Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solvent effects in anion recognition

Abstract

Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anion-dictated solvation effects.
Fig. 2: Designed solvent retention.
Fig. 3: Solvation modelling.
Fig. 4: The solvent tolerance of specific receptor non-covalent interactions.
Fig. 5: Anion binding exploiting σ-hole interactions.
Fig. 6: Leveraging solvophobic effects.
Fig. 7: Engineering receptor microenvironment through solvent exclusion.
Fig. 8: Engineering receptor microenvironment through solvent exclusion (continued).
Fig. 9: Anion recognition at generated receptive molecular films.

Similar content being viewed by others

References

  1. Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Diauudin, F. N. et al. A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. Sens. Bio-Sens. Res. 26, 100305–100313 (2019).

    Article  Google Scholar 

  3. Li, D., Seaman, J. C., Kaplan, D. I., Heald, S. M. & Sun, C. Pertechnetate (TcO4) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions. J. Chem. Eng. https://doi.org/10.1016/j.cej.2018.11.146 (2019).

    Article  Google Scholar 

  4. Ji, X. et al. Removal of anions from aqueous media by means of a thermoresponsive calix[4]pyrrole amphiphilic polymer. Chem. Eur. J. 24, 15791–15795 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Q. et al. Anion extractants constructed by macrocycle-based anion recognition. J. Mater. Chem. A 10, 15297–15308 (2022).

    Article  CAS  Google Scholar 

  6. Busschaert, N. & Gale, P. A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed. Engl. 52, 1374–1382 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ratjen, F. et al. Cystic fibrosis. Nat. Rev. Dis. Prim. 1, 15010 (2015).

    Article  PubMed  Google Scholar 

  8. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Macreadie, L. K. et al. Progress in anion receptor chemistry. Chem 8, 46–118 (2022).

    Article  CAS  Google Scholar 

  10. Zhao, Y. et al. The emergence of anion−π catalysis. Acc. Chem. Res. 51, 2255–2263 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kubik, S. Anion recognition in water. Chem. Soc. Rev. 39, 3648–3663 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Goldman, S. & Bates, R. G. Calculation of thermodynamic functions for ionic hydration. J. Am. Chem. Soc. 94, 1476–1484 (1972).

    Article  CAS  Google Scholar 

  13. Brown, A. & Beer, P. D. Halogen bonding anion recognition. Chem. Commun. 52, 8645–8658 (2016).

    Article  CAS  Google Scholar 

  14. Morita, T., Westh, P., Nishikawa, K. & Koga, Y. How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O. J. Phys. Chem. B 118, 8744–8749 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Langton, M. J., Serpell, C. J. & Beer, P. D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. Int. Ed. Engl. 55, 1974–1987 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

    Article  Google Scholar 

  17. Dietrich, B., Lehn, J. M. & Sauvage, J. P. Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 10, 2885–2888 (1969).

    Article  Google Scholar 

  18. Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  19. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Article  Google Scholar 

  20. Pancholi, J. & Beer, P. D. Halogen bonding motifs for anion recognition. Coord. Chem. Rev. 416, 213281 (2020).

    Article  CAS  Google Scholar 

  21. Molina, P., Zapata, F. & Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 117, 9907–9972 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Cram, D. J. Preorganization — from solvents to spherands. Angew. Chem. Int. Ed. Engl. 25, 1039–1057 (1986).

    Article  Google Scholar 

  23. Lim, J. Y. C. & Beer, P. D. Sigma-hole interactions in anion recognition. Chem 4, 731–783 (2018).

    Article  CAS  Google Scholar 

  24. Mercer, D. J. & Loeb, S. J. Metal-based anion receptors: an application of second-sphere coordination. Chem. Soc. Rev. 39, 3612–3620 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Smithrud, D. B. et al. Solvent effects in molecular recognition. Pure Appl. Chem. 62, 2227–2236 (1990).

    Article  CAS  Google Scholar 

  27. Schneider, H.-J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. Engl. 48, 3924–3977 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Rekharsky, M. & Inoue, Y. in Solvation Effects in Supramolecular Recognition in Supramolecular Chemistry: From Molecules to Nanomaterials (eds Gale, P. A. & Steed, J. W.) (Wiley, 2012).

  29. Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Parks, F. C., Sheetz, E. G., Chen, C.-H. & Flood, A. H. Polarity-tolerant chloride binding in foldamer capsules by programmed solvent-exclusion. J. Am. Chem. Soc. 143, 3191–3204 (2021). Describes the ability of a foldameric host to exclude solvent from its binding cavity, which enabled Cl binding affinities to persist across a broad solvent dielectric range.

    Article  CAS  PubMed  Google Scholar 

  31. Bąk, K. M., Patrick, S. C., Li, X., Beer, P. D. & Davis, J. J. Engineered binding microenvironments in halogen bonding polymers for enhanced anion sensing. Angew. Chem. Int. Ed. Engl. 62, e202300867 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888).

    Article  Google Scholar 

  33. Gibb, B. C. Supramolecular assembly and binding in aqueous solution: useful tips regarding the Hofmeister and hydrophobic effects. Isr. J. Chem. 51, 798–806 (2011).

    Article  CAS  Google Scholar 

  34. Kunz, W., Lo Nostro, P. & Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2004.05.004 (2004).

    Article  Google Scholar 

  35. Jungwirth, P. & Cremer, P. S. Beyond Hofmeister. Nat. Chem. 6, 261–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Carnegie, R. S., Gibb, C. L. D. & Gibb, B. C. Anion complexation and the Hofmeister effect. Angew. Chem. Int. Ed. Engl. 53, 11498–11500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pike, S. J., Hutchinson, J. J. & Hunter, C. A. H-Bond acceptor parameters for anions. J. Am. Chem. Soc. 139, 6700–6706 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Rembert, K. B., Okur, H. I., Hilty, C. & Cremer, P. S. An NH moiety is not required for anion binding to amides in aqueous solution. Langmuir 31, 3459–3464 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Jordan, J. H., Gibb, C. L. D., Wishard, A., Pham, T. & Gibb, B. C. Ion–hydrocarbon and/or ion–ion interactions: direct and reverse Hofmeister effects in a synthetic host. J. Am. Chem. Soc. 140, 4092–4099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim, J. Y. C., Bunchuay, T. & Beer, P. D. Strong and selective halide anion binding by neutral halogen-bonding [2]rotaxanes in wet organic solvents. Chem. Eur. J. 23, 4700–4707 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Yao, W., Wang, K., Wu, A., Reed, W. F. & Gibb, B. C. Anion binding to ubiquitin and its relevance to the Hofmeister effects. Chem. Sci. 12, 320–330 (2021).

    Article  CAS  Google Scholar 

  42. Docker, A. et al. Anti-Hofmeister anion selectivity via a mechanical bond effect in neutral halogen-bonding [2]rotaxanes. Angew. Chem. Int. Ed. Engl. 61, e202214523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruns, C. J. & Stoddart, J. F. in The Nature of the Mechanical Bond 1–54 (Wiley, 2016).

  44. Wilmore, J. T. & Beer, P. D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. https://doi.org/10.1002/adma.202309098 (2024).

  45. Giles, M. D., Liu, S., Emanuel, R. L., Gibb, B. C. & Grayson, S. M. Dendronized supramolecular nanocapsules: pH independent, water-soluble, deep-cavity cavitands assemble via the hydrophobic effect. J. Am. Chem. Soc. 130, 14430–14431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gibb, C. L. D. & Gibb, B. C. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibb, C. L. D., Oertling, E. E., Velaga, S. & Gibb, B. C. Thermodynamic profiles of salt effects on a host–guest system: new insight into the Hofmeister effect. J. Phys. Chem. B 119, 5624–5638 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, W. et al. Caging the Hofmeister effect by a biomimetic supramolecular receptor. J. Am. Chem. Soc. 145, 12609–12616 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Lemieux, R. U. Rhône-Poulenc Lecture. The origin of the specificity in the recognition of oligosaccharides by proteins. Chem. Soc. Rev. 18, 347–374 (1989).

    Article  CAS  Google Scholar 

  50. Ladbury, J. E. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem. Biol. 3, 973–980 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Jagessar, R. C., Shang, M., Scheidt, W. R. & Burns, D. H. Neutral ligands for selective chloride anion complexation: (α,α,α,α)-5,10,15,20-tetrakis(2-(arylurea)phenyl)porphyrins. J. Am. Chem. Soc. 120, 11684–11692 (1998).

    Article  CAS  Google Scholar 

  52. Calderon-Kawasaki, K. et al. Synthesis of urea picket porphyrins and their use in the elucidation of the role buried solvent plays in the selectivity and stoichiometry of anion binding receptors. J. Org. Chem. 72, 9081–9087 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Burns, D. H., Calderon-Kawasaki, K. & Kularatne, S. Buried solvent determines both anion-binding selectivity and binding stoichiometry with hydrogen-bonding receptors. J. Org. Chem. 70, 2803–2807 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Hodyl, J. A. Z., Lincoln, S. F. & Wainwright, K. P. Solvent induced selectivity switching in aromatic-anion binding molecular receptors. J. Incl. Phenom. Macrocycl. Chem. 67, 483–487 (2010).

    Article  CAS  Google Scholar 

  55. Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. Predicting hydrogen-bond strengths from acid−base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc. Chem. Res. 42, 33–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Howard, P. & Meylan, W. Physical Properties Database. Syracuse Research CorporationEnvironmental Science Centre, North Syracuse (1999); https://www.srcinc.com/services/engineering-operational-and-environmental-services/scientific-databases.htm.

  57. Zheng, X., Shuai, Z. & Wang, D. Anion-binding properties of π-electron deficient cavities in bis(tetraoxacalix[2]arene[2]triazine): a theoretical study. J. Phys. Chem. A 117, 3844–3851 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, D.-X. et al. Versatile anion–π interactions between halides and a conformationally rigid bis(tetraoxacalix[2]arene[2]triazine) cage and their directing effect on molecular assembly. Chem. Eur. J. 16, 13053–13057 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Fehér, P. P. & Stirling, A. Assessment of reactivities with explicit and implicit solvent models: QM/MM and gas-phase evaluation of three different Ag-catalysed furan ring formation routes. N. J. Chem. 43, 15706–15713 (2019).

    Article  Google Scholar 

  60. Blas, J. R., Márquez, M., Sessler, J. L., Luque, F. J. & Orozco, M. Theoretical study of anion binding to calix[4]pyrrole: the effects of solvent, fluorine substitution, cosolute, and water traces. J. Am. Chem. Soc. 124, 12796–12805 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Gilson, M. K., Given, J. A., Bush, B. L. & McCammon, J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 72, 1047–1069 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kovalenko, A. & Hirata, F. Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. J. Chem. Phys. 110, 10095–10112 (1999).

    Article  CAS  Google Scholar 

  64. Hunter, C. A. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. Engl. 43, 5310–5324 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Kamlet, M. J., Abboud, J. L. M., Abraham, M. H. & Taft, R. W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983).

    Article  CAS  Google Scholar 

  66. Jeanmairet, G., Levesque, M. & Borgis, D. Tackling solvent effects by coupling electronic and molecular density functional theory. J. Chem. Theory Comput. 16, 7123–7134 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Gao, J. Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29, 298–305 (1996).

    Article  CAS  Google Scholar 

  68. Young Lee, G., Bay, K. L. & Houk, K. N. Evaluation of DFT methods and implicit solvation models for anion-binding host–guest systems. Helv. Chim. Acta 102, e1900032 (2019).

    Article  Google Scholar 

  69. Sun, S. et al. Hybrid method for representing ions in implicit solvation calculations. Comput. Struct. Biotechnol. J. 19, 801–811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sure, R. & Grimme, S. Comprehensive benchmark of association (free) energies of realistic host–guest complexes. J. Chem. Theory Comput. 11, 3785–3801 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kadam, S. A., Haav, K., Toom, L., Haljasorg, T. & Leito, I. NMR method for simultaneous host–guest binding constant measurement. J. Org. Chem. 79, 2501–2513 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Beer, P. Solvent dependent anion selectivity exhibited by neutral ferrocenoyl receptors. Chem. Commun. https://doi.org/10.1039/A707181G (1997).

  73. Juwarker, H. et al. Anion binding of short, flexible aryl triazole oligomers. J. Org. Chem. 74, 8924–8934 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Molina-Muriel, R., Romero, J. R., Li, Y., Aragay, G. & Ballester, P. The effect of solvent on the binding of anions and ion-pairs with a neutral [2]rotaxane. Org. Biomol. Chem. 19, 9986–9995 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Shokri, A. & Kass, S. R. Solvent effects on the molecular recognition of anions. Chem. Commun. 49, 11674–11676 (2013).

    Article  CAS  Google Scholar 

  76. Würthner, F. Solvent effects in supramolecular chemistry: linear free energy relationships for common intermolecular interactions. J. Org. Chem. 87, 1602–1615 (2022).

    Article  PubMed  Google Scholar 

  77. Storer, M. C. & Hunter, C. A. The surface site interaction point approach to non-covalent interactions. Chem. Soc. Rev. 51, 10064–10082 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Tobajas-Curiel, G., Sun, Q., Sanders, J. K. M., Ballester, P. & Hunter, C. A. Substituent effects on aromatic interactions in water. Chem. Sci. 14, 6226–6236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Storer, M. C. & Hunter, C. A. Quantification of secondary electrostatic interactions in H-bonded complexes. Phys. Chem. Chem. Phys. 24, 18124–18132 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Driver, M. D., Williamson, M. J., Cook, J. L. & Hunter, C. A. Functional group interaction profiles: a general treatment of solvent effects on non-covalent interactions. Chem. Sci. 11, 4456–4466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cabot, R., Hunter, C. A. & Varley, L. M. Hydrogen bonding properties of non-polar solvents. Org. Biomol. Chem. 8, 1455–1462 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Pike, S. J., Lavagnini, E., Varley, L. M., Cook, J. L. & Hunter, C. A. H-Bond donor parameters for cations. Chem. Sci. 10, 5943–5951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hunter, C. A. A surface site interaction model for the properties of liquids at equilibrium. Chem. Sci. 4, 1687–1700 (2013).

    Article  CAS  Google Scholar 

  84. Meredith, N. Y. et al. Dissecting solvent effects on hydrogen bonding. Angew. Chem. Int. Ed. Engl. 61, e202206604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kubik, S., Kirchner, R., Nolting, D. & Seidel, J. A molecular oyster: a neutral anion receptor containing two cyclopeptide subunits with a remarkable sulfate affinity in aqueous solution. J. Am. Chem. Soc. 124, 12752–12760 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Otto, S. & Kubik, S. Dynamic combinatorial optimization of a neutral receptor that binds inorganic anions in aqueous solution. J. Am. Chem. Soc. 125, 7804–7805 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Reyheller, C., Hay, B. P. & Kubik, S. Influence of linker structure on the anion binding affinity of biscyclopeptides. N. J. Chem. 31, 2095–2102 (2007).

    Article  CAS  Google Scholar 

  88. Reyheller, C. & Kubik, S. Selective sensing of sulfate in aqueous solution using a fluorescent bis(cyclopeptide). Org. Lett. 9, 5271–5274 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Fiehn, T., Goddard, R., Seidel, R. W. & Kubik, S. A cyclopeptide-derived molecular cage for sulfate ions that closes with a click. Chem. Eur. J. 16, 7241–7255 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Bartl, J. & Kubik, S. Anion binding of a cyclopeptide-derived molecular cage in aqueous solvent mixtures. ChemPlusChem 85, 963–969 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez-Docampo, Z. et al. Dynamic combinatorial development of a neutral synthetic receptor that binds sulfate with nanomolar affinity in aqueous solution. Chem. Commun. 47, 9798–9800 (2011).

    Article  CAS  Google Scholar 

  92. Kubik, S. Characterizing the properties of anion-binding bis(cyclopeptides) with solvent-independent energy increments. Chemistry 4, 419–430 (2022).

    Article  CAS  Google Scholar 

  93. Tresca, B. W. et al. Substituent effects in CH hydrogen bond interactions: linear free energy relationships and influence of anions. J. Am. Chem. Soc. 137, 14959–14967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Y., Sengupta, A., Raghavachari, K. & Flood, A. H. Anion binding in solution: beyond the electrostatic regime. Chem 3, 411–427 (2017). A paper that provides the first global agreement between experimental and theoretically predicted anion binding constants across a broad aprotic solvent dielectric range based on a 1/εr model.

    Article  CAS  Google Scholar 

  95. Cockroft, S. L. Screening solvent effects in anion recognition. Chem 3, 383–384 (2017).

    Article  CAS  Google Scholar 

  96. Liu, Y. et al. Flexibility coexists with shape-persistence in cyanostar macrocycles. J. Am. Chem. Soc. 138, 4843–4851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. Engl. 47, 2649–2652 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Moyer, B. A., Bonnesen, P. V., Custelcean, R., Delmau, L. H. & Hay, B. P. Strategies for using host–guest chemistry in the extractive separations of ionic guests. ChemInform https://doi.org/10.1002/chin.200531276 (2005).

  99. Doyle, E. L., Hunter, C. A., Phillips, H. C., Webb, S. J. & Williams, N. H. Cooperative binding at lipid bilayer membrane surfaces. J. Am. Chem. Soc. 125, 4593–4599 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Cook, J. L., Hunter, C. A., Low, C. M. R., Perez-Velasco, A. & Vinter, J. G. Preferential solvation and hydrogen bonding in mixed solvents. Angew. Chem. Int. Ed. Engl. 47, 6275–6277 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hua, Y., Liu, Y., Chen, C.-H. & Flood, A. H. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. J. Am. Chem. Soc. 135, 14401–14412 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Rodriguez-Docampo, Z., Pascu, S. I., Kubik, S. & Otto, S. Noncovalent interactions within a synthetic receptor can reinforce guest binding. J. Am. Chem. Soc. 128, 11206–11210 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Zimnicka, M., Kozłowska, K. & Danikiewicz, W. Beyond size complementary factors in anion–tetralactam macrocycle complexes: from intrinsic gas-phase to solvent-predicted stabilities. J. Org. Chem. 85, 8990–9000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sherbow, T. J., Fargher, H. A., Haley, M. M., Pluth, M. D. & Johnson, D. W. Solvent-dependent linear free-energy relationship in a flexible host–guest system. J. Org. Chem. 85, 12367–12373 (2020). A paper that resolves a linear free energy relationship between ET(30) values and the free energy of anion binding with a flexible host which held true in both protic and aprotic media.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cerón-Carrasco, J. P. et al. Solvent polarity scales: determination of new ET(30) values for 84 organic solvents. J. Phys. Org. Chem. 27, 512–518 (2014).

    Article  Google Scholar 

  106. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry 4th edn (Wiley-VCH, 2011).

  107. Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994).

    Article  CAS  Google Scholar 

  108. Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993).

    Article  CAS  Google Scholar 

  109. Catalán, J. Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 113, 5951–5960 (2009).

    Article  PubMed  Google Scholar 

  110. Parks, F. C. et al. Revealing the hidden costs of organization in host–guest chemistry using chloride-binding foldamers and their solvent dependence. J. Am. Chem. Soc. 144, 1274–1287 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Parks, F. C. et al. Allosteric control of photofoldamers for selecting between anion regulation and double-to-single helix switching. J. Am. Chem. Soc. 140, 17711–17723 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Schmidtchen, F. P. Inclusion of anions in macrotricyclic quaternary ammonium salts. Angew. Chem. Int. Ed. Engl. 16, 720–721 (1977).

    Article  Google Scholar 

  113. Graf, E. & Lehn, J. M. Anion cryptates: highly stable and selective macrotricyclic anion inclusion complexes. J. Am. Chem. Soc. 98, 6403–6405 (1976).

    Article  CAS  Google Scholar 

  114. Bazzicalupi, C. et al. Exploring the binding ability of polyammonium hosts for anionic substrates: selective size-dependent recognition of different phosphate anions by bis-macrocyclic receptors. Inorg. Chem. 50, 7202–7216 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Dietrich, B., Fyles, T. M., Lehn, J.-M., Pease, L. G. & Fyles, D. L. Anion receptor molecules. Synthesis and some anion binding properties of macrocyclic guanidinium salts. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39780000934 (1978).

  116. Kuchelmeister, H. Y. & Schmuck, C. Nucleotide recognition in water by a guanidinium-based artificial tweezer receptor. Chem. Eur. J. 17, 5311–5318 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Kataev, E. A., Müller, C., Kolesnikov, G. V. & Khrustalev, V. N. Guanidinium-based artificial receptors for binding orthophosphate in aqueous solution. Eur. J. Org. Chem. 2014, 2747–2753 (2014).

    Article  CAS  Google Scholar 

  118. Ngo, H. T., Liu, X. & Jolliffe, K. A. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem. Soc. Rev. 41, 4928–4965 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Butler, S. J. & Parker, D. Anion binding in water at lanthanide centres: from structure and selectivity to signalling and sensing. Chem. Soc. Rev. 42, 1652–1666 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Pouessel, J. et al. Glyphosate and ATP binding by mononuclear Zn(II) complexes with non-symmetric ditopic polyamine ligands. Dalton Trans. 41, 10521–10532 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Shang, J., Zhao, W., Li, X., Wang, Y. & Jiang, H. Aryl-triazole foldamers incorporating a pyridinium motif for halide anion binding in aqueous media. Chem. Commun. 52, 4505–4508 (2016).

    Article  CAS  Google Scholar 

  122. Lim, J. Y. C., Cunningham, M. J., Davis, J. J. & Beer, P. D. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors. Chem. Commun. 51, 14640–14643 (2015).

    Article  CAS  Google Scholar 

  123. Carroll, C. N. et al. Protonation activates anion binding and alters binding selectivity in new inherently fluorescent 2,6-bis(2-anilinoethynyl)pyridine bisureas. Chem. Commun. https://doi.org/10.1039/B901643K (2009).

  124. Bhattacharjee, N. et al. Solvent acts as the referee in a match-up between charged and preorganized receptors. Chem. Eur. J. 29, e202302339 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Gilli, G. & Gilli, P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford Univ. Press, 2009).

  126. Amendola, V., Fabbrizzi, L. & Mosca, L. Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39, 3889–3915 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Cook, J. L., Hunter, C. A., Low, C. M. R., Perez-Velasco, A. & Vinter, J. G. Solvent effects on hydrogen bonding. Angew. Chem. Int. Ed. Engl. 46, 3706–3709 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Aquino, A. J. A., Tunega, D., Haberhauer, G., Gerzabek, M. H. & Lischka, H. Solvent effects on hydrogen bonds — a theoretical study. J. Phys. Chem. A 106, 1862–1871 (2002).

    Article  CAS  Google Scholar 

  129. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (Wiley, 2013).

  130. Chandramouli, N., El-Behairy, M. F., Lautrette, G., Ferrand, Y. & Huc, I. Polar solvent effects on tartaric acid binding by aromatic oligoamide foldamer capsules. Org. Biomol. Chem. 14, 2466–2472 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Heo, N. J. et al. Phenanthroline-strapped calix[4]pyrroles: anion receptors displaying affinity reversal as a function of solvent polarity. Org. Chem. Front. 7, 548–556 (2020).

    Article  CAS  Google Scholar 

  132. Wasiłek, S. & Jurczak, J. The impact of solvent and the receptor structure on chiral recognition using model acyclic bisamides decorated with glucosamine pendant arms. J. Org. Chem. 85, 11902–11907 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Robinson, S. W. et al. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition. J. Am. Chem. Soc. 137, 499–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Hein, R. & Beer, P. D. Halogen bonding and chalcogen bonding mediated sensing. Chem. Sci. 13, 7098–7125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lim, J. Y. C., Liew, J. Y. & Beer, P. D. Thermodynamics of anion binding by chalcogen bonding receptors. Chem. Eur. J. 24, 14560–14566 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Hein, R., Docker, A., Davis, J. J. & Beer, P. D. Redox-switchable chalcogen bonding for anion recognition and sensing. J. Am. Chem. Soc. 144, 8827–8836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. Halogen bonding: the σ-hole. J. Mol. Model. 13, 291–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Docker, A., Guthrie, C. H., Kuhn, H. & Beer, P. D. Modulating chalcogen bonding and halogen bonding sigma-hole donor atom potency and selectivity for halide anion recognition. Angew. Chem. Int. Ed. Engl. 60, 21973–21978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patrick, S. C., Hein, R., Beer, P. D. & Davis, J. J. Continuous and polarization-tuned redox capacitive anion sensing at electroactive interfaces. J. Am. Chem. Soc. 143, 19199–19206 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Hijazi, H. et al. Electrochemically driven interfacial halogen bonding on self-assembled monolayers for anion detection. Chem. Commun. 55, 1983–1986 (2019).

    Article  Google Scholar 

  142. Vargas Jentzsch, A. et al. Ditopic ion transport systems: anion–π interactions and halogen bonds at work. Angew. Chem. Int. Ed. Engl. 50, 11675–11678 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Vargas Jentzsch, A. & Matile, S. Transmembrane halogen-bonding cascades. J. Am. Chem. Soc. 135, 5302–5303 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Jentzsch, A. V. et al. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 3, 905 (2012).

    Article  PubMed  Google Scholar 

  145. Bauzá, A. & Frontera, A. Aerogen bonding interaction: a new supramolecular force? Angew. Chem. Int. Ed. Engl. 54, 7340–7343 (2015).

    Article  PubMed  Google Scholar 

  146. Lim, J. Y. C. & Beer, P. D. A pyrrole-containing cleft-type halogen bonding receptor for oxoanion recognition and sensing in aqueous solvent media. N. J. Chem. 42, 10472–10475 (2018).

    Article  CAS  Google Scholar 

  147. Mungalpara, D., Stegmüller, S. & Kubik, S. A neutral halogen bonding macrocyclic anion receptor based on a pseudocyclopeptide with three 5-iodo-1,2,3-triazole subunits. Chem. Commun. 53, 5095–5098 (2017).

    Article  CAS  Google Scholar 

  148. Biedermann, F., Nau, W. M. & Schneider, H.-J. The hydrophobic effect revisited — studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. Engl. 53, 11158–11171 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Cézard, C., Trivelli, X., Aubry, F., Djedaïni-Pilard, F. & Dupradeau, F.-Y. Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. Phys. Chem. Chem. Phys. 13, 15103–15121 (2011).

    Article  PubMed  Google Scholar 

  150. Jungbauer, S. H., Schindler, S., Herdtweck, E., Keller, S. & Huber, S. M. Multiple multidentate halogen bonding in solution, in the solid state, and in the (calculated) gas phase. Chem. Eur. J. 21, 13625–13636 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Patrick, S. C., Hein, R., Docker, A., Beer, P. D. & Davis, J. J. Solvent effects in halogen and hydrogen bonding mediated electrochemical anion sensing in aqueous solution and at interfaces. Chem. Eur. J. 27, 10201–10209 (2021). A paper that describes comprehensive, systematic studies into the effect of increasing solvent polarity on anion sensing, both in solution and at receptive interfaces.

    Article  CAS  PubMed  Google Scholar 

  152. Qiao, B., Anderson, J. R., Pink, M. & Flood, A. H. Size-matched recognition of large anions by cyanostar macrocycles is saved when solvent-bias is avoided. Chem. Commun. 52, 8683–8686 (2016).

    Article  CAS  Google Scholar 

  153. Abraham, M. H. Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents hydrophobic effect. J. Am. Chem. Soc. 104, 2085–2094 (1982).

    Article  CAS  Google Scholar 

  154. Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. Selective total encapsulation of the sulfate anion by neutral nano-jars. Chem. Commun. 48, 6860–6862 (2012).

    Article  CAS  Google Scholar 

  155. Pflugrath, J. W. & Quiocho, F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  156. Pflugrath, J. W. & Quiocho, F. A. The 2 Å resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J. Mol. Biol. 200, 163–180 (1988).

    Article  CAS  PubMed  Google Scholar 

  157. Chakrabarti, P. Anion binding sites in protein structures. J. Mol. Biol. 234, 463–482 (1993).

    Article  CAS  PubMed  Google Scholar 

  158. Yawer, M. A., Havel, V. & Sindelar, V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. Engl. 54, 276–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Havel, V. & Sindelar, V. Anion binding inside a bambus[6]uril macrocycle in chloroform. ChemPlusChem 80, 1601–1606 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Wei, W. Hofmeister effects shine in nanoscience. Adv. Sci. 10, 2302057 (2023).

    Article  CAS  Google Scholar 

  161. Wilming, F. M., Becker, J. & Schreiner, P. R. Quantifying solvophobic effects in organic solvents using a hydrocarbon molecular balance. J. Org. Chem. 87, 1874–1878 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Barendt, T. A., Ferreira, L., Marques, I., Félix, V. & Beer, P. D. Anion- and solvent-induced rotary dynamics and sensing in a perylene diimide [3]catenane. J. Am. Chem. Soc. 139, 9026–9037 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Zhang, Y., Furyk, S., Bergbreiter, D. E. & Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Assaf, K. I. & Nau, W. M. Large anion binding in water. Org. Biomol. Chem. 21, 6636–6651 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Biedermann, F., Uzunova, V. D., Scherman, O. A., Nau, W. M. & De Simone, A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Oleinikova, A. & Brovchenko, I. Thermodynamic properties of hydration water around solutes: effect of solute size and water–solute interaction. J. Phys. Chem. B 116, 14650–14659 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Smithrud, D. B., Wyman, T. B. & Diederich, F. Enthalpically driven cyclophane-arene inclusion complexation: solvent-dependent calorimetric studies. J. Am. Chem. Soc. 113, 5420–5426 (1991).

    Article  CAS  Google Scholar 

  169. Van Zee, N. J. et al. Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 558, 100–103 (2018).

    Article  PubMed  Google Scholar 

  170. Sommer, F., Marcus, Y. & Kubik, S. Effects of solvent properties on the anion binding of neutral water-soluble bis(cyclopeptides) in water and aqueous solvent mixtures. ACS Omega 2, 3669–3680 (2017). A paper that describes how the release of ‘high-energy’, confined water molecules can enable SO42− binding in pure H2O.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kubik, S., Goddard, R., Kirchner, R., Nolting, D. & Seidel, J. A cyclic hexapeptide containing L-proline and 6-aminopicolinic acid subunits binds anions in water. Angew. Chem. Int. Ed. Engl. 40, 2648–2651 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Andersen, N. N. et al. Entropy/enthalpy compensation in anion binding: biotin[6]uril and biotin-l-sulfoxide[6]uril reveal strong solvent dependency. J. Org. Chem. 84, 2577–2584 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Setny, P., Baron, R. & McCammon, J. A. How can hydrophobic association be enthalpy driven. J. Chem. Theory Comput. 6, 2866–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Assaf, K. I. et al. Water structure recovery in chaotropic anion recognition: high-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem. Int. Ed. Engl. 54, 6852–6856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Assaf, K. I., Gabel, D., Zimmermann, W. & Nau, W. M. High-affinity host–guest chemistry of large-ring cyclodextrins. Org. Biomol. Chem. 14, 7702–7706 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Fiala, T., Sleziakova, K., Marsalek, K., Salvadori, K. & Sindelar, V. Thermodynamics of halide binding to a neutral bambusuril in water and organic solvents. J. Org. Chem. 83, 1903–1912 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Thilgen, C. A single water molecule trapped inside hydrophobic C60. Angew. Chem. Int. Ed. Engl. 51, 587–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Tang, D. et al. Pressure induced wetting and dewetting of the nonpolar pocket of deep-cavity cavitands in water. J. Phys. Chem. B 124, 4781–4792 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    Article  CAS  Google Scholar 

  181. Yao, Y., Zhang, X. & Mochizuki, K. Solubility of hydrophobes into macrocyclic hosts. J. Phys. Chem. B 126, 2557–2563 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, Y., Li, Z. & Guo, D.-S. Conformational transition effects of anion recognition by calix[4]arene derivatives. Supramol. Chem. 21, 465–472 (2009).

    Article  CAS  Google Scholar 

  183. Kauzmann, W. in Advances in Protein Chemistry Vol. 14 (eds Anfinsen, C. B. et al.) Ch. 1 (Academic, 1959).

  184. Fernández, A. & Crespo, A. Protein wrapping: a molecular marker for association, aggregation and drug design. Chem. Soc. Rev. 37, 2373–2382 (2008).

    Article  PubMed  Google Scholar 

  185. Langton, M. J., Robinson, S. W., Marques, I., Félix, V. & Beer, P. D. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat. Chem. 6, 1039–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Zhukov, A. & Karlsson, R. Statistical aspects of van ’t Hoff analysis: a simulation study. J. Mol. Recognit. 20, 379–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Lutolli, A., Che, M., Parks, F. C., Raghavachari, K. & Flood, A. H. Cooperativity in photofoldamer chloride double helices turned on with sequences and solvents, around with guests, and off with light. J. Org. Chem. 88, 6791–6804 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

    Article  CAS  Google Scholar 

  189. Suk, J.-M. & Jeong, K.-S. Indolocarbazole-based foldamers capable of binding halides in water. J. Am. Chem. Soc. 130, 11868–11869 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Liu, Y., Parks, F. C., Zhao, W. & Flood, A. H. Sequence-controlled stimuli-responsive single–double helix conversion between 1:1 and 2:2 chloride-foldamer complexes. J. Am. Chem. Soc. 140, 15477–15486 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Borissov, A. et al. Neutral iodotriazole foldamers as tetradentate halogen bonding anion receptors. Chem. Commun. 53, 2483–2486 (2017).

    Article  CAS  Google Scholar 

  192. Borissov, A. et al. Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors. J. Am. Chem. Soc. 141, 4119–4129 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Nicola, J. P., Carrasco, N. & Mario Amzel, L. Physiological sodium concentrations enhance the iodide affinity of the Na+/I symporter. Nat. Commun. 5, 3948 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. McDonald, K. P. et al. Quantifying chloride binding and salt extraction with poly(methyl methacrylate) copolymers bearing aryl-triazoles as anion receptor side chains. Chem. Commun. 50, 13285–13288 (2014).

    Article  CAS  Google Scholar 

  195. Rostami, A. & Taylor, M. S. Polymers for anion recognition and sensing. Macromol. Rapid Commun. 33, 21–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Rogers, B. A. et al. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat. Chem. 14, 40–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Major, R. C. & Zhu, X. Y. The surface chelate effect. J. Am. Chem. Soc. 125, 8454–8455 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, S., Cardona, C. M. & Echegoyen, L.Ion recognition properties of self-assembled monolayers (SAMs).Chem. Commun. 38, 4461–4473 (2006).

    Article  Google Scholar 

  199. Hein, R., Li, X., Beer, P. D. & Davis, J. J. Enhanced voltammetric anion sensing at halogen and hydrogen bonding ferrocenyl SAMs. Chem. Sci. 12, 2433–2440 (2021).

    Article  CAS  Google Scholar 

  200. Pensa, E. et al. The chemistry of the sulfur–gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Morita, K., Yamaguchi, A. & Teramae, N. Electrochemical modification of benzo-15-crown-5 ether on a glassy carbon electrode for alkali metal cation recognition. J. Electroanal. Chem. 563, 249–255 (2004).

    Article  CAS  Google Scholar 

  202. Menanteau, T., Levillain, E., Downard, A. J. & Breton, T. Evidence of monolayer formation via diazonium grafting with a radical scavenger: electrochemical, AFM and XPS monitoring. Phys. Chem. Chem. Phys. 17, 13137–13142 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Hein, R., Beer, P. D. & Davis, J. J. Electrochemical anion sensing: supramolecular approaches. Chem. Rev. 120, 1888–1935 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Beer, P. D., Davis, J. J., Drillsma-Milgrom, D. A. & Szemes, F. Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1′-bis(alkyl-N-amido)ferrocene. Chem. Commun. https://doi.org/10.1039/B205340N (2002).

  205. Hein, R., Borissov, A., Smith, M. D., Beer, P. D. & Davis, J. J. A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water. Chem. Commun. 55, 4849–4852 (2019).

    Article  CAS  Google Scholar 

  206. Bickerton, L. E., Johnson, T. G., Kerckhoffs, A. & Langton, M. J. Supramolecular chemistry in lipid bilayer membranes. Chem. Sci. 12, 11252–11274 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jiang, H. & Smith, B. D. Dynamic molecular recognition on the surface of vesicle membranes. Chem. Commun. https://doi.org/10.1039/B517940H (2006).

  208. Voskuhl, J. & Ravoo, B. J. Molecular recognition of bilayer vesicles. Chem. Soc. Rev. 38, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Neal, J. F., Zhao, W., Grooms, A. J., Flood, A. H. & Allen, H. C. Arginine–phosphate recognition enhanced in phospholipid monolayers at aqueous interfaces. J. Phys. Chem. C 122, 26362–26371 (2018).

    Article  CAS  Google Scholar 

  210. Wu, X., Wang, P., Lewis, W., Jiang, Y.-B. & Gale, P. A. Measuring anion binding at biomembrane interfaces. Nat. Commun. 13, 4623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Grochmal, A., Woods, B., Milanesi, L., Perez-Soto, M. & Tomas, S. How the biomimetic assembly of membrane receptors into multivalent domains is regulated by a small ligand. Chem. Sci. 12, 7800–7808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Grochmal, A., Ferrero, E., Milanesi, L. & Tomas, S. Modulation of in-membrane receptor clustering upon binding of multivalent ligands. J. Am. Chem. Soc. 135, 10172–10177 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Tomas, S. & Milanesi, L. Mutual modulation between membrane-embedded receptor clustering and ligand binding in lipid membranes. Nat. Chem. 2, 1077–1083 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Gale, P. A. From anion receptors to transporters. Acc. Chem. Res. 44, 216–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Marcus, Y. The thermodynamics of solvation of ions. Part 2. — The enthalpy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1 83, 339–349 (1987).

    Article  CAS  Google Scholar 

  216. Marcus, Y. Thermodynamics of solvation of ions. Part 5. — Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 87, 2995–2999 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.C.P. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) for a studentship (grant reference number EP/T517811/1).

Author information

Authors and Affiliations

Authors

Contributions

S.C.P. researched data for the article and contributed to the discussion of content and writing, reviewing and editing of the manuscript before submission. P.D.B. contributed to reviewing and editing of the manuscript before submission. J.J.D. contributed to the discussion of content and writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Jason J. Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks De-Xian Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, S.C., Beer, P.D. & Davis, J.J. Solvent effects in anion recognition. Nat Rev Chem 8, 256–276 (2024). https://doi.org/10.1038/s41570-024-00584-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00584-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing