor immune microenvironment in hepatocellular carcinoma. J. Hepatol. 72, 489–497 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

  161. Ikeda, M. et al. Phase I studies of peptide vaccine cocktails derived from GPC3, WDRPUH and NEIL3 for advanced hepatocellular carcinoma. Immunotherapy 13, 371–385 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Guo, M., Zhang, H., Zheng, J. & Liu, Y. Glypican-3: a new target for diagnosis and treatment of hepatocellular carcinoma. J. Cancer 11, 2008–2021 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shih, T.-C., Wang, L., Wang, H.-C. & Wan, Y.-J. Y. Glypican-3: a molecular marker for the detection and treatment of hepatocellular carcinoma. Liver Res. 4, 168–172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rochigneux, P. et al. Adoptive cell therapy in hepatocellular carcinoma: biological rationale and first results in early phase clinical trials. Cancers 13, 271 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  165. Docta, R. Y. et al. Tuning T-cell receptor affinity to optimize clinical risk–benefit when targeting α-fetoprotein-positive liver cancer. Hepatology 69, 2061–2075 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Sangro, B., Sarobe, P., Hervás-Stubbs, S. & Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 18, 525–543 (2021).

    Article  PubMed  Google Scholar 

  167. von Felden, J., Garcia-Lezana, T., Schulze, K., Losic, B. & Villanueva, A. Liquid biopsy in the clinical management of hepatocellular carcinoma. Gut 69, 2025–2034 (2020).

    Article  CAS  Google Scholar 

  168. Kaseb, A. O. et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin. Cancer Res. 25, 6107–6118 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Labgaa, I. et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 37, 3740–3752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ahn, S.-M. et al. A genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60, 2–807 (2014).

  171. Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Piqué and F. Castet, members of J.M.L.’s laboratory, for their support in the production of this manuscript. J.M.L. is supported by grants from Cancer Research UK, the Fondazione AIRC and the Fundación Científica de la Asociación Española Contra el Cáncer (HUNTER, reference C9380/A26813), the NIH (RO1DK56621 and RO1DK128289), the Samuel Waxman Cancer Research Foundation, EIT Health (CRISH2, reference 18053), the Generalitat de Catalunya (AGAUR, SGR-1358), the Spanish National Health Institute (MICINN, PID2019-105378RB-I00) and the Acadèmia de Ciències Mèdiques i de la Salut de Catalunya i de Balears (reference BECA_ACADEMIA21_001). X.W.W. is supported by grants (Z01 BC 010877, Z01 BC 010876, Z01 BC 010313 and ZIA BC 011870) from the intramural research program of the Center for Cancer Research, National Cancer Institute of the US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Llovet.

Ethics declarations

Competing interests

J.M.L. received research support from Bayer HealthCare Pharmaceuticals, Eisai, Boehringer Ingelheim and Ipsen and consulting fees from Merck, Eli Lilly, Eisai, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Ipsen, Genentech, Roche, Glycotest, Nucleix, Omega Therapeutics, Iylon, Mina Alpha, Boston Scientific and AstraZeneca. H.L.R. has acted in an advisory capacity for Boston Scientific and Sirtex, and received speaker fees from Eisai and Bayer. A.V. has received consulting fees from Boehringer Ingelheim, FirstWorld, Natera, Cambridge Healthcare Research and Genentech; advisory board fees from Bristol Myers Squibb, Gilead and NGM Pharmaceuticals; and research support from Eisai. R.K.K. received research support from Agios, AstraZeneca, Bayer, Bristol Myers Squibb, Eli Lilly, EMD Serono, Exelixis, Genentech–Roche, Merck, Partner Therapeutics, Novartis, QED, Relay Therapeutics, Surface Oncology and Taiho; and consulting and/or advisory fees from Exact Sciences, Genentech–Roche and Gilead. A.E.-K. has received research support from Astex, AstraZeneca and Fulgent; advisory or consulting fees from Bayer, Bristol Myers Squibb, Eisai, Merck, Exelixis, AstraZeneca, Roche–Genentech, Agenus, ABL Bio, QED, Gilead, CytomX, Pieris and EMD Serono. G.J.G., X.W.W. and R.P. have no competing interests.

Peer review

Peer review information

Nature Cancer thanks Michel Ducreux, Jan Tchorz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llovet, J.M., Pinyol, R., Kelley, R.K. et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat Cancer 3, 386–401 (2022). https://doi.org/10.1038/s43018-022-00357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00357-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research