Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry

Abstract

Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly — into micelles, vesicles, nanotubes, fibres or nanobelts — leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis, self-assembly and characterization of lipopeptides.
Fig. 2: Structural motifs and external stimuli determine self-assembly and properties of lipopeptides.
Fig. 3: Applications of lipopeptides in nanostructured and advanced materials.
Fig. 4: Applications of lipopeptides as dynamic and responsive species.
Fig. 5: Bioinspired therapeutic lipopeptides.
Fig. 6: Bioactive lipopeptides.
Fig. 7: Applications of lipopeptides as cell-membrane transporters and drug and gene delivery.
Fig. 8: Metal-free catalysed reactions using lipoamino acids and lipopeptides.
Fig. 9: Transition-metal-catalysed reactions using lipoamino acids and lipopeptides.

Similar content being viewed by others

References

  1. Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter 7, 4122–4138 (2011).

    Article  CAS  Google Scholar 

  2. Löwik, D. W. P. M. & van Hest, J. C. M. Peptide based amphiphiles. Chem. Soc. Rev. 33, 234–245 (2004).

    Article  PubMed  Google Scholar 

  3. Cavalli, S., Albericio, F. & Kros, A. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem. Soc. Rev. 39, 241–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Hamley, I. W. Lipopeptides: from self-assembly to bioactivity. Chem. Commun. 51, 8574–8583 (2015).

    Article  CAS  Google Scholar 

  5. Götze, S. & Stallforth, P. Structure elucidation of bacterial nonribosomal lipopeptides. Org. Biomol. Chem. 18, 1710–1727 (2020).

    Article  PubMed  Google Scholar 

  6. Hubrich, F. et al. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc. Natl Acad. Sci. USA 119, e2113120119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34, 1037–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Mnif, I. & Ghribi, D. Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept. Sci. 104, 129–147 (2015).

    Article  CAS  Google Scholar 

  9. Adak, A., Ghosh, S., Gupta, V. & Ghosh, S. Biocompatible lipopeptide-based antibacterial hydrogel. Biomacromolecules 20, 1889–1898 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Abu Samah, N. H. & Heard, C. M. Topically applied KTTKS: a review. Int. J. Cosmet. Sci. 33, 483–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Castelletto, V. et al. Self-assembly of palmitoyl lipopeptides used in skin care products. Langmuir 29, 9149–9155 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Imoto, T. & Goto, M. Self-assembled palmitoyl–glycine–histidine as a permeation enhancer for transdermal delivery. Langmuir 37, 8971–8977 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, H., Park, K. M. & Chang, P. S. Lipase-catalyzed synthesis of lauroyl tripeptide-KHA with multi-functionalities: its surface-active, antibacterial, and antioxidant properties. Food Chem. 319, 126533 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Roberts, K. D. et al. Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line antibiotics against multidrug-resistant Gram-negative bacteria. ACS Infect. Dis. 1, 568–575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neubauer, D., Jaśkiewicz, M., Bauer, M., Gołacki, K. & Kamysz, W. Ultrashort cationic lipopeptides — effect of N-terminal amino acid and fatty acid type on antimicrobial activity and hemolysis. Molecules 25, 257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fa, K. et al. Acyl chain length tuning improves antimicrobial potency and biocompatibility of short designed lipopeptides. J. Colloid Interface Sci. 630, 911–923 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Mulligan, C. N., Sharma, S. K. & Mudhoo, A. (eds) Biosurfactants: Research Trends and Applications (CRC Press, 2014).

  18. Martin, V. et al. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv. 10, 42457–42492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du, X., Zhou, J., Shi, J. & Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115, 13165–13307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, N., Kumar, M., Miravet, J. F., Ulijn, R. V. & Escuder, B. Peptide-based molecular hydrogels as supramolecular protein mimics. Chem. A Eur. J. 23, 981–993 (2017).

    Article  Google Scholar 

  21. Dehsorkhi, A., Castelletto, V. & Hamley, I. W. Self-assembling amphiphilic peptides. J. Pept. Sci. 20, 453–467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, S., Li, Y., Li, B. & Yang, Y. Control of the handedness of self-assemblies of dipeptides by the chirality of phenylalanine and steric hindrance of phenylglycine. Langmuir 32, 7420–7426 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Hendricks, M. P., Sato, K., Palmer, L. C. & Stupp, S. I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, K., Hendricks, M. P., Palmer, L. C. & Stupp, S. I. Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 47, 7539–7551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh, N., Tena-Solsona, M., Miravet, J. F. & Escuder, B. Towards supramolecular catalysis with small self-assembled peptides. Isr. J. Chem. 55, 711–723 (2015).

    Article  CAS  Google Scholar 

  27. Nothling, M. D. et al. Synthetic catalysts inspired by hydrolytic enzymes. ACS Catal. 9, 168–187 (2019).

    Article  CAS  Google Scholar 

  28. Lin, D. et al. Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin. Biochem. Pharmacol. 144, 35–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Menacho-Melgar, R., Decker, J. S., Hennigan, J. N. & Lynch, M. D. A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Rel. 295, 1–12 (2019).

    Article  CAS  Google Scholar 

  30. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bordes, R. & Holmberg, K. Amino acid-based surfactants — do they deserve more attention? Adv. Colloid Interface Sci. 222, 79–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Albericio, F. & El-Faham, A. Choosing the right coupling reagent for peptides: a twenty-five-year journey. Org. Process Res. Dev. 22, 760–772 (2018).

    Article  CAS  Google Scholar 

  33. Domalaon, R. et al. Structure–activity relationships in ultrashort cationic lipopeptides: the effects of amino acid ring constraint on antibacterial activity. Amino Acids 46, 2517–2530 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dettori, L. et al. Molecular rules for selectivity in lipase-catalysed acylation of lysine. Process Biochem. 74, 50–60 (2018).

    Article  CAS  Google Scholar 

  35. Dettori, L. et al. An aminoacylase activity from Streptomyces ambofaciens catalyzes the acylation of lysine on α-position and peptides on N-terminal position. Eng. Life Sci. 18, 589–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guez, J. S., Vassaux, A., Larroche, C., Jacques, P. & Coutte, F. New continuous process for the production of lipopeptide biosurfactants in foam overflowing bioreactor. Front. Bioeng. Biotechnol. 9, 678469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tao, K., Levin, A., Jacoby, G., Beck, R. & Gazit, E. Entropic phase transitions with stable twisted intermediates of bio-inspired self-assembly. Chem. A Eur. J. 22, 15237–15241 (2016).

    Article  CAS  Google Scholar 

  38. Baral, A. et al. Time-dependent gel to gel transformation of a peptide based supramolecular gelator. Soft Matter 11, 4944–4951 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Pashuck, E. T. & Stupp, S. I. Direct observation of morphological transformation from twisted ribbons into helical ribbons. J. Am. Chem. Soc. 132, 8819–8821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mabrouk, M. M., Hamed, N. A. & Mansour, F. R. Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review. Appl. Spectrosc. Rev. 58, 206–234 (2023).

    Article  CAS  Google Scholar 

  41. Mabrouk, M. M., Hamed, N. A. & Mansour, F. R. Physicochemical and electrochemical methods for determination of critical micelle concentrations of surfactants: a comprehensive review. Monatsh. Chem. 153, 125–138 (2022).

    Article  CAS  Google Scholar 

  42. Maji, S. K. & Haldar, S. Effect of peptide architecture on the self-assembly properties of tripeptide based anionic surfactants issued from two different peptide sequences: Ala-Ala-Val and Ala-Pro-Val in aqueous media (pH 7.4). Colloids Surf. A Physicochem. Eng. Asp. 414, 422–432 (2012).

    Article  CAS  Google Scholar 

  43. Cui, H., Muraoka, T., Cheetham, A. G. & Stupp, S. I. Self-assembly of giant peptide nanobelts. Nano Lett. 9, 945–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sato, K., Ji, W., Álvarez, Z., Palmer, L. C. & Stupp, S. I. Chiral recognition of lipid bilayer membranes by supramolecular assemblies of peptide amphiphiles. ACS Biomater. Sci. Eng. 5, 2786–2792 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Webber, M. J., Berns, E. J. & Stupp, S. I. Supramolecular nanofibers of peptide amphiphiles for medicine. Isr. J. Chem. 53, 530–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept. Sci. 94, 1–18 (2010).

    Article  CAS  Google Scholar 

  47. Rocco, D., Ross, J., Murray, P. & Caccetta, R. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro. Drug Des. Dev. Ther. 10, 2203–2209 (2016).

    Article  CAS  Google Scholar 

  48. Hutchinson, J. A. et al. Self-assembly of lipopeptides containing short peptide fragments derived from the gastrointestinal hormone PYY 3-36: from micelles to amyloid fibrils. J. Phys. Chem. B 123, 614–621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamley, I. W. et al. Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chem. Commun. 50, 15948–15951 (2014).

    Article  CAS  Google Scholar 

  50. Hamley, I. W. Lipopeptides for vaccine development. Bioconjug. Chem. 32, 1472–1490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swiecicki, J. M. et al. Unsaturated acyl chains dramatically enhanced cellular uptake by direct translocation of a minimalist oligo-arginine lipopeptide. Chem. Commun. 51, 14656–14659 (2015).

    Article  CAS  Google Scholar 

  52. Damen, M. et al. Delivery of DNA and siRNA by novel gemini-like amphiphilic peptides. J. Control. Rel. 145, 33–39 (2010).

    Article  CAS  Google Scholar 

  53. Nasompag, S. et al. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochim. Biophys. Acta Biomembr. 1848, 2351–2364 (2015).

    Article  CAS  Google Scholar 

  54. Steigenberger, J., Verleysen, Y., Geudens, N., Martins, J. C. & Heerklotz, H. The optimal lipid chain length of a membrane-permeabilizing lipopeptide results from the balance of membrane partitioning and local damage. Front. Microbiol. 12, 669709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fang, Y. et al. Tuning the antimicrobial pharmacophore to enable discovery of short lipopeptides with multiple modes of action. Eur. J. Med. Chem. 83, 36–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Guler, M. O. & Stupp, S. I. A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc. 129, 12082–12083 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Tena-Solsona, M. et al. Emergent catalytic behavior of self-assembled low molecular weight peptide-based aggregates and hydrogels. Chem. A Eur. J. 22, 6687–6694 (2016).

    Article  CAS  Google Scholar 

  58. Lin, S., Qin, J., Li, Y., Li, B. & Yang, Y. Chirality-driven parallel and antiparallel β-sheet secondary structures of Phe-Ala lipodipeptides. Langmuir 33, 8246–8252 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Mishra, N. K., Kumar, V. & Joshi, K. B. Thermoplasmonic effect of silver nanoparticles modulates peptide amphiphile fiber into nanowreath-like assembly. Nanoscale 7, 20238–20248 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Singh, R., Kumar Mishra, N., Kumar, V., Vinayak, V. & Ballabh Joshi, K. Transition metal ion-mediated tyrosine-based short-peptide amphiphile nanostructures inhibit bacterial growth. ChemBioChem 19, 1630–1637 (2018). This work shows a new approach to produce antibacterial lipopeptides by complexing them with transition metals, ultimately affecting cell homeostasis.

    Article  CAS  PubMed  Google Scholar 

  61. Bélières, M., Déjugnat, C. & Chouini-Lalanne, N. Histidine-based lipopeptides enhance cleavage of nucleic acids: interactions with DNA and hydrolytic properties. Bioconjug. Chem. 26, 2520–2529 (2015).

    Article  PubMed  Google Scholar 

  62. Tarwadi, Jazayeri, J. A., Prankerd, R. J. & Pouton, C. W. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Bioconjug. Chem. 19, 940–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Mishra, B., Lushnikova, T. & Wang, G. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC Adv. 5, 59758–59769 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Castelletto, V. et al. Self-assembly, tunable hydrogel properties, and selective anti-cancer activity of a carnosine-derived lipidated peptide. ACS Appl. Mater. Interfaces 11, 33573–33580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ravula, V., Lo, Y.-L., Wang, L.-F. & Patri, S. V. Gemini lipopeptide bearing an ultrashort peptide for enhanced transfection efficiency and cancer-cell-specific cytotoxicity. ACS Omega 6, 22955–22968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng, P.-N., Pham, J. D. & Nowick, J. S. The supramolecular chemistry of β-sheets. J. Am. Chem. Soc. 135, 5477–5492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qi, R. et al. Assembly and evolution of gemini-type peptide amphiphile with a di-lysine spacer. Langmuir 35, 6154–6160 (2019). A deep study showing the evolution of dynamic supramolecular structures, from vesicles, to fibrils, to ribbons and belts, using a lysine lipopeptide.

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, C. et al. Bola-type Ala-Ala dipeptides: odd–even effect in molecular packing structures. Langmuir 35, 11406–11413 (2019). A representative study of the odd–even effect using Ala-Ala bolaamphiphiles that self-assemble into different morphologies.

    Article  CAS  PubMed  Google Scholar 

  69. Ohta, A., Shirai, M., Asakawa, T. & Miyagishi, S. Effect of stereochemistry on the molecular aggregation of phenylalanine dipeptide-type surfactants. J. Oleo Sci. 57, 659–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Tong, Q., Zhang, L., Li, Y., Li, B. & Yang, Y. Alignment of twisted nanoribbons formed by C17H35CO-Val-Ala sodium salts. Soft Matter 14, 6353–6359 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, K. et al. A ‘center-determination’ phenomenon of C13H27CO-Gly-Ala-Ala lipotripeptides: relationship between the molecular chirality and handedness of organic self-assemblies. N. J. Chem. 43, 11503–11509 (2019).

    Article  CAS  Google Scholar 

  72. Boettcher, C., Schade, B. & Fuhrhop, J. H. Comparative cryo-electron microscopy of noncovalent N-dodecanoyl-(d- and l-) serine assemblies in vitreous toluene and water. Langmuir 17, 873–877 (2001).

    Article  CAS  Google Scholar 

  73. Li, Y., Li, B., Fu, Y., Lin, S. & Yang, Y. Solvent-induced handedness inversion of dipeptide sodium salts derived from alanine. Langmuir 29, 9721–9726 (2013). A work that highlights the solvent effect on promoting opposite ribbon handedness using THF or water.

    Article  CAS  PubMed  Google Scholar 

  74. Otsuka, T., Maeda, T. & Hotta, A. Effects of salt concentrations of the aqueous peptide-amphiphile solutions on the sol–gel transitions, the gelation speed, and the gel characteristics. J. Phys. Chem. B 118, 11537–11545 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Stendahl, J. C., Rao, M. S., Guler, M. O. & Stupp, S. I. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 16, 499–508 (2006).

    Article  CAS  Google Scholar 

  76. Mnif, I., Rajhi, H., Bouallegue, A., Trabelsi, N. & Ghribi, D. Characterization of lipopeptides biosurfactants produced by a newly isolated strain Bacillus subtilis ZNI5: potential environmental application. J. Polym. Environ. 30, 2378–2391 (2022).

    Article  CAS  Google Scholar 

  77. Kar, T., Debnath, S., Das, D., Shome, A. & Das, P. K. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal. Langmuir 25, 8639–8648 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Duan, P., Qin, L., Zhu, X. & Liu, M. Hierarchical self-assembly of amphiphilic peptide dendrons: evolution of diverse chiral nanostructures through hydrogel formation over a wide pH range. Chem. A Eur. J. 17, 6389–6395 (2011).

    Article  CAS  Google Scholar 

  79. Wang, D. et al. Light- and pH-controlled hierarchical coassembly of peptide amphiphiles. Langmuir 35, 9841–9847 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Hatip Koc, M. et al. Hierarchical self-assembly of histidine-functionalized peptide amphiphiles into supramolecular chiral nanostructures. Langmuir 33, 7947–7956 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Billiot, F. H. et al. Comparison of the aggregation behavior of 15 polymeric and monomeric dipeptide surfactants in aqueous solution. Langmuir 18, 2993–2997 (2002).

    Article  CAS  Google Scholar 

  82. Zaldivar, G., Vemulapalli, S., Udumula, V., Conda-Sheridan, M. & Tagliazucchi, M. Self-assembled nanostructures of peptide amphiphiles: charge regulation by size regulation. J. Phys. Chem. C 123, 17606–17615 (2019).

    Article  CAS  Google Scholar 

  83. Novelli, F. et al. Polymorphic self-organization of lauroyl peptide in response to pH and concentration. Langmuir 36, 3941–3951 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, H. et al. Modulating self-assembly behavior of a salt-free peptide amphiphile (PA) and Zwitterionic surfactant mixed system. J. Colloid Interface Sci. 467, 43–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, H. et al. Modulating hierarchical self-assembly behavior of a peptide amphiphile/nonionic surfactant mixed system. RSC Adv. 6, 9186–9193 (2016).

    Article  CAS  Google Scholar 

  86. Basak, S., Nanda, J. & Banerjee, A. A new aromatic amino acid based organogel for oil spill recovery. J. Mater. Chem. 22, 11658–11664 (2012).

    Article  CAS  Google Scholar 

  87. Sharma, A., Gupta, A., Tiwari, P., Basu, A. & Duttkonar, A. 12-Hydroxy stearic acid appended new amphiphilic scaffolds for selective capture of hydrogen halides through supramolecular hydrogelation. N. J. Chem. 44, 3828–3832 (2020).

    Article  CAS  Google Scholar 

  88. Asl, H. F. et al. Experimental investigation into l-Arg and l-Cys eco-friendly surfactants in enhanced oil recovery by considering IFT reduction and wettability alteration. Pet. Sci. 17, 105–117 (2020).

    Article  CAS  Google Scholar 

  89. Asl, H. F. et al. Effect of SiO2 nanoparticles on the performance of L-Arg and L-Cys surfactants for enhanced oil recovery in carbonate porous media. J. Mol. Liq. 300, 112290 (2020).

    Article  CAS  Google Scholar 

  90. Nandi, M., Maiti, B., Banerjee, S. & De, P. Hydrogen bonding driven self-assembly of side-chain amino acid and fatty acid appended poly(methacrylate)s: gelation and application in oil spill recovery. J. Polym. Sci. Part A Polym. Chem. 57, 511–521 (2019).

    Article  CAS  Google Scholar 

  91. Zhu, Z. et al. A critical review on the environmental application of lipopeptide micelles. Bioresour. Technol. 339, 125602 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Basak, S., Nandi, N., Paul, S., Hamley, I. W. & Banerjee, A. A tripeptide-based self-shrinking hydrogel for waste-water treatment: removal of toxic organic dyes and lead (Pb2+) ions. Chem. Commun. 53, 5910–5913 (2017).

    Article  CAS  Google Scholar 

  93. Veliscek-Carolan, J., Hanley, T. L. & Jolliffe, K. A. The impact of structural variation in simple lanthanide binding peptides. RSC Adv. 6, 75336–75346 (2016).

    Article  CAS  Google Scholar 

  94. Koda, D., Maruyama, T., Minakuchi, N., Nakashima, K. & Goto, M. Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation. Chem. Commun. 46, 979–981 (2010). An innovative tool for disease diagnosis that correlates a lipopeptide morphological change (gelation) with an enzyme activity.

    Article  CAS  Google Scholar 

  95. Shamsi, S. A., Valle, B. C., Billiot, F. & Warner, I. M. Polysodium N-undecanoyl-l-leucylvalinate: a versatile chiral selector for micellar electrokinetic chromatography. Anal. Chem. 75, 379–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Ji, Q., Iwaura, R. & Shimizu, T. Regulation of silica nanotube diameters: sol−gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates. Chem. Mater. 19, 1329–1334 (2007).

    Article  CAS  Google Scholar 

  97. Ji, Q. & Shimizu, T. Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun. 4411–4413 (2005).

  98. Mishra, N. K., Joshi, K. B. & Verma, S. Modulating peptide amphiphile morphology by gold nanocolloids. J. Colloid Interface Sci. 455, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Kumar, V., Mishra, N. K., Gupta, S. & Joshi, K. B. Short peptide amphiphile cage facilitate engineering of gold nanoparticles under the laser field. ChemistrySelect 2, 211–218 (2017).

    Article  CAS  Google Scholar 

  100. Mandal, S. K., Kar, T., Das, D. & Das, P. K. The striking influence of SWNT–COOH on self-assembled gelation. Chem. Commun. 48, 1814–1816 (2012).

    Article  CAS  Google Scholar 

  101. Kar, T., Mandal, S. K. & Das, P. K. Influence of pristine SWNTs in supramolecular hydrogelation: scaffold for superior peroxidase activity of cytochrome c. Chem. Commun. 48, 8389–8391 (2012).

    Article  CAS  Google Scholar 

  102. Zeng, F. et al. A pore-forming tripeptide as an extraordinarily active anion channel. Org. Lett. 21, 4826–4830 (2019). An outstanding example of gemini lipopeptide that self-assembles into rod-like structures, generating small pores within a membrane, allowing transport of anions.

    Article  CAS  PubMed  Google Scholar 

  103. Ren, C. et al. Pore-forming monopeptides as exceptionally active anion channels. J. Am. Chem. Soc. 140, 8817–8826 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Ren, C., Shen, J. & Zeng, H. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. J. Am. Chem. Soc. 139, 12338–12341 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Zeng, L. Z., Zhang, H., Wang, T. & Li, T. Enhancing K+ transport activity and selectivity of synthetic K+ channels: via electron-donating effects. Chem. Commun. 56, 1211–1214 (2020).

    Article  CAS  Google Scholar 

  106. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1689 (2001). A fascinating example of tailored lipopeptide reversibly crosslinking into a fibrous scaffold that is able to direct hydroxyapatite mineralization.

    Article  CAS  PubMed  Google Scholar 

  107. Guler, M. O., Soukasene, S., Hulvat, J. F. & Stupp, S. I. Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Lett. 5, 249–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Tovar, J. D., Rabatic, B. M. & Stupp, S. I. Conducting polymers confined within bioactive peptide amphiphile nanostructures. Small 3, 2024–2028 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Tovar, J. D., Claussen, R. C. & Stupp, S. I. Probing the interior of peptide amphiphile supramolecular aggregates. J. Am. Chem. Soc. 127, 7337–7345 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Sato, K. et al. Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion. J. Am. Chem. Soc. 139, 8995–9000 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, Z., Tantakitti, F., Palmer, L. C. & Stupp, S. I. Asymmetric peptide nanoribbons. Nano Lett. 16, 6967–6974 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, Z. et al. Simultaneous covalent and noncovalent hybrid polymerizations. Science 351, 497–502 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Gao, C. et al. Electrostatic control of polymorphism in charged amphiphile assemblies. J. Phys. Chem. B 121, 1623–1628 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018). A sophisticated example of a lipopeptide hydrogel that interacts with DNA strands, mimicking extracellular matrix in neural cells growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Preslar, A. T. et al. 19F magnetic resonance imaging signals from peptide amphiphile nanostructures are strongly affected by their shape. ACS Nano 10, 7376–7384 (2016). An example of pH-sensitive fluorinated lipopeptide with potential application in 19F MRI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Krishnan, V., Pham, W. N., Messer, W. S. & Peseckis, S. M. First fatty acylated dipeptides to affect muscarinic receptor ligand binding. Bioorg. Med. Chem. Lett. 9, 3363–3368 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Todorovic, A. et al. N-terminal fatty acylated His-DPhe-Arg-Trp-NH2 tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes. J. Med. Chem. 48, 3328–3336 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Lopes, S. C. D. N. et al. Conformational and orientational guidance of the analgesic dipeptide kyotorphin induced by lipidic membranes: putative correlation toward receptor docking. J. Phys. Chem. B 110, 3385–3394 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Yao, L. Y. et al. Synthesis of lipoamino acids and their activity against cerebral ischemic injury. Molecules 14, 4051–4064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cui, H. J., Liu, S., Yang, R., Fu, G. H. & Lu, Y. N-stearoyltyrosine protects primary cortical neurons against oxygen-glucose deprivation-induced apoptosis through inhibiting anandamide inactivation system. Neurosci. Res. 123, 8–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Cui, H., Yang, R., Liu, S., Fu, G. & Lu, Y. N-stearoyltyrosine protects primary cortical neurons against Aβ(1–40)-induced injury through inhibiting endocannabinoid degradation. Life Sci. 124, 91–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, Z. H. et al. N-stearoyltyrosine protects primary neurons from Aβ-induced apoptosis through modulating mitogen-activated protein kinase activity. Neuroscience 169, 1840–1847 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Guarise, C. et al. Amphiphilic peptide-based MMP3 inhibitors for intra-articular treatment of knee OA. Bioorg. Med. Chem. 38, 116132 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Biesalski, M. A., Knaebel, A., Tu, R. & Tirrell, M. Cell adhesion on a polymerized peptide-amphiphile monolayer. Biomaterials 27, 1259–1269 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021). This work reports a novel fibrillar lipopeptide that promotes nerve regeneration in a paralysing human spinal cord injury mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhao, P. et al. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 113, 52–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. McPhee, J., Scott, M. & Hancock, R. Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb. Chem. High. Throughput Screen. 8, 257–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Wood, T. M. & Martin, N. I. The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry. MedChemComm 10, 634–646 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Z., Koirala, B., Hernandez, Y., Zimmerman, M. & Brady, S. F. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 376, 991–996 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nandi, N. et al. Amphiphilic peptide-based supramolecular, noncytotoxic, stimuli-responsive hydrogels with antibacterial activity. Biomacromolecules 18, 3621–3629 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Vicente-García, C. & Colomer, I. New antimicrobial self-assembling short lipopeptides. Org. Biomol. Chem. 19, 6797–6803 (2021).

    Article  PubMed  Google Scholar 

  136. Ahn, M. et al. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability. Eur. J. Med. Chem. 68, 10–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Greber, K. E., Dawgul, M., Kamysz, W. & Sawicki, W. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front. Microbiol. 8, 1–10 (2017).

    Article  Google Scholar 

  138. Greber, K. E. et al. Are the short cationic lipopeptides bacterial membrane disruptors? Structure–activity relationship and molecular dynamic evaluation. Biochim. Biophys. Acta Biomembr. 1861, 93–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Domalaon, R. et al. Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Amino Acids 51, 383–393 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Paduszynska, M. A. et al. Influence of short cationic lipopeptides with fatty acids of different chain lengths on bacterial biofilms formed on polystyrene and hydrogel surfaces. Pharmaceutics 11, 506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pazos, E. et al. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J. Am. Chem. Soc. 138, 5507–5510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rofeal, M. & El-Malek, F. A. Valorization of lipopeptides biosurfactants as anticancer agents. Int. J. Pept. Res. Ther. 27, 447–455 (2021).

    Article  CAS  Google Scholar 

  143. Domalaon, R., Findlay, B., Ogunsina, M., Arthur, G. & Schweizer, F. Ultrashort cationic lipopeptides and lipopeptoids: evaluation and mechanistic insights against epithelial cancer cells. Peptides 84, 58–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Abdel-Malek, Z. A. et al. Melanoma prevention strategy based on using tetrapeptide α‐MSH analogs that protect human melanocytes from UV‐induced DNA damage and cytotoxicity. FASEB J. 20, 1561–1563 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Standley, S. M. et al. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 70, 3020–3026 (2010). A neat study in which lipidation of cytotoxic small peptide enhances cell permeation, intracellular toxicity and tumour cell selectivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Makovitzki, A., Avrahami, D. & Shai, Y. Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl Acad. Sci. USA 103, 15997–16002 (2006). A comprehensive study showing antibacterial and antifungal activity of short lipopeptide, via a membrane-permeation mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nagarajan, S. R. et al. Conformationally constrained [p-(ω-aminoalkyl)phenacetyl]-l-seryl-l-lysyl dipeptide amides as potent peptidomimetic inhibitors of Candida albicans and human myristoyl-CoA: protein N-myristoyl transferase. J. Med. Chem. 2623, 1422–1438 (1997).

    Article  Google Scholar 

  148. Wu, W. et al. Super short membrane-active lipopeptides inhibiting the entry of influenza A virus. Biochim. Biophys. Acta Biomembr. 1848, 2344–2350 (2015).

    Article  CAS  Google Scholar 

  149. Lin, D. et al. A ‘building block’ approach to the new influenza A virus entry inhibitors with reduced cellular toxicities. Sci. Rep. 6, 1–14 (2016).

    Google Scholar 

  150. Copolovici, D. M., Langel, K., Eriste, E. & Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8, 1972–1994 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Bode, S. A. et al. Self-assembling mini cell-penetrating peptides enter by both direct translocation and glycosaminoglycan-dependent endocytosis. Chem. Commun. 48, 7179–7181 (2012).

    Article  CAS  Google Scholar 

  152. Pham, W., Kircher, M. F., Weissleder, R. & Tung, C. H. Enhancing membrane permeability by fatty acylation of oligoarginine peptides. ChemBioChem 5, 1148–1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Amoura, M. et al. Head to tail cyclisation of cell-penetrating peptides: impact on GAG-dependent internalisation and direct translocation. Chem. Commun. 55, 4566–4569 (2019).

    Article  CAS  Google Scholar 

  154. Bhunia, D. et al. Spatial position regulates power of tryptophan: discovery of a major-groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J. Am. Chem. Soc. 140, 1697–1714 (2018). An interesting study in which cell-penetrating short lipopeptides result in nuclear localization, binding to DNA major groove.

    Article  CAS  PubMed  Google Scholar 

  155. Teixeira, R. S. et al. Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics. Int. J. Pharm. 474, 212–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Bastiat, G. et al. Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials 31, 6031–6038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Karra, N. et al. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small 9, 4221–4236 (2013). A beautiful example using a very simple lipoamino acid to link an antibody and cetuximab-loaded nanoparticles, to develop a selective antitumour drug delivery system.

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, L., Gao, Z., Zhao, X. & Qi, G. A natural lipopeptide of surfactin for oral delivery of insulin. Drug Deliv. 23, 2084–2093 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, D. et al. Preparation and characterization of β-casein stabilized lipopeptide lyotropic liquid crystal nanoparticles for delivery of doxorubicin. Soft Matter 15, 9011–9017 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Javali, N. M., Raj, A., Saraf, P., Li, X. & Jasti, B. Fatty acid-RGD peptide amphiphile micelles as potential paclitaxel delivery carriers to α(v)β(3) integrin overexpressing tumors. Pharm. Res. 29, 3347–3361 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Du, H., Cui, C., Wang, L., Liu, H. & Cui, G. Novel tetrapeptide, RGDF, mediated tumor specific liposomal doxorubicin (DOX) preparations. Mol. Pharm. 8, 1224–1232 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, D. et al. Preparation and properties of semi-self-assembled lipopeptide vesicles. Langmuir 35, 13174–13181 (2019). This work describes a new application of lipopeptides in the production of magnetic vesicles.

    Article  CAS  PubMed  Google Scholar 

  163. Silva, E. R. et al. Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Soft Matter 12, 9158–9169 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Ho, J. K., White, P. J. & Pouton, C. W. Self-crosslinking lipopeptide/DNA/PEGylated particles: a new platform for DNA vaccination designed for assembly in aqueous solution. Mol. Ther. Nucleic Acids 12, 504–517 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tonellato, U. Catalysis of ester hydrolysis by cationic micelles of surfactants containing the imidazole ring. J. Chem. Soc. Perkin Trans. 2, 771–776 (1976).

    Article  Google Scholar 

  166. Heitmann, P. Reactivity of sulf hydryl groups in micelles: a model for protein. Eur. J. Biochem. 5, 305–315 (1968).

    Article  CAS  PubMed  Google Scholar 

  167. Heitmann, P. A model for sulfhydryl groups in proteins. Hydrophobic interactions of the cysteine side chain in micelles. Eur. J. Biochem. 3, 346–350 (1968).

    Article  CAS  PubMed  Google Scholar 

  168. Moss, R. A., Nahas, R. C. & Lukas, T. J. Preparation and kinetic properties of cysteine surfactants. J. Am. Chem. Soc. 100, 5920–5927 (1978).

    Article  CAS  Google Scholar 

  169. Ihara, Y., Hosako, R., Nango, M. & Kuroki, N. Stereoselective micellar catalysis. Part 3. Co-operative effects of N-decanoyl-l-histidine for the hydrolysis of enantiomeric substrates. J. Chem. Soc. Perkin Trans. 2, 5–9 (1983).

    Article  Google Scholar 

  170. Poznik, M. & König, B. Enantioselective ester hydrolysis by an achiral catalyst co-embedded with chiral amphiphiles into a vesicle membrane. RSC Adv. 6, 44456–44458 (2016).

    Article  CAS  Google Scholar 

  171. Ihara, Y., Kimura, Y., Nango, M. & Kuroki, N. Catalysis of enantiomeric ester hydrolysis by N-decanoyl-l-histidine in polymer domains. J. Polym. Sci. A 21, 1535–1542 (1983).

    CAS  Google Scholar 

  172. You, J. S. et al. Hydrolytic metalloenzyme models enantioselective hydrolysis of long chain α-amino acid esters by chiral metallomicelles composed of lipophilic l-histidinol. J. Mol. Catal. A Chem. 202, 17–22 (2003).

    Article  CAS  Google Scholar 

  173. Gayen, K. et al. Amino-acid-based metallo-hydrogel that acts like an esterase. ACS Appl. Bio Mater. 1, 1717–1724 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Kwak, J., Kim, M. C. & Lee, S. Y. Biomimetic catalytic and sensing cascades built with two designer bolaamphiphilic self-assemblies. ACS Appl. Mater. Interfaces 7, 14150–14156 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Nothling, M. D. et al. A multifunctional surfactant catalyst inspired by hydrolases. Sci. Adv. 6, 1–13 (2020). A recent representative example of a bioinspired lipoamino acid that catalyses ester hydrolysis.

    Article  Google Scholar 

  176. Gulseren, G., Khalily, M. A., Tekinay, A. B. & Guler, M. O. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J. Mater. Chem. B 4, 4605–4611 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Gulseren, G. et al. Alkaline phosphatase-mimicking peptide nanofibers for osteogenic differentiation. Biomacromolecules 16, 2198–2208 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. 58, 244–247 (2019). A recent use of a very simple histidine lipoamino acid that is able to generate a complex out-of-equilibrium system.

    Article  CAS  Google Scholar 

  179. Afrose, S. P., Bal, S., Chatterjee, A., Das, K. & Das, D. Designed negative feedback from transiently formed catalytic nanostructures. Angew. Chem. Int. Ed. 58, 15783–15787 (2019).

    Article  CAS  Google Scholar 

  180. Pal, S., Reja, A., Bal, S., Tikader, B. & Das, D. Emergence of a promiscuous peroxidase under non-equilibrium conditions. Angew. Chem. Int. Ed. 61, e202111857 (2022).

    Article  CAS  Google Scholar 

  181. Zozulia, O., Dolan, M. A. & Korendovych, I. V. Catalytic peptide assemblies. Chem. Soc. Rev. 47, 3621–3639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, S., Wu, C., Fu, X. & Miao, Q. Cysteine-based organocatalysts for the highly efficient direct stoichiometric anti- and syn-aldol reactions. Ind. Eng. Chem. Res. 50, 13711–13716 (2011).

    Article  CAS  Google Scholar 

  183. Díaz-Oltra, S., Berdugo, C., Miravet, J. F. & Escuder, B. Study of the effect of polymorphism on the self-assembly and catalytic performance of an l-proline based molecular hydrogelator. N. J. Chem. 39, 3785–3791 (2015).

    Article  Google Scholar 

  184. Qin, L. et al. Supramolecular assemblies of amphiphilic l-proline regulated by compressed CO2 as a recyclable organocatalyst for the asymmetric aldol reaction. Angew. Chem. Int. Ed. 52, 7761–7765 (2013).

    Article  CAS  Google Scholar 

  185. Singh, N. & Escuder, B. Competition versus cooperation in catalytic hydrogelators for anti-selective Mannich reaction. Chem. A Eur. J. 23, 9946–9951 (2017).

    Article  CAS  Google Scholar 

  186. Singh, N. et al. Tandem reactions in self-sorted catalytic molecular hydrogels. Chem. Sci. 7, 5568–5572 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Soares, B. M. et al. Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Phys. Chem. Chem. Phys. 19, 1181–1189 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Castelletto, V. et al. Self-assembly of a catalytically active lipopeptide and its incorporation into cubosomes. ACS Appl. Bio Mater. 2, 3639–3647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pelin, J. N. B. D. et al. Self-assembly, nematic phase formation, and organocatalytic behavior of a proline-functionalized lipopeptide. ACS Appl. Mater. Interfaces 12, 13671–13679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Soares, B. M. et al. Structure optimization of lipopeptide assemblies for aldol reactions in an aqueous medium. Phys. Chem. Chem. Phys. 23, 10953–10963 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Bhowmick, S., Zhang, L., Ouyang, G. & Liu, M. Self-assembly of amphiphilic dipeptide with homo- and heterochiral centers and their application in asymmetric aldol reaction. ACS Omega 3, 8329–8336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Reja, A., Afrose, S. P. & Das, D. Aldolase cascade facilitated by self-assembled nanotubes from short peptide amphiphiles. Angew. Chem. Int. Ed. 59, 4329–4334 (2020).

    Article  CAS  Google Scholar 

  193. Hawkins, K., Patterson, A. K., Clarke, P. A. & Smith, D. K. Catalytic gels for a prebiotically relevant asymmetric aldol reaction in water: from organocatalyst design to hydrogel discovery and back again. J. Am. Chem. Soc. 142, 4379–4389 (2020). A beautiful approach in which glutamine lipoamino acid catalyses a model aldol reaction relevant in a prebiotic context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rodríguez-Llansola, F., Miravet, J. F. & Escuder, B. Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly. Chem. A Eur. J. 16, 8480–8486 (2010).

    Article  Google Scholar 

  195. Duschmalé, J., Kohrt, S. & Wennemers, H. Peptide catalysis in aqueous emulsions. Chem. Commun. 50, 8109–8112 (2014).

    Article  Google Scholar 

  196. Delgado, J. A. C. et al. Synthesis of N-alkylated lipopeptides and their application as organocatalysts in asymmetric Michael addition in aqueous environments. N. J. Chem. 45, 14050–14057 (2021).

    Article  CAS  Google Scholar 

  197. Khalily, M. A., Ustahuseyin, O., Garifullin, R., Genc, R. & Guler, M. O. A supramolecular peptide nanofiber templated Pd nanocatalyst for efficient Suzuki coupling reactions under aqueous conditions. Chem. Commun. 48, 11358–11360 (2012).

    Article  CAS  Google Scholar 

  198. Khalily, M. A., Gulseren, G., Tekinay, A. B. & Guler, M. O. Biocompatible supramolecular catalytic one-dimensional nanofibers for efficient labeling of live cells. Bioconjug. Chem. 26, 2371–2375 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Kim, M. C. & Lee, S. Y. Carbonic anhydrase-mimetic bolaamphiphile self-assembly for CO2 hydration and sequestration. Chem. A Eur. J. 20, 17019–17024 (2014). An interesting study in which a bolaamphiphile lipoamino acid works as a carbonic anhydrase analogue, reducing CO2 in the presence of zinc.

    Article  CAS  Google Scholar 

  200. Khalily, M. A. et al. Facile synthesis of three-dimensional Pt-TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem. Int. Ed. 55, 12257–12261 (2016).

    Article  CAS  Google Scholar 

  201. Dolan, M. A. et al. Catalytic nanoassemblies formed by short peptides promote highly enantioselective transfer hydrogenation. ACS Nano 13, 9292–9297 (2019). A fascinating example of a short lipopeptide forming an iridium complex that catalysed the enantioselective hydrogenation of ketones in water.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Jasim, B., Sreelakshmi, K. S., Mathew, J. & Radhakrishnan, E. K. Surfactin, iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb. Ecol. 72, 106–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Wu, S., Liu, G., Zhou, S., Sha, Z. & Sun, C. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Mar. Drugs 17, 199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fewer, D. P. et al. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. Physiol. Plant 173, 639–650 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Rabanal, F. & Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep. 34, 886–908 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Cui, A.-L. et al. Synthesis and bioactivity investigation of the individual components of cyclic lipopeptide antibiotics. J. Med. Chem. 61, 1845–1857 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Cui, A.-L. et al. Design, synthesis, and bioactivity of cyclic lipopeptide antibiotics with varied polarity, hydrophobicity, and positive charge distribution. ACS Infect. Dis. 6, 1796–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Nang, S. C., Azad, M. A. K., Velkov, T., Zhou, Q. T. & Li, J. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol. Rev. 73, 679–728 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Roberts, K. D. et al. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat. Commun. 13, 1625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from La Caixa Foundation under the Junior Leader Program (Nos. LCF/BQ/PI19/11690020, ID 100010434), CAM-Atracción de Talento (2019-T1/IND-12683), PID2019-106327GA-I00 (MCIN/AEI/10.13039/501100011033), RyC2019-026674-I (MCIN/AEI/10.13039/501100011033 and FSE) and PIE 20218AT015 (CSIC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Ignacio Colomer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aerogel

Solid ordered structure obtained by displacing the liquid component of a gel using a gas, initially developed under supercritical conditions, with slight or no shrinkage and retaining its original shape.

Critical aggregation concentration

(CAC). Minimal concentration of an amphiphile at which self-assembled ordered structures are formed and detected.

Haemolysis

Disruption of erythrocyte membranes, causing the release of haemoglobin, either by an external agent or natural necrosis at the end of erythrocyte life.

Half-maximal inhibitory concentration (IC50)

The concentration of a substance required for 50% inhibition of a specific biological function, used as a measure of drug potency.

Hydrogel

Hydrophilic self-assembled (macro)molecule that is not soluble in water, but absorbs large amounts of water, maintaining well-defined supramolecular structure.

Hydrophilic–lipophilic balance

Measure of the hydrophilic and lipophilic degree of a surfactant molecule that results from its partition between oil and water.

Hydrophobic collapse

Entropy-driven process, commonly observed by polypeptides and amphiphilic species in polar solvents, that produces a more stable 3D conformation as a result of the inability to interact or stabilize the hydrophobic domain by polar solvents.

Langmuir–Blodgett film

Nanostructure formed by organized (multi)layers of amphiphilic molecules, or nanoparticles, as a result of transferring an organized monolayer film from a liquid–air interface into a solid support.

Low-molecular-weight gelators

Small molecules that self-assemble via noncovalent bonding, entrapping molecules of solvent, commonly forming fibres, giving rise to gels.

Matrix metalloprotein-7

(MMP-7). Also known as matrilysin or pump-1 protease (PUMP-1) is a zinc-dependent endonuclease that breaks down macromolecules from the extracellular matrix.

Melanocortin 1 receptor

G-coupled receptor binding to pituitary peptide hormones, normally expressed by melanocytes and overexpressed by melanoma cancerous cells.

Membrane depolarization

A shift in electric charge distribution (potential) within the cell membrane, related to ion transport, that can be physiological, that is, action potential, or lethal, that is antibiotics mechanism.

Minimal inhibitory concentration

(MIC). Lowest concentration of an antimicrobial agent that inhibits the growth of a microorganism.

Multiresistant bacteria

Bacterial strains showing resistance to at least one antimicrobial drug in three or more antimicrobial categories.

Nonribosomal peptide synthetases

Multimodular enzymes that synthesize natural peptides, frequently incorporating non-proteinogenic amino acids and structural modifications, which is an alternative mechanism independent of mRNA, as opposed to ribosomes.

Organogel

Gel formed by an organic liquid and a 3D cross-linked structure, formed by polymerization of reactive monomers or by self-assembling of low-molecular-weight species via noncovalent bonding, retaining the organic solvent.

Stern layer

The first (internal) layer of the electric double layer, which forms at a charged surface in an ionic solution.

Xerogels

Solid ordered structure obtained by drying a gel, for example, evaporating water from a hydrogel, with a notable shrinkage and usually not retaining its original shape.

Zeta potential

Electric potential in the interfacial double layer of a colloidal dispersion, nanoparticle or self-assembled structure with respect to bulk medium, providing a measure of its stability.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Garcia, C., Colomer, I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 7, 710–731 (2023). https://doi.org/10.1038/s41570-023-00532-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00532-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research