Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Triplet–triplet annihilation photon upconversion-mediated photochemical reactions

Abstract

Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet–triplet annihilation upconversion (TTA-UC) stands out — demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of triplet–triplet annihilation upconversion photochemical reactions, molecular structures and photochemical reaction mechanisms.
Fig. 2: Representative three components triplet–triplet annihilation upconversion-mediated photocatalysis and bond activation reactions.
Fig. 3: Three-component triplet–triplet annihilation upconversion-mediated photopolymerization reactions and their applications to 3D printing.
Fig. 4: Three-component triplet–triplet annihilation upconversion-mediated heterogeneous photocatalysis.
Fig. 5: Two-component triplet–triplet annihilation upconversion-mediated photoredox catalysis.
Fig. 6: Two-component triplet–triplet annihilation upconversion-mediated photopolymerization and photo-uncaging.
Fig. 7: Two-component triplet–triplet annihilation upconversion-mediated photocyclization and photoisomerization reactions.
Fig. 8: A single-component triplet–triplet annihilation upconversion-mediated photopolymerization for application in micro–nano pattern processing.

Similar content being viewed by others

References

  1. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019). This letter presents the first demonstrations of near-infrared light-driven photoredox catalysis of multiple reaction types via triplet–triplet annihilation upconversion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tao, W. & Farokhzad, O. C. Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122, 5405–5407 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Biomed. Eng. 1, 60–78 (2023).

    Google Scholar 

  4. Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cabanero, D. C., Nguyen, J. A., Cazin, C. S. J., Nolan, S. P. & Rovis, T. Deep red to near-infrared light-controlled ruthenium-catalyzed olefin metathesis. ACS Catal. 13, 4384–4390 (2023).

    Article  CAS  Google Scholar 

  6. Wang, Y. C. et al. Recent progress in near-infrared light-harvesting nanosystems for photocatalytic applications. Appl. Catal. A Gen. 644, 118836 (2022).

    Article  CAS  Google Scholar 

  7. Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

    Article  CAS  Google Scholar 

  8. Richards, B. S., Hudry, D., Busko, D., Turshatov, A. & Howard, I. A. Photon upconversion for photovoltaics and photocatalysis: a critical review. Chem. Rev. 121, 9165–9195 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Cybularczyk-Cecotka, M., Szczepanik, J. & Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 3, 872–886 (2020).

    Article  CAS  Google Scholar 

  11. Kim, H. M. & Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bando, Y., Wenzel, M. & Yuste, R. Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo. Nat. Commun. 12, 7229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lederhose, P. et al. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 55, 12195–12199 (2016).

    Article  CAS  Google Scholar 

  14. Rocheva, V. V. et al. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 8, 3663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife 4, e10024 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeong, J. et al. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Biosens. Bioelectron. 180, 113139 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Yan, C. H. & Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Dong, H. et al. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev. 115, 10725–10815 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, L., Huang, L., Han, J. & Han, G. Enhancing triplet–triplet annihilation upconversion: from molecular design to present applications. Acc. Chem. Res. 55, 2604–2615 (2022). This review reveals and summarizes the design rules of efficient triplet–triplet annihilation upconversion and its applications in emerging fields.

    Article  CAS  PubMed  Google Scholar 

  23. Bharmoria, P., Bildirir, H. & Moth-Poulsen, K. Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 49, 6529–6554 (2020). This review systematically summarizes current state of the near-infrared triplet–triplet annihilation upconversion system as well as its challenges.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, C. et al. Application of triplet–triplet annihilation upconversion in organic optoelectronic devices: advances and perspectives. Adv. Mater. 33, 2100704 (2021).

    Article  CAS  Google Scholar 

  25. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  CAS  Google Scholar 

  26. Zhao, J., Ji, S. & Guo, H. Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1, 937–950 (2011).

    Article  CAS  Google Scholar 

  27. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Y., Li, S., Chen, Y., He, W. & Guo, Z. Recent advances in noble metal complex based photodynamic therapy. Chem. Sci. 13, 5085–5106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, W., Zhang, R., Zhang, X.-F., Liu, J. & Luo, L. Halogenated BODIPY photosensitizers: photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Spectrochim. Acta A Mol. Biomol. 272, 120965 (2022).

    Article  CAS  Google Scholar 

  30. Niihori, Y., Wada, Y. & Mitsui, M. Single platinum atom doping to silver clusters enables near-infrared-to-blue photon upconversion. Angew. Chem. Int. Ed. 60, 2822–2827 (2021). This is the first example of a triplet–triplet annihilation upconversion system using noble metal clusters as photosensitizers.

    Article  CAS  Google Scholar 

  31. Arima, D. & Mitsui, M. Structurally flexible Au–Cu alloy nanoclusters enabling efficient triplet sensitization and photon upconversion. J. Am. Chem. Soc. 145, 6994–7004 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. McCusker, C. E. & Castellano, F. N. Efficient visible to near-UV photochemical upconversion sensitized by a long lifetime Cu(I) MLCT complex. Inorg. Chem. 54, 6035–6042 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Kübler, J. A., Pfund, B. & Wenger, O. S. Zinc(II) complexes with triplet charge-transfer excited states enabling energy-transfer catalysis, photoinduced electron transfer, and upconversion. JACS Au 2, 2367–2380 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, M., Sheykhi, S., Zhang, Y., Milsmann, C. & Castellano, F. N. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem. Sci. 12, 9069–9077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, C. et al. Efficient triplet–triplet annihilation upconversion sensitized by a chromium(III) complex via an underexplored energy transfer mechanism. Angew. Chem. Int. Ed. 61, e202202238 (2022).

    Article  CAS  Google Scholar 

  36. Olesund, A. et al. Approaching the spin-statistical limit in visible-to-ultraviolet photon upconversion. J. Am. Chem. Soc. 144, 3706–3716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao, X. et al. Manipulating exciton dynamics toward simultaneous high-efficiency narrowband electroluminescence and photon upconversion by a selenium-incorporated multiresonance delayed fluorescence emitter. J. Am. Chem. Soc. 144, 22976–22984 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Li, J.-K., Zhang, M.-Y., Zeng, L., Huang, L. & Wang, X.-Y. NIR-absorbing B,N-heteroarene as photosensitizer for high-performance NIR-to-blue triplet–triplet annihilation upconversion. Angew. Chem. Int. Ed. 62, e202303093 (2023). This is the first example of a triplet–triplet annihilation upconversion system with a thermally activated delayed fluorescent molecule as a near-infrared light-absorbing photosensitizer.

    Article  CAS  Google Scholar 

  39. Huang, L. et al. Highly effective near-infrared activating triplet–triplet annihilation upconversion for photoredox catalysis. J. Am. Chem. Soc. 142, 18460–18470 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Fallon, K. J. et al. Molecular engineering of chromophores to enable triplet–triplet annihilation upconversion. J. Am. Chem. Soc. 142, 19917–19925 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Pun, A. B., Campos, L. M. & Congreve, D. N. Tunable emission from triplet fusion upconversion in diketopyrrolopyrroles. J. Am. Chem. Soc. 141, 3777–3781 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022). This article demonstrates the realization of nonlinear volumetric 3D printing with continuous light excitation using triplet–triplet annihilation upconversion nanocapsules as phototransducers.

    Article  CAS  PubMed  Google Scholar 

  43. Huang, L. et al. Long wavelength single photon like driven photolysis via triplet triplet annihilation. Nat. Commun. 12, 122 (2021). This article describes the excitation wavelength expansion of the photocleavage reaction via the triplet–triplet annihilation mechanism and the in vivo implementation of prodrug photocleavage for tumour treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, L. et al. Expanding anti-stokes shifting in triplet–triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem. Int. Ed. 56, 14400–14404 (2017).

    Article  CAS  Google Scholar 

  45. Zeng, L. et al. Metal-free far-red light-driven photolysis via triplet fusion to enhance checkpoint blockade immunotherapy. Angew. Chem. Int. Ed. 62, e202218341 (2023).

    Article  CAS  Google Scholar 

  46. Awwad, N., Bui, A. T., Danilov, E. O. & Castellano, F. N. Visible-light-initiated free-radical polymerization by homomolecular triplet–triplet annihilation. Chem 6, 3071–3085 (2020). This article exhibits a single-component TTA-UC-mediated photopolymerization with zinc porphyrin and its application to surface micropattern processing.

    Article  CAS  Google Scholar 

  47. Yoon, T. P., Ischay, M. A. & Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2, 527–532 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Theriot, J. C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    Article  PubMed  Google Scholar 

  50. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tucker, J. W. & Stephenson, C. R. J. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem. 77, 1617–1622 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Singla, D., Luxami, V. & Paul, K. Eosin Y mediated photo-catalytic C–H functionalization: C–C and C–S bond formation. Org. Chem. Front. 10, 237–266 (2023).

    Article  CAS  Google Scholar 

  53. Uji, M., Zähringer, T. J. B., Kerzig, C. & Yanai, N. Visible-to-UV photon upconversion: recent progress in new materials and applications. Angew. Chem. Int. Ed. 62, e202301506 (2023).

    Article  CAS  Google Scholar 

  54. Mondal, P., Schwinn, K. & Huix-Rotllant, M. Impact of the redox state of flavin chromophores on the UV–Vis spectra, redox and acidity constants and electron affinities. J. Photochem. Photobiol. 387, 112164 (2020).

    Article  CAS  Google Scholar 

  55. Losi, A. Flavin-based blue-light photosensors: a photobiophysics update. Photochem. Photobiol. 83, 1283–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Hwang, S. Y. et al. Triplet–triplet annihilation-based photon-upconversion to broaden the wavelength spectrum for photobiocatalysis. Sci. Rep. 12, 9397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bilger, J. B., Kerzig, C., Larsen, C. B. & Wenger, O. S. A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J. Am. Chem. Soc. 143, 1651–1663 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Lechner, V. M. et al. Visible-light-mediated modification and manipulation of biomacromolecules. Chem. Rev. 122, 1752–1829 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. O’Hagan, M. P. et al. Photocleavable ortho-nitrobenzyl-protected DNA architectures and their applications. Chem. Rev. 123, 6839–6887 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

    Article  PubMed  Google Scholar 

  61. Liu, L., Zhang, D., Johnson, M. & Devaraj, N. K. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry. Nat. Chem. 14, 1078–1085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glickman, R. D. Ultraviolet phototoxicity to the retina. Eye Contact Lens 37, 196–205 (2011).

    Article  PubMed  Google Scholar 

  63. Vickerman, B. M., Zywot, E. M., Tarrant, T. K. & Lawrence, D. S. Taking phototherapeutics from concept to clinical launch. Nat. Rev. Chem. 5, 816–834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang, W. et al. Efficient triplet–triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 15, 6332–6338 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Prim. 2, 55 (2022).

    Article  CAS  Google Scholar 

  66. Yanai, N. & Kimizuka, N. New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50, 2487–2495 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Sasaki, Y. et al. Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 58, 17827–17833 (2019).

    Article  CAS  Google Scholar 

  68. Meir, R. et al. Photon upconversion hydrogels for 3d optogenetics. Adv. Funct. Mater. 31, 2010907 (2021).

    Article  CAS  Google Scholar 

  69. Atala, A. & Yoo, J. J. Essential of 3D Biofabrication and Translation (eds. Atala, A. & Yoo, J. J.) 89–121 (Academic, 2015).

  70. Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light. Sci. Appl. 10, 199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Limberg, D. K., Kang, J.-H. & Hayward, R. C. Triplet–triplet annihilation photopolymerization for high-resolution 3D printing. J. Am. Chem. Soc. 144, 5226–5232 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Schloemer, T. et al. Nanoengineering triplet–triplet annihilation upconversion: from materials to real-world applications. ACS Nano 17, 3259–3288 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Wong, J. et al. Triplet fusion upconversion for photocuring 3D-printed particle-reinforced composite networks. Adv. Mater. 35, 2207673 (2023).

    Article  CAS  Google Scholar 

  75. Guo, Q., Zhou, C., Ma, Z. & Yang, X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31, e1901997 (2019).

    Article  PubMed  Google Scholar 

  76. Huang, L. et al. Designing next generation of photon upconversion: recent advances in organic triplet–triplet annihilation upconversion nanoparticles. Biomaterials 201, 77–86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  78. Kim, J.-H. & Kim, J.-H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134, 17478–17481 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Kwon, O. S., Kim, J.-H., Cho, J. K. & Kim, J.-H. Triplet–triplet annihilation upconversion in CdS-decorated SiO2nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 7, 318–325 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, H.-i, Kwon, O. S., Kim, S., Choi, W. & Kim, J.-H. Harnessing low energy photons (635 nm) for the production of H2O2using upconversion nanohybrid photocatalysts. Energy Environ. Sci. 9, 1063–1073 (2016).

    Article  CAS  Google Scholar 

  81. Rahman, M. Z., Edvinsson, T. & Gascon, J. Hole utilization in solar hydrogen production. Nat. Rev. Chem. 6, 243–258 (2022).

    Article  PubMed  Google Scholar 

  82. Badea, G., Naghiu, G. S., Giurca, I., Aşchilean, I. & Megyesi, E. Hydrogen production using solar energy — technical analysis. Energy Procedia 112, 418–425 (2017).

    Article  CAS  Google Scholar 

  83. Börjesson, K., Dzebo, D., Albinsson, B. & Moth-Poulsen, K. Photon upconversion facilitated molecular solar energy storage. J. Mater. Chem. A 1, 8521–8524 (2013).

    Article  Google Scholar 

  84. Yu, T. et al. Triplet–triplet annihilation upconversion for photocatalytic hydrogen evolution. Chem. Eur. J. 25, 16270–16276 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, X., Hu, B., Ding, R. & Zhang, P. Plasmon-enhanced homogeneous and heterogeneous triplet–triplet annihilation by gold nanoparticles. Phys. Chem. Chem. Phys. 17, 14479–14483 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Westbrook, E. G. & Zhang, P. Plasmon-enhanced triplet–triplet annihilation upconversion of post-modified polymeric acceptors. Dalton Trans. 47, 8638–8645 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Fang, J. et al. Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Appl. Catal. B 258, 117762 (2019).

    Article  CAS  Google Scholar 

  88. Fang, J. et al. Enhanced triplet–triplet annihilation upconversion by photonic crystals and Au plasma resonance for efficient photocatalysis. Catal. Sci. Technol. 10, 8325–8331 (2020).

    Article  CAS  Google Scholar 

  89. Fang, J. J. et al. Low-energy photons dual harvest for photocatalytic hydrogen evolution: bimodal surface plasma resonance related synergism of upconversion and pyroelectricity. Small 19, 2207467 (2023).

    Article  CAS  Google Scholar 

  90. Choi, D., Nam, S. K., Kim, K. & Moon, J. H. Enhanced photoelectrochemical water splitting through bismuth vanadate with a photon upconversion luminescent reflector. Angew. Chem. Int. Ed. 58, 6891–6895 (2019).

    Article  CAS  Google Scholar 

  91. Wang, C. S., Dixneuf, P. H. & Soulé, J. F. Photoredox catalysis for building C-C bonds from C(sp(2))-H bonds. Chem. Rev. 118, 7532–7585 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R. & Jacobi von Wangelin, A. Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem. Eur. J. 21, 15496–15501 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Kerzig, C. & Wenger, O. S. Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem. Sci. 9, 6670–6678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raza, M. K., Noor, A. & Samantaray, P. K. Ir(III) and Ru(II) complexes in photoredox catalysis and photodynamic therapy: a new paradigm towards anticancer applications. ChemBioChem 22, 3270–3272 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Pfund, B. et al. UV light generation and challenging photoreactions enabled by upconversion in water. J. Am. Chem. Soc. 142, 10468–10476 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Häring, M., Pérez-Ruiz, R., Jacobi von Wangelin, A. & Díaz, D. D. Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem. Comm. 51, 16848–16851 (2015).

    Article  PubMed  Google Scholar 

  97. López-Calixto, C., Liras, M., de la Peña O’Shea, V. & Perez‐Ruiz, R. Synchronized biphotonic process triggering CC coupling catalytic reactions. Appl. Catal. B 237, 18–23 (2018).

    Article  Google Scholar 

  98. Zeng, L., Huang, L., Lin, W., Jiang, L.-H. & Han, G. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet–triplet annihilation. Nat. Commun. 14, 1102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aydogan, C., Yilmaz, G. & Yagci, Y. Synthesis of hyperbranched polymers by photoinduced metal-free ATRP. Macromolecules 50, 9115–9120 (2017).

    Article  CAS  Google Scholar 

  100. Huang, Z., Luo, N., Zhang, C. & Wang, F. Radical generation and fate control for photocatalytic biomass conversion. Nat. Rev. Chem. 6, 197–214 (2022).

    Article  PubMed  Google Scholar 

  101. Glaser, F. & Wenger, O. S. Red light-based dual photoredox strategy resembling the Z-scheme of natural photosynthesis. JACS Au 2, 1488–1503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Glaser, F. & Wenger, O. S. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem. Sci. 14, 149–161 (2023).

    Article  CAS  Google Scholar 

  103. Xu, Z., Huang, Z., Jin, T., Lian, T. & Tang, M. L. Mechanistic understanding and rational design of quantum dot/mediator interfaces for efficient photon upconversion. Acc. Chem. Res. 54, 70–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Liang, W. et al. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photon. 17, 346–353 (2023).

    Article  CAS  Google Scholar 

  105. Liu, J., Kang, W. & Wang, W. Photocleavage-based photoresponsive drug delivery. Photochem. Photobiol. 98, 288–302 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Schulte, A. M., Alachouzos, G., Szymański, W. & Feringa, B. L. Strategy for engineering high photolysis efficiency of photocleavable protecting groups through cation stabilization. J. Am. Chem. Soc. 144, 12421–12430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Atta, S., Ikbal, M., Boda, N., Gauri, S. S. & Singh, N. D. P. Photoremovable protecting groups as controlled-release device for sex pheromone. Photochem. Photobiol. Sci. 12, 393–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Jana, A., Ikbal, M. & Singh, N. D. P. Perylen-3-ylmethyl: fluorescent photoremovable protecting group (FPRPG) for carboxylic acids and alcohols. Tetrahedron 68, 1128–1136 (2012).

    Article  CAS  Google Scholar 

  109. Singh, P. K., Majumdar, P. & Singh, S. P. Advances in BODIPY photocleavable protecting groups. Coord. Chem. Rev. 449, 214193 (2021).

    Article  CAS  Google Scholar 

  110. Liu, Q. et al. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J. Am. Chem. Soc. 135, 5029–5037 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Zhao, J., Xu, K., Yang, W., Wang, Z. & Zhong, F. The triplet excited state of Bodipy: formation, modulation and application. Chem. Soc. Rev. 44, 8904–8939 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Greene, F. D., Misrock, S. L. & Wolfe, J. R. Jr The structure of anthracene photodimers. J. Am. Chem. Soc. 77, 3852–3855 (1955).

    Article  CAS  Google Scholar 

  114. Zheng, Y. et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002).

    Article  CAS  Google Scholar 

  115. Islangulov, R. R. & Castellano, F. N. Photochemical upconversion: anthracene dimerization sensitized to visible light by a ruii chromophore. Angew. Chem. Int. Ed. 45, 5957–5959 (2006).

    Article  CAS  Google Scholar 

  116. Ishida, Y. et al. Tunable chiral reaction media based on two-component liquid crystals: regio-, diastereo-, and enantiocontrolled photodimerization of anthracenecarboxylic acids. J. Am. Chem. Soc. 132, 17435–17446 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Rao, M. et al. Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet–triplet annihilation. Org. Lett. 20, 1680–1683 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, J. et al. Janus photochemical/photothermal azobenzene inverse opal actuator with shape self-recovery toward sophisticated motion. ACS Appl. Mater. Interfaces 14, 1727–1739 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Merritt, I. C. D., Jacquemin, D. & Vacher, M. Cistrans photoisomerisation of azobenzene: a fresh theoretical look. Phys. Chem. Chem. Phys. 23, 19155–19165 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, Y., Hughes, R. P. & Aprahamian, I. Visible light switching of a BF2-coordinated Azo compound. J. Am. Chem. Soc. 134, 15221–15224 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Jiang, Z., Xu, M., Li, F. & Yu, Y. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet–triplet annihilation. J. Am. Chem. Soc. 135, 16446–16453 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Wu, W. et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 133, 15810–15813 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Tokunaga, A. et al. Photochromic reaction by red light via triplet fusion upconversion. J. Am. Chem. Soc. 141, 17744–17753 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Sugunan, S. K., Tripathy, U., Brunet, S. M., Paige, M. F. & Steer, R. P. Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin-organic blue emitter systems in solution. J. Phys. Chem. A 113, 8548–8556 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Cui, X., Zhao, J., Yang, P. & Sun, J. Zinc(ii) tetraphenyltetrabenzoporphyrin complex as triplet photosensitizer for triplet–triplet annihilation upconversion. Chem. Commun. 49, 10221–10223 (2013).

    Article  CAS  Google Scholar 

  129. Zhang, Y. et al. Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states. Nat. Chem. 12, 345–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Zhao, J., Wu, W., Sun, J. & Guo, S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42, 5323–5351 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Liang, H. et al. Heavy atom-free triplet photosensitizer based on thermally activated delayed fluorescence material for NIR-to-blue triplet–triplet annihilation upconversion. Chin. Chem. Lett. 34, 107515 (2023).

    Article  CAS  Google Scholar 

  132. Nguyen, V.-N., Yan, Y., Zhao, J. & Yoon, J. Heavy-atom-free photosensitizers: from molecular design to applications in the photodynamic therapy of cancer. Acc. Chem. Res. 54, 207–220 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Alves, J., Feng, J., Nienhaus, L. & Schmidt, T. W. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 10, 7783–7798 (2022).

    Article  CAS  Google Scholar 

  134. Carrod, A. J., Gray, V. & Börjesson, K. Recent advances in triplet–triplet annihilation upconversion and singlet fission, towards solar energy applications. Energy Environ. Sci. 15, 4982–5016 (2022).

    Article  CAS  Google Scholar 

  135. Han, Y., He, S. & Wu, K. Molecular triplet sensitization and photon upconversion using colloidal semiconductor nanocrystals. ACS Energy Lett. 6, 3151–3166 (2021).

    Article  CAS  Google Scholar 

  136. Lai, R., Sang, Y., Zhao, Y. & Wu, K. Triplet sensitization and photon upconversion using InP-based quantum dots. J. Am. Chem. Soc. 142, 19825–19829 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, Q. et al. Highly photostable near-IR-excitation upconversion nanocapsules based on triplet–triplet annihilation for in vivo bioimaging application. ACS Appl. Mater. Interfaces 10, 9883–9888 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Bennison, M. J., Collins, A. R., Zhang, B. & Evans, R. C. Organic polymer hosts for triplet–triplet annihilation upconversion systems. Macromolecules 54, 5287–5303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marsico, F. et al. Hyperbranched unsaturated polyphosphates as a protective matrix for long-term photon upconversion in air. J. Am. Chem. Soc. 136, 11057–11064 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Huang, L., Le, T., Huang, K. & Han, G. Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nat. Commun. 12, 1898 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article  PubMed  Google Scholar 

  142. Liu, R., Zuo, R. & Hudalla, G. A. Harnessing molecular recognition for localized drug delivery. Adv. Drug. Deliv. Rev. 170, 238–260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cheung, K. P. S., Sarkar, S. & Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 122, 1543–1625 (2022).

    Article  PubMed  Google Scholar 

  144. Dong, F. et al. Improving wastewater treatment by triboelectric–photo/electric coupling effect. ACS Nano 16, 3449–3475 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Shrestha, P. et al. Efficient far-red/near-IR absorbing BODIPY photocages by blocking unproductive conical intersections. J. Am. Chem. Soc. 142, 15505–15512 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Baluschev, S., Katta, K., Avlasevich, Y. & Landfester, K. Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem. Mater. Horiz. 3, 478–486 (2016).

    Article  CAS  Google Scholar 

  147. Filatov, M. A., Baluschev, S. & Landfester, K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem. Soc. Rev. 45, 4668–4689 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Xiong, H. et al. Photo-controllable biochemistry: exploiting the photocages in phototherapeutic window. Chem https://doi.org/10.1016/j.chempr.2022.11.007 (2022).

  149. Liu, X. et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. Nat. Commun. 12, 5662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.H. and G.H. conceived the idea and drafted the proposal. L.H. wrote all the content and completed all graphic tasks. G.H. edited and revised the manuscript.

Corresponding author

Correspondence to Gang Han.

Ethics declarations

Competing interests

There are no competing interests for all the authors.

Peer review

Peer review information

Nature Reviews Chemistry thanks Yanai Nobuhiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Han, G. Triplet–triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 8, 238–255 (2024). https://doi.org/10.1038/s41570-024-00585-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00585-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing