Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of macrocycle-based solid-state host–guest chemistry

Abstract

Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host–guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host–guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host–guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host–guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of host–guest chemistry in the solid state.
Fig. 2: Applications of solid-state host–guest chemistry based on crown ether hosts.
Fig. 3: Applications of solid-state host–guest chemistry based on cucurbituril hosts.
Fig. 4: Applications of host–guest chemistry in the solid state based on pillararene hosts.
Fig. 5: Applications of host–guest chemistry in the solid state based on other hosts that are less commonly used.

Similar content being viewed by others

References

  1. Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  2. Kolesnichenko, I. V. & Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017). This review presents the practical application studies of supramolecular chemistry from various aspects.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Z., Nalluri, S. K. M. & Stoddart, J. F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives:  new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, D. & Moore, J. S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. https://doi.org/10.1039/B207442G (2003).

  7. Jana, A. et al. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 47, 5614–5645 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, D.-S. & Liu, Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Hua, Y. & Flood, A. H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 39, 1262–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Evans, N. H. & Beer, P. D. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew. Chem. Int. Ed. Engl. 53, 11716–11754 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Lehn, J.-M. Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978).

    Article  CAS  Google Scholar 

  12. Li, J., Yim, D., Jang, W.-D. & Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Murray, J., Kim, K., Ogoshi, T., Yao, W. & Gibb, B. C. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). This is one of the most comprehensive review papers to describe macrocycle host–guest chemistry in the aqueous state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as ion pair receptors. Chem. Rev. 119, 9753–9835 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, W., Samanta, S. K., Smith, B. D. & Isaacs, L. Synthetic mimics of biotin/(strept)avidin. Chem. Soc. Rev. 46, 2391–2403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, L.-P., Wang, X., Yao, H. & Jiang, W. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature. Acc. Chem. Res. 53, 198–208 (2019).

    Article  PubMed  Google Scholar 

  17. Ni, X.-L. et al. Self-assemblies based on the ‘outer-surface interactions’ of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, H., Li, Q., Zhu, W. & Huang, F. Pillararenes as versatile building blocks for fluorescent materials. Acc. Mater. Res. 3, 658–668 (2022). This review reveals and summarizes the applications of pillararenes in studies of fluorescent materials.

    Article  CAS  Google Scholar 

  19. Dsouza, R. N., Pischel, U. & Nau, W. M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Della Sala, P. et al. Prismarenes: a new class of macrocyclic hosts obtained by templation in a thermodynamically controlled synthesis. J. Am. Chem. Soc. 142, 1752–1756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, Z., Song, N. & Yang, Y.-W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 1, 345–368 (2019).

    Article  Google Scholar 

  22. Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Enright, G. D., Udachin, K. A., Moudrakovski, I. L. & Ripmeester, J. A. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125, 9896–9897 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 46, 2638–2648 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D.-X. & Wang, M.-X. Exploring anion−π interactions and their applications in supramolecular chemistry. Acc. Chem. Res. 53, 1364–1380 (2020). This is a comprehensive review on the topic of anion−π interactions to reveal their theoretical studies and applications.

    Article  CAS  PubMed  Google Scholar 

  27. Schalley, C. A. Analytical Methods in Supramolecular Chemistry Vol. 1 (John Wiley & Sons, 2012).

  28. Rissanen, K., Barbour, L. J. & MacGillivray, L. R. Structural macrocyclic supramolecular chemistry. CrystEngComm 16, 3644–3645 (2014).

    Article  CAS  Google Scholar 

  29. Venkataraman, D., Lee, S., Zhang, J. & Moore, J. S. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371, 591–593 (1994).

    Article  CAS  Google Scholar 

  30. White, N. G., Caballero, A. & Beer, P. D. Observation of strong halogen bonds in the solid state structures of bis-haloimidazolium macrocycles. CrystEngComm 16, 3722–3729 (2014).

    Article  CAS  Google Scholar 

  31. Zhou, Y., Jie, K., Zhao, R. & Huang, F. Supramolecular‐macrocycle‐based crystalline organic materials. Adv. Mater. 32, 1904824 (2020).

    Article  CAS  Google Scholar 

  32. Wu, J. R. & Yang, Y.-W. Synthetic macrocycle‐based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. Engl. 60, 1690–1701 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ji, X. et al. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem. Soc. Rev. 48, 2682–2697 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Xia, D. et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 120, 6070–6123 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Q. & Liu, Y. Tunable photo-luminescence behaviors of macrocycle-containing polymer networks in the solid-state. Chem. Commun. 54, 6068–6071 (2018).

    Article  CAS  Google Scholar 

  36. Li, X., Li, Z. & Yang, Y.-W. Tetraphenylethylene‐interweaving conjugated macrocycle polymer materials as two‐photon fluorescence sensors for metal ions and organic molecules. Adv. Mater. 30, 1800177 (2018).

    Article  Google Scholar 

  37. Chen, W. et al. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem. Soc. Rev. 50, 11684–11714 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Mali, K. S., Pearce, N., De Feyter, S. & Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 46, 2520–2542 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Lou, X. Y. & Yang, Y.-W. Pillar[n]arene‐based supramolecular switches in solution and on surfaces. Adv. Mater. 32, 2003263 (2020).

    Article  CAS  Google Scholar 

  40. Shetty, A. S., Fischer, P. R., Stork, K. F., Bohn, P. W. & Moore, J. S. Assembly of amphiphilic phenylacetylene macrocycles at the air−water interface and on solid surfaces. J. Am. Chem. Soc. 118, 9409–9414 (1996).

    Article  CAS  Google Scholar 

  41. Mohan, M. et al. Surface modification induced enhanced CO2 sorption in cucurbit[6]uril, an organic porous material. Phys. Chem. Chem. Phys. 19, 25564–25573 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kayaci, F., Aytac, Z. & Uyar, T. Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J. Hazard. Mater. 261, 286–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Xue, J. Y. et al. Aromatic hydrocarbon macrocycles for highly efficient organic light-emitting devices with single-layer architectures. Chem. Sci. 7, 896–904 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Ikemoto, K. et al. Modular synthesis of aromatic hydrocarbon macrocycles for simplified, single-layer organic light-emitting devices. J. Org. Chem. 81, 662–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Cui, J. et al. Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett. 21, 2156–2164 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y. et al. Three‐dimensional anionic cyclodextrin‐based covalent organic frameworks. Angew. Chem. Int. Ed. Engl. 56, 16313–16317 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, W. et al. Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: permanent porosity and proton conduction. Cryst. Growth Des. 16, 5831–5835 (2016).

    Article  CAS  Google Scholar 

  48. Li, B. et al. An adaptive supramolecular organic framework for highly efficient separation of uranium via an in situ induced fit mechanism. J. Mater. Chem. A 3, 23788–23798 (2015).

    Article  CAS  Google Scholar 

  49. Strutt, N. L. et al. Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J. Am. Chem. Soc. 134, 17436–17439 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Smaldone, R. A. et al. Metal–organic frameworks from edible natural products. Angew. Chem. Int. Ed. Engl. 49, 8630–8634 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Thallapally, P. K. et al. Gas-induced transformation and expansion of a non-porous organic solid. Nat. Mater. 7, 146–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Tashiro, S. & Shionoya, M. Novel porous crystals with macrocycle-based well-defined molecular recognition sites. Acc. Chem. Res. 53, 632–643 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Pedrini, A. et al. Calixarene-based porous 3D polymers and copolymers with high capacity and binding energy for CO2, CH4 and Xe capture. J. Mater. Chem. A 9, 27353–27360 (2021).

    Article  CAS  Google Scholar 

  54. Yang, Y.-D. et al. Time-dependent solid-state molecular motion and colour tuning of host–guest systems by organic solvents. Nat. Commun. 11, 77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, W. et al. Linear supramolecular polymers driven by anion–anion dimerization of difunctional phosphonate monomers inside cyanostar macrocycles. J. Am. Chem. Soc. 141, 4980–4989 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Ogoshi, T. et al. Host–guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew. Chem. Int. Ed. Engl. 54, 9849–9852 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, G. et al. Engineering a pillar[5]arene-based supramolecular organic framework by a co-crystallization method. Dalton Trans. 47, 5144–5148 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Tao, W. et al. Macrocycle-based supramolecular assembly: an alternative strategy for visualizing the mechanism of piezochromic luminescence. Dye. Pigment. 210, 110967 (2023).

    Article  CAS  Google Scholar 

  59. Johnston, H. M., Palacios, P. M., Pierce, B. S. & Green, K. N. Spectroscopic and solid-state evaluations of tetra-aza macrocyclic cobalt complexes with parallels to the classic cobalt (II) chloride equilibrium. J. Coord. Chem. 69, 1979–1989 (2016).

    Article  CAS  Google Scholar 

  60. Finke, A. D., Gross, D. E., Han, A. & Moore, J. S. Engineering solid-state morphologies in carbazole–ethynylene macrocycles. J. Am. Chem. Soc. 133, 14063–14070 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Hughes, A. R. & Blanc, F. Recent advances in probing host–guest interactions with solid state nuclear magnetic resonance. CrystEngComm 23, 2491–2503 (2021). This review provides a comprehensive summary of the applications of solid-state NMR spectroscopy in the field of host–guest interactions and presents unique insights into structural information and dynamics of guest molecules adsorbed in solid materials.

    Article  CAS  Google Scholar 

  62. Hughes, A. R., Liu, M., Paul, S., Cooper, A. I. & Blanc, F. Dynamics in flexible pillar[n]arenes probed by solid-state NMR. J. Phys. Chem. C 125, 13370–13381 (2021).

    Article  CAS  Google Scholar 

  63. Yuan, C. et al. Crystalline C–C and C = C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143, 369–381 (2020).

    Article  PubMed  Google Scholar 

  64. Schaub, T. A. et al. Exploration of the solid-state sorption properties of shape-persistent macrocyclic nanocarbons as bulk materials and small aggregates. J. Am. Chem. Soc. 142, 8763–8775 (2020).

    Article  PubMed  Google Scholar 

  65. Ono, T. & Hisaeda, Y. Vapochromism of organic crystals based on macrocyclic compounds and inclusion complexes. Symmetry 12, 1903 (2020).

    Article  CAS  Google Scholar 

  66. Schulz, M. et al. A calixarene-based metal–organic framework for highly selective NO2 detection. Angew. Chem. Int. Ed. Engl. 57, 12961–12965 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Royakkers, J. & Bronstein, H. Macrocyclic encapsulated conjugated polymers. Macromolecules 54, 1083–1094 (2021).

    Article  CAS  Google Scholar 

  68. Yang, W. et al. Tiara[5]arenes: synthesis, solid-state conformational studies, host–guest properties, and application as nonporous adaptive crystals. Angew. Chem. Int. Ed. Engl. 59, 3994–3999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Skorjanc, T., Shetty, D. & Trabolsi, A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 7, 882–918 (2021).

    Article  CAS  Google Scholar 

  70. Jie, K. et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat. Commun. 11, 1086 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, W. L. et al. Single crystal to single crystal polymerization of a self-assembled diacetylene macrocycle affords columnar polydiacetylenes. Cryst. Growth Des. 14, 993–1002 (2014).

    Article  CAS  Google Scholar 

  72. Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Efficient separation of cis‐ and trans‐1,2‐dichloroethene isomers by adaptive biphen[3]arene crystals. Angew. Chem. Int. Ed. Engl. 58, 10281–10284 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Li, B., Cui, L. & Li, C. Macrocycle co-crystals showing vapochromism to haloalkanes. Angew. Chem. Int. Ed. Engl. 59, 22012–22016 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Sun, X. et al. Macrocycle-based crystalline sponge that stabilizes and lights up cationic aggregation-caused quenching dyes. Adv. Opt. Mater. 9, 2101670 (2021).

    Article  CAS  Google Scholar 

  76. Li, S. et al. Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat. Commun. 13, 2850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marafie, J. A., Bradley, D. D. & Williams, C. K. Thermally stable zinc disalphen macrocycles showing solid-state and aggregation-induced enhanced emission. Inorg. Chem. 56, 5688–5695 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Benson, C. R. et al. Plug-and-play optical materials from fluorescent dyes and macrocycles. Chem 6, 1978–1997 (2020).

    Article  CAS  Google Scholar 

  79. Ball, M. et al. Conjugated macrocycles in organic electronics. Acc. Chem. Res. 52, 1068–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Mulay, S. V. et al. A macrocyclic oligofuran: synthesis, solid state structure and electronic properties. Chem. Sci. 10, 8527–8532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, J. et al. The chiral interfaces fabricated by D/L-alanine-pillar[5]arenes for selectively adsorbing ctDNA. Chem. Commun. 55, 778–781 (2019).

    Article  Google Scholar 

  82. Zhu, H. et al. Pillar[5]arene-based chiral 3D polymer network for heterogeneous asymmetric catalysis. Polym. Chem. 8, 7108–7112 (2017).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. Formation of linear supramolecular polymers that is driven by C−H π interactions in solution and in the solid state. Angew. Chem. Int. Ed. Engl. 50, 1397–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Lan, S., Yang, X., Shi, K., Fan, R. & Ma, D. Pillarquinone‐based porous polymer for a highly‐efficient heterogeneous organometallic catalysis. ChemCatChem 11, 2864–2869 (2019).

    Article  CAS  Google Scholar 

  85. Sun, Y. et al. A biomimetic chiral-driven ionic gate constructed by pillar[6]arene-based host–guest systems. Nat. Commun. 9, 2617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Geng, W.-C., Sessler, J. L. & Guo, D.-S. Supramolecular prodrugs based on host–guest interactions. Chem. Soc. Rev. 49, 2303–2315 (2020). This is a comprehensive review on the topic of supramolecular prodrugs to reveal their theoretical host–guest interactions and applications.

    Article  CAS  PubMed  Google Scholar 

  87. Sayed, M. & Pal, H. An overview from simple host–guest systems to progressively complex supramolecular assemblies. Phys. Chem. Chem. Phys. 23, 26085–26107 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Yue, L., Yang, K., Lou, X.-Y., Yang, Y.-W. & Wang, R. Versatile roles of macrocycles in organic–inorganic hybrid materials for biomedical applications. Matter 3, 1557–1588 (2020).

    Article  Google Scholar 

  89. Wu, G., Li, F., Tang, B. & Zhang, X. Molecular engineering of noncovalent dimerization. J. Am. Chem. Soc. 144, 14962–14975 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Z., Dai, X., Sun, Y. & Liu, Y. Organic supramolecular aggregates based on water‐soluble cyclodextrins and calixarenes. Aggregate 1, 31–44 (2020).

    Article  Google Scholar 

  91. Cohen, Y. & Slovak, S. Diffusion NMR for the characterization, in solution, of supramolecular systems based on calixarenes, resorcinarenes, and other macrocyclic arenes. Org. Chem. Front. 6, 1705–1718 (2019). This report presents the common uses of diffusion NMR technology in the studies of host–guest interactions.

    Article  CAS  Google Scholar 

  92. Song, N., Kakuta, T., Yamagishi, T. A., Yang, Y.-W. & Ogoshi, T. Molecular-scale porous materials based on pillar[n]arenes. Chem 4, 2029–2053 (2018).

    Article  CAS  Google Scholar 

  93. Li, M. et al. Supramolecular tessellations via pillar[n]arenes-based exo-wall interactions. J. Am. Chem. Soc. 142, 20892–20901 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Han, X.-N., Han, Y. & Chen, C.-F. Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene. Nat. Commun. 12, 6378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967).

    Article  CAS  Google Scholar 

  96. Bradshaw, J. S. & Izatt, R. M. Crown ethers: the search for selective ion ligating agents. Acc. Chem. Res. 30, 338–345 (1997).

    Article  CAS  Google Scholar 

  97. Ye, Q. et al. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31, 1905143 (2019).

    Article  CAS  Google Scholar 

  98. Warby, J. H. et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 14, 8855–8865 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, C. et al. Supramolecular assembly of halide perovskite building blocks. J. Am. Chem. Soc. 144, 12450–12458 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Wei, P. et al. New wine in old bottles: prolonging room-temperature phosphorescence of crown ethers by supramolecular interactions. Angew. Chem. Int. Ed. Engl. 59, 9293–9298 (2020). The article reveals a novel supramolecular strategy to achieve RTP based on host–guest complexes of crown ethers and ions.

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, W., Xing, H., Li, E., Zhu, H. & Huang, F. Room-temperature phosphorescence in the amorphous state enhanced by copolymerization and host–guest complexation. Macromolecules 55, 9802–9809 (2022).

    Article  CAS  Google Scholar 

  102. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat. Mater. 8, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Song, X.-J. et al. Record enhancement of Curie temperature in host–guest inclusion ferroelectrics. J. Am. Chem. Soc. 143, 5091–5098 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Huang, C. R. et al. The first high‐temperature supramolecular radical ferroics. Angew. Chem. Int. Ed. Engl. 60, 16668–16673 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, C., Zhang, T. & Lin, W. Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem. Rev. 112, 1084–1104 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Ye, X. et al. Two host–guest grown ether supramolecules show switchable phase transition, dielectric and second-harmonic generation effect. Dalton Trans. 51, 15074–15079 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Merzlyakova, E. et al. 18-Crown-6 coordinated metal halides with bright luminescence and nonlinear optical effects. J. Am. Chem. Soc. 143, 798–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Lin, R.-L., Liu, J.-X., Chen, K. & Redshaw, C. Supramolecular chemistry of substituted cucurbit[n]urils. Inorg. Chem. Front. 7, 3217–3246 (2020).

    Article  CAS  Google Scholar 

  109. Liu, M. et al. Double‐cavity norseco‐cucurbit[10]uril enables efficient and rapid separation of pyridine from mixtures of toluene, benzene, and pyridine. Angew. Chem. Int. Ed. Engl. 61, e202207209 (2022). This article provides an advanced example of highly efficient separation of benzene, toluene and pyridine through a solid-state double-cavity cucurbituril host.

    Article  CAS  PubMed  Google Scholar 

  110. Tian, J. et al. Cucurbit[7]uril: an amorphous molecular material for highly selective carbon dioxide uptake. Chem. Commun. 47, 7626–7628 (2011).

    Article  CAS  Google Scholar 

  111. Liang, J. et al. Encapsulation of a porous organic cage into the pores of a metal–organic framework for enhanced CO2 separation. Angew. Chem. Int. Ed. Engl. 59, 6068–6073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang, J. et al. A chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation. J. Mater. Chem. A 8, 19799–19804 (2020).

    Article  CAS  Google Scholar 

  113. Pan, S. et al. Selectivity in gas adsorption by molecular cucurbit[6]uril. J. Phys. Chem. C 120, 13911–13921 (2016).

    Article  CAS  Google Scholar 

  114. Liu, M. et al. Pyridine detection using supramolecular organic frameworks incorporating cucurbit[10]uril. ACS Appl. Mater. Interfaces 13, 7434–7442 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Li, Q., Jie, K. & Huang, F. Highly selective separation of minimum‐boiling azeotrope toluene/pyridine by nonporous adaptive crystals of cucurbit[6]uril. Angew. Chem. Int. Ed. Engl. 59, 5355–5358 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Jie, K., Zhou, Y., Li, E. & Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 51, 2064–2072 (2018). This is a comprehensive review on NACs of pillararenes, revealing their definition and applications.

    Article  CAS  PubMed  Google Scholar 

  117. Wu, Y. et al. Selective separation of methylfuran and dimethylfuran by nonporous adaptive crystals of pillararenes. J. Am. Chem. Soc. 142, 19722–19730 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Zhou, Y., Jie, K., Zhao, R., Li, E. & Huang, F. Highly selective removal of trace isomers by nonporous adaptive pillararene crystals for chlorobutane purification. J. Am. Chem. Soc. 142, 6957–6961 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Nie, H., Wei, Z., Ni, X.-L. & Liu, Y. Assembly and applications of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucurbiturils. Chem. Rev. 122, 9032–9077 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Z.-Y., Chen, Y. & Liu, Y. Efficient room-temperature phosphorescence of a solid-state supramolecule enhanced by cucurbit[6]uril. Angew. Chem. Int. Ed. Engl. 58, 6028–6032 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, Z.-Y. & Liu, Y. Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril. Chem. Sci. 10, 7773–7778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Z.-Y. et al. A synergistic enhancement strategy for realizing ultralong and efficient room-temperature phosphorescence. Angew. Chem. Int. Ed. Engl. 59, 18748–18754 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, S., Zavalij, P. Y. & Isaacs, L. Cucurbit[10]uril. J. Am. Chem. Soc. 127, 16798–16799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Geng, J.-S. et al. Controllable photomechanical bending of metal–organic rotaxane crystals facilitated by regioselective confined-space photodimerization. Nat. Commun. 13, 2030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, H. et al. High-efficiency gold recovery using cucurbit[6]uril. ACS Appl. Mater. Interfaces 12, 38768–38777 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Lin, R. L. et al. Selective recovery and detection of gold with cucurbit[n]urils (n = 5–7). Inorg. Chem. 59, 3850–3855 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Wu, H. et al. Selective separation of hexachloroplatinate(IV) dianions based on exo-binding with cucurbit[6]uril. Angew. Chem. Int. Ed. Engl. 60, 17587–17594 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Ogoshi, T., Yamagishi, T.-A. & Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 116, 7937–8002 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Jie, K. et al. Styrene purification by guest-induced restructuring of pillar[6]arene. J. Am. Chem. Soc. 139, 2908–2911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cao, J. et al. Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals. Chem. Sci. 13, 7536–7540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, Z. et al. Efficient purification of 2,6-lutidine by nonporous adaptive crystals of pillararenes. ACS Appl. Mater. Interfaces 14, 41072–41078 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Li, E., Zhu, W., Fang, S., Jie, K. & Huang, F. Reimplementing guest shape sorting of nonporous adaptive crystals via substituent-size-dependent solid–vapour postsynthetic modification. Angew. Chem. Int. Ed. Engl. 61, e202211780 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Li, B. et al. Capture of sulfur mustard by pillar[5]arene: from host–guest complexation to efficient adsorption using nonporous adaptive crystals. iScience 23, 101443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, Q., Zhu, H. & Huang, F. Alkyl chain length-selective vapour-induced fluorochromism of pillar[5]arene-based nonporous adaptive crystals. J. Am. Chem. Soc. 141, 13290–13294 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Song, C.-L., Li, Z., Wu, J.-R., Lu, T. & Yang, Y.-W. Intramolecular through-space interactions induced emission of pillar[4]arene[1]dicyanobenzene. Chem. Mater. 34, 10181–10189 (2022).

    Article  CAS  Google Scholar 

  136. Hua, B. et al. Supramolecular solid-state microlaser constructed from pillar[5]arene-based host–guest complex microcrystals. J. Am. Chem. Soc. 140, 15651–15654 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Hua, B. et al. Pillar[5]arene-based solid-state supramolecular polymers with suppressed aggregation-caused quenching effects and two-photon excited emission. J. Am. Chem. Soc. 142, 16557–16561 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Wu, J.-R. & Yang, Y.-W. New opportunities in synthetic macrocyclic arenes. Chem. Commun. 55, 1533–1543 (2019).

    Article  CAS  Google Scholar 

  139. Mao, L. et al. Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nat. Commun. 11, 5806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu, J.-R. & Yang, Y.-W. Geminiarene: molecular scale dual selectivity for chlorobenzene and chlorocyclohexane fractionation. J. Am. Chem. Soc. 141, 12280–12287 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Luo, D., Tian, J., Sessler, J. L. & Chi, X. Nonporous adaptive calix[4]pyrrole crystals for polar compound separations. J. Am. Chem. Soc. 143, 18849–18853 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, Y.-D., Chen, X.-L., Sessler, J. L. & Gong, H.-Y. Emergent self-assembly of a multicomponent capsule via iodine capture. J. Am. Chem. Soc. 143, 2315–2324 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Zhou, H.-Y., Zhang, D.-W., Li, M. & Chen, C.-F. A calix[3]acridan-based host–guest cocrystal exhibiting efficient thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 61, e202117872 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Wang, Y. et al. Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11, 4633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, C.-M., Meng, X., Liu, X., Zhang, Z.-Y. & Li, C. Switchable supramolecular jalousie constructed from a fluorenone macrocycle. Chem. Mater. 34, 358–365 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.H. thanks the National Key Research and Development Program of China (2021YFA0910100), the National Natural Science Foundation of China (22035006), Zhejiang Provincial Natural Science Foundation of China (LD21B020001) and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SN-ZJU-SIAS-006) for financial support. F.H. thanks the Chemistry Instrumentation Center of Zhejiang University for technical support.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and F.H. conceived the idea and drafted the proposal. H.Z. wrote most of the content. L.C. completed all graphic tasks. B.S. and H.L. wrote the solid versus solution section. M.W. wrote the crown ether section. H.Z., F.H., H.L. and J.F.S. edited and revised the manuscript.

Corresponding authors

Correspondence to Hao Li, J. Fraser Stoddart or Feihe Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Harry Gibson, Jonathan Sessler, Ying-Wei Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Chen, L., Sun, B. et al. Applications of macrocycle-based solid-state host–guest chemistry. Nat Rev Chem 7, 768–782 (2023). https://doi.org/10.1038/s41570-023-00531-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00531-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing